Xiao-Dong Guo

List of Publications by Citations

Source: https://exaly.com/author-pdf/7335225/xiao-dong-guo-publications-by-citations.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

430 50,330 114 214 h-index g-index citations papers 56,963 8.16 12.2 459 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
430	Lithium-sulfur batteries: electrochemistry, materials, and prospects. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 13186-200	16.4	1989
429	Nanostructured Materials for Electrochemical Energy Conversion and Storage Devices. <i>Advanced Materials</i> , 2008 , 20, 2878-2887	24	1893
428	Smaller sulfur molecules promise better lithium-sulfur batteries. <i>Journal of the American Chemical Society</i> , 2012 , 134, 18510-3	16.4	1317
427	Carbon Coated Fe3O4 Nanospindles as a Superior Anode Material for Lithium-Ion Batteries. <i>Advanced Functional Materials</i> , 2008 , 18, 3941-3946	15.6	1119
426	Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. <i>Nature Communications</i> , 2015 , 6, 8058	17.4	1030
425	An Artificial Solid Electrolyte Interphase Layer for Stable Lithium Metal Anodes. <i>Advanced Materials</i> , 2016 , 28, 1853-8	24	1021
424	Binding SnO2 nanocrystals in nitrogen-doped graphene sheets as anode materials for lithium-ion batteries. <i>Advanced Materials</i> , 2013 , 25, 2152-7	24	951
423	Tin-Nanoparticles Encapsulated in Elastic Hollow Carbon Spheres for High-Performance Anode Material in Lithium-Ion Batteries. <i>Advanced Materials</i> , 2008 , 20, 1160-1165	24	938
422	High Lithium Electroactivity of Nanometer-Sized Rutile TiO2. <i>Advanced Materials</i> , 2006 , 18, 1421-1426	24	767
421	High-quality Prussian blue crystals as superior cathode materials for room-temperature sodium-ion batteries. <i>Energy and Environmental Science</i> , 2014 , 7, 1643-1647	35.4	691
420	Pt hollow nanospheres: facile synthesis and enhanced electrocatalysts. <i>Angewandte Chemie - International Edition</i> , 2004 , 43, 1540-3	16.4	631
419	Synthesis and Lithium Storage Properties of Co3O4 Nanosheet-Assembled Multishelled Hollow Spheres. <i>Advanced Functional Materials</i> , 2010 , 20, 1680-1686	15.6	615
418	LiFePO4 Nanoparticles Embedded in a Nanoporous Carbon Matrix: Superior Cathode Material for Electrochemical Energy-Storage Devices. <i>Advanced Materials</i> , 2009 , 21, 2710-2714	24	597
417	Superior Electrode Performance of Nanostructured Mesoporous TiO2 (Anatase) through Efficient Hierarchical Mixed Conducting Networks. <i>Advanced Materials</i> , 2007 , 19, 2087-2091	24	561
416	Rutile-TiO2 nanocoating for a high-rate Li4Ti5O12 anode of a lithium-ion battery. <i>Journal of the American Chemical Society</i> , 2012 , 134, 7874-9	16.4	551
415	Mass production and high photocatalytic activity of ZnS nanoporous nanoparticles. <i>Angewandte Chemie - International Edition</i> , 2005 , 44, 1269-73	16.4	511
4 ¹ 4	Nanocarbon networks for advanced rechargeable lithium batteries. <i>Accounts of Chemical Research</i> , 2012 , 45, 1759-69	24.3	488

413	A high-energy room-temperature sodium-sulfur battery. Advanced Materials, 2014, 26, 1261-5	24	446
412	A Flexible Solid Electrolyte Interphase Layer for Long-Life Lithium Metal Anodes. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 1505-1509	16.4	438
411	Improving the electrode performance of Ge through Ge@C core-shell nanoparticles and graphene networks. <i>Journal of the American Chemical Society</i> , 2012 , 134, 2512-5	16.4	411
410	Graphitized Carbon Fibers as Multifunctional 3D Current Collectors for High Areal Capacity Li Anodes. <i>Advanced Materials</i> , 2017 , 29, 1700389	24	403
409	Self-Assembled Nanocomposite of Silicon Nanoparticles Encapsulated in Graphene through Electrostatic Attraction for Lithium-Ion Batteries. <i>Advanced Energy Materials</i> , 2012 , 2, 1086-1090	21.8	401
408	Watermelon-Inspired Si/C Microspheres with Hierarchical Buffer Structures for Densely Compacted Lithium-Ion Battery Anodes. <i>Advanced Energy Materials</i> , 2017 , 7, 1601481	21.8	397
407	Safety-Reinforced Poly(Propylene Carbonate)-Based All-Solid-State Polymer Electrolyte for Ambient-Temperature Solid Polymer Lithium Batteries. <i>Advanced Energy Materials</i> , 2015 , 5, 1501082	21.8	391
406	Facile synthesis of silicon nanoparticles inserted into graphene sheets as improved anode materials for lithium-ion batteries. <i>Chemical Communications</i> , 2012 , 48, 2198-200	5.8	379
405	Nanostructured polyaniline-decorated Pt/C@PANI core-shell catalyst with enhanced durability and activity. <i>Journal of the American Chemical Society</i> , 2012 , 134, 13252-5	16.4	373
404	Improved Electrode Performance of Porous LiFePO4 Using RuO2 as an Oxidic Nanoscale Interconnect. <i>Advanced Materials</i> , 2007 , 19, 1963-1966	24	360
403	Rice husk-derived hierarchical silicon/nitrogen-doped carbon/carbon nanotube spheres as low-cost and high-capacity anodes for lithium-ion batteries. <i>Nano Energy</i> , 2016 , 25, 120-127	17.1	360
402	Synthesis of CuO/graphene nanocomposite as a high-performance anode material for lithium-ion batteries. <i>Journal of Materials Chemistry</i> , 2010 , 20, 10661		346
401	Layered Oxide Cathodes for Sodium-Ion Batteries: Phase Transition, Air Stability, and Performance. <i>Advanced Energy Materials</i> , 2018 , 8, 1701912	21.8	346
400	Sulfur Encapsulated in Graphitic Carbon Nanocages for High-Rate and Long-Cycle Lithium-Sulfur Batteries. <i>Advanced Materials</i> , 2016 , 28, 9539-9544	24	341
399	A Sandwich-Like Hierarchically Porous Carbon/Graphene Composite as a High-Performance Anode Material for Sodium-Ion Batteries. <i>Advanced Energy Materials</i> , 2014 , 4, 1301584	21.8	341
398	Advanced Micro/Nanostructures for Lithium Metal Anodes. <i>Advanced Science</i> , 2017 , 4, 1600445	13.6	338
397	Mono dispersed SnO2 nanoparticles on both sides of single layer graphene sheets as anode materials in Li-ion batteries. <i>Journal of Materials Chemistry</i> , 2010 , 20, 5462		338
396	An advanced selenium-carbon cathode for rechargeable lithium-selenium batteries. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 8363-7	16.4	330

395	Suppressing the P2-O2 Phase Transition of Na0.67 Mn0.67 Ni0.33 O2 by Magnesium Substitution for Improved Sodium-Ion Batteries. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 7445-9	16.4	330
394	Stable Li Plating/Stripping Electrochemistry Realized by a Hybrid Li Reservoir in Spherical Carbon Granules with 3D Conducting Skeletons. <i>Journal of the American Chemical Society</i> , 2017 , 139, 5916-5922	2 16.4	329
393	Reshaping Lithium Plating/Stripping Behavior via Bifunctional Polymer Electrolyte for Room-Temperature Solid Li Metal Batteries. <i>Journal of the American Chemical Society</i> , 2016 , 138, 15825	-19828	3 ³²⁹
392	Uniform Lithium Nucleation/Growth Induced by Lightweight Nitrogen-Doped Graphitic Carbon Foams for High-Performance Lithium Metal Anodes. <i>Advanced Materials</i> , 2018 , 30, 1706216	24	315
391	Subzero-Temperature Cathode for a Sodium-Ion Battery. <i>Advanced Materials</i> , 2016 , 28, 7243-8	24	299
390	Dendrite-Free Li-Metal Battery Enabled by a Thin Asymmetric Solid Electrolyte with Engineered Layers. <i>Journal of the American Chemical Society</i> , 2018 , 140, 82-85	16.4	299
389	Carbon-Nanotube-Decorated Nano-LiFePO4 @C Cathode Material with Superior High-Rate and Low-Temperature Performances for Lithium-Ion Batteries. <i>Advanced Energy Materials</i> , 2013 , 3, 1155-11	60 ^{21.8}	294
388	Stable Li Metal Anodes via Regulating Lithium Plating/Stripping in Vertically Aligned Microchannels. <i>Advanced Materials</i> , 2017 , 29, 1703729	24	288
387	Three-dimensional self-organization of supramolecular self-assembled porphyrin hollow hexagonal nanoprisms. <i>Journal of the American Chemical Society</i> , 2005 , 127, 17090-5	16.4	287
386	Ultra-uniform SnOx/carbon nanohybrids toward advanced lithium-ion battery anodes. <i>Advanced Materials</i> , 2014 , 26, 3943-9	24	283
385	Synthesis of MoS2 nanosheet-graphene nanosheet hybrid materials for stable lithium storage. <i>Chemical Communications</i> , 2013 , 49, 1838-40	5.8	276
384	Highly Dispersed RuO2 Nanoparticles on Carbon Nanotubes: Facile Synthesis and Enhanced Supercapacitance Performance. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 2448-2451	3.8	274
383	High-Energy/Power and Low-Temperature Cathode for Sodium-Ion Batteries: In Situ XRD Study and Superior Full-Cell Performance. <i>Advanced Materials</i> , 2017 , 29, 1701968	24	266
382	Cu-Si nanocable arrays as high-rate anode materials for lithium-ion batteries. <i>Advanced Materials</i> , 2011 , 23, 4415-20	24	266
381	Solid-State Lithium Metal Batteries Promoted by Nanotechnology: Progress and Prospects. <i>ACS Energy Letters</i> , 2017 , 2, 1385-1394	20.1	259
380	High-Capacity Cathode Material with High Voltage for Li-Ion Batteries. <i>Advanced Materials</i> , 2018 , 30, 1705575	24	256
379	Introducing Dual Functional CNT Networks into CuO Nanomicrospheres toward Superior Electrode Materials for Lithium-Ion Batteries. <i>Chemistry of Materials</i> , 2008 , 20, 3617-3622	9.6	255
378	Insight into the effect of boron doping on sulfur/carbon cathode in lithium-sulfur batteries. <i>ACS Applied Materials & Documents and Section 1</i> , 6, 8789-95	9.5	254

(2008-2012)

377	Ionothermal synthesis of sulfur-doped porous carbons hybridized with graphene as superior anode materials for lithium-ion batteries. <i>Chemical Communications</i> , 2012 , 48, 10663-5	5.8	252
376	High-Yield Gas l iquid Interfacial Synthesis of Highly Dispersed Fe3O4 Nanocrystals and Their Application in Lithium-Ion Batteries. <i>Chemistry of Materials</i> , 2009 , 21, 1162-1166	9.6	244
375	Free-Standing Hollow Carbon Fibers as High-Capacity Containers for Stable Lithium Metal Anodes. <i>Joule</i> , 2017 , 1, 563-575	27.8	243
374	Ti-Substituted NaNi Mn Ti O Cathodes with Reversible O3-P3 Phase Transition for High-Performance Sodium-Ion Batteries. <i>Advanced Materials</i> , 2017 , 29, 1700210	24	233
373	Na/vacancy disordering promises high-rate Na-ion batteries. Science Advances, 2018, 4, eaar6018	14.3	229
372	Facile synthesis of MoS2@CMK-3 nanocomposite as an improved anode material for lithium-ion batteries. <i>Nanoscale</i> , 2012 , 4, 5868-71	7.7	225
371	Suppressing Surface Lattice Oxygen Release of Li-Rich Cathode Materials via Heterostructured Spinel Li Mn O Coating. <i>Advanced Materials</i> , 2018 , 30, e1801751	24	222
370	Sodium iron hexacyanoferrate with high Na content as a Na-rich cathode material for Na-ion batteries. <i>Nano Research</i> , 2015 , 8, 117-128	10	221
369	Synthesis of monodispersed wurtzite structure CuInSe2 nanocrystals and their application in high-performance organic-inorganic hybrid photodetectors. <i>Journal of the American Chemical Society</i> , 2010 , 132, 12218-21	16.4	221
368	Designing Air-Stable O3-Type Cathode Materials by Combined Structure Modulation for Na-Ion Batteries. <i>Journal of the American Chemical Society</i> , 2017 , 139, 8440-8443	16.4	219
367	Towards better Li metal anodes: Challenges and strategies. <i>Materials Today</i> , 2020 , 33, 56-74	21.8	216
366	Superior radical polymer cathode material with a two-electron process redox reaction promoted by graphene. <i>Energy and Environmental Science</i> , 2012 , 5, 5221-5225	35.4	207
365	Synthesis of hierarchically mesoporous anatase spheres and their application in lithium batteries. <i>Chemical Communications</i> , 2006 , 2783-5	5.8	207
364	Extended Electrochemical Window of Solid Electrolytes via Heterogeneous Multilayered Structure for High-Voltage Lithium Metal Batteries. <i>Advanced Materials</i> , 2019 , 31, e1807789	24	205
363	Recent Advancements in Polymer-Based Composite Electrolytes for Rechargeable Lithium Batteries. <i>Electrochemical Energy Reviews</i> , 2018 , 1, 113-138	29.3	203
362	Electrochemical lithiation synthesis of nanoporous materials with superior catalytic and capacitive activity. <i>Nature Materials</i> , 2006 , 5, 713-7	27	202
361	Guiding Uniform Li Plating/Stripping through Lithium-Aluminum Alloying Medium for Long-Life Li Metal Batteries. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 1094-1099	16.4	202
360	Fe2O3 Nanostructures: Inorganic Salt-Controlled Synthesis and Their Electrochemical Performance toward Lithium Storage. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 16824-16829	3.8	200

359	Facile Synthesis of Blocky SiOx/C with Graphite-Like Structure for High-Performance Lithium-Ion Battery Anodes. <i>Advanced Functional Materials</i> , 2018 , 28, 1705235	15.6	199
358	Upgrading traditional liquid electrolyte via in situ gelation for future lithium metal batteries. <i>Science Advances</i> , 2018 , 4, eaat5383	14.3	199
357	Anisotropic photoresponse properties of single micrometer-sized GeSe nanosheet. <i>Advanced Materials</i> , 2012 , 24, 4528-33	24	196
356	Research progress regarding Si-based anode materials towards practical application in high energy density Li-ion batteries. <i>Materials Chemistry Frontiers</i> , 2017 , 1, 1691-1708	7.8	193
355	Elemental Selenium for Electrochemical Energy Storage. <i>Journal of Physical Chemistry Letters</i> , 2015 , 6, 256-66	6.4	187
354	Symbiotic Coaxial Nanocables: Facile Synthesis and an Efficient and Elegant Morphological Solution to the Lithium Storage Problem. <i>Chemistry of Materials</i> , 2010 , 22, 1908-1914	9.6	185
353	Enhancing the Kinetics of Li-Rich Cathode Materials through the Pinning Effects of Gradient Surface Na+ Doping. <i>Advanced Energy Materials</i> , 2016 , 6, 1501914	21.8	185
352	SiO Encapsulated in Graphene Bubble Film: An Ultrastable Li-Ion Battery Anode. <i>Advanced Materials</i> , 2018 , 30, e1707430	24	183
351	Electrochemical (de)lithiation of 1D sulfur chains in Li-S batteries: a model system study. <i>Journal of the American Chemical Society</i> , 2015 , 137, 2215-8	16.4	179
350	Passivation of Lithium Metal Anode via Hybrid Ionic Liquid Electrolyte toward Stable Li Plating/Stripping. <i>Advanced Science</i> , 2017 , 4, 1600400	13.6	176
349	Solvothermal Synthesis of LiFePO4 Hierarchically Dumbbell-Like Microstructures by Nanoplate Self-Assembly and Their Application as a Cathode Material in Lithium-Ion Batteries. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 3345-3351	3.8	172
348	SnO2-Based Hierarchical Nanomicrostructures: Facile Synthesis and Their Applications in Gas Sensors and Lithium-Ion Batteries. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 14213-14219	3.8	171
347	Tuning the porous structure of carbon hosts for loading sulfur toward long lifespan cathode materials for LiB batteries. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 6602	13	170
346	Wet milled synthesis of an Sb/MWCNT nanocomposite for improved sodium storage. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 13727	13	169
345	In-situ plasticized polymer electrolyte with double-network for flexible solid-state lithium-metal batteries. <i>Energy Storage Materials</i> , 2018 , 10, 85-91	19.4	165
344	Rational design of anode materials based on Group IVA elements (Si, Ge, and Sn) for lithium-ion batteries. <i>Chemistry - an Asian Journal</i> , 2013 , 8, 1948-58	4.5	163
343	Lithium-Schwefel-Batterien: Elektrochemie, Materialien und Perspektiven. <i>Angewandte Chemie</i> , 2013 , 125, 13426-13441	3.6	163
342	Electrospray Synthesis of Silicon/Carbon Nanoporous Microspheres as Improved Anode Materials for Lithium-Ion Batteries. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 14148-14154	3.8	163

(2004-2019)

341	Engineering Janus Interfaces of Ceramic Electrolyte via Distinct Functional Polymers for Stable High-Voltage Li-Metal Batteries. <i>Journal of the American Chemical Society</i> , 2019 , 141, 9165-9169	16.4	161
340	A zero-strain insertion cathode material of nickel ferricyanide for sodium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 14061	13	159
339	Mass Production and High Photocatalytic Activity of ZnS Nanoporous Nanoparticles. <i>Angewandte Chemie</i> , 2005 , 117, 1295-1299	3.6	154
338	Electrospun silicon nanoparticle/porous carbon hybrid nanofibers for lithium-ion batteries. <i>Small</i> , 2013 , 9, 2684-8	11	153
337	Mitigating Voltage Decay of Li-Rich Cathode Material via Increasing Ni Content for Lithium-Ion Batteries. <i>ACS Applied Materials & Decay interfaces</i> , 2016 , 8, 20138-46	9.5	151
336	Highly Disordered Carbon as a Superior Anode Material for Room-Temperature Sodium-Ion Batteries. <i>ChemElectroChem</i> , 2014 , 1, 83-86	4.3	150
335	Synergism of Al-containing solid electrolyte interphase layer and Al-based colloidal particles for stable lithium anode. <i>Nano Energy</i> , 2017 , 36, 411-417	17.1	143
334	Progress of the Interface Design in All-Solid-State Liß Batteries. <i>Advanced Functional Materials</i> , 2018 , 28, 1707533	15.6	140
333	Improving the electrochemical performance of the li4 ti5 o12 electrode in a rechargeable magnesium battery by lithium-magnesium co-intercalation. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 5757-61	16.4	139
332	Mitigating Interfacial Potential Drop of Cathode-Solid Electrolyte via Ionic Conductor Layer To Enhance Interface Dynamics for Solid Batteries. <i>Journal of the American Chemical Society</i> , 2018 , 140, 6767-6770	16.4	137
331	Improving cycling performance and rate capability of Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode materials by Li4Ti5O12 coating. <i>Electrochimica Acta</i> , 2018 , 268, 358-365	6.7	135
330	Efficient 3D conducting networks built by graphene sheets and carbon nanoparticles for high-performance silicon anode. <i>ACS Applied Materials & District Research</i> , 1, 2824-8	9.5	133
329	Synthesis of Single-Crystalline Co3O4 Octahedral Cages with Tunable Surface Aperture and Their Lithium Storage Properties. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 15553-15558	3.8	133
328	An O3-type NaNi0.5Mn0.5O2 cathode for sodium-ion batteries with improved rate performance and cycling stability. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 17660-17664	13	131
327	Microfluidic etching for fabrication of flexible and all-solid-state micro supercapacitor based on MnO2 nanoparticles. <i>Nanoscale</i> , 2011 , 3, 2703-8	7.7	130
326	Conductive graphite fiber as a stable host for zinc metal anodes. <i>Electrochimica Acta</i> , 2017 , 244, 172-17	7 6.7	125
325	A robust composite of SnO2 hollow nanospheres enwrapped by graphene as a high-capacity anode material for lithium-ion batteries. <i>Journal of Materials Chemistry</i> , 2012 , 22, 17456		123
324	Pt Hollow Nanospheres: Facile Synthesis and Enhanced Electrocatalysts. <i>Angewandte Chemie</i> , 2004 , 116, 1566-1569	3.6	121

323	A Stable Layered Oxide Cathode Material for High-Performance Sodium-Ion Battery. <i>Advanced Energy Materials</i> , 2019 , 9, 1803978	21.8	118
322	Controllable AuPt bimetallic hollow nanostructures. <i>Chemical Communications</i> , 2004 , 1496-7	5.8	117
321	The Electrochemistry with Lithium versus Sodium of Selenium Confined To Slit Micropores in Carbon. <i>Nano Letters</i> , 2016 , 16, 4560-8	11.5	117
320	Microemulsion Assisted Assembly of 3D Porous S/Graphene@g-C3N4 Hybrid Sponge as Free-Standing Cathodes for High Energy Density Liß Batteries. <i>Advanced Energy Materials</i> , 2018 , 8, 1703	2 83 9 ⁸	115
319	A Dual-Salt Gel Polymer Electrolyte with 3D Cross-Linked Polymer Network for Dendrite-Free Lithium Metal Batteries. <i>Advanced Science</i> , 2018 , 5, 1800559	13.6	115
318	Advanced Se I nanocomposites: a bifunctional electrode material for both Li B e and Li-ion batteries. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 13293	13	114
317	Layer structured 中间加anodisk/reduced graphene oxide composites as high-performance anode materials for lithium-ion batteries. <i>ACS Applied Materials & Description of Section</i> 1998 (1998)	9.5	114
316	Hierarchically micro/mesoporous activated graphene with a large surface area for high sulfur loading in LiB batteries. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 4799-4802	13	114
315	Better lithium-ion batteries with nanocable-like electrode materials. <i>Energy and Environmental Science</i> , 2011 , 4, 1634	35.4	114
314	High-safety lithium-sulfur battery with prelithiated Si/C anode and ionic liquid electrolyte. <i>Electrochimica Acta</i> , 2013 , 91, 58-61	6.7	113
313	Trapping Lithium into Hollow Silica Microspheres with a Carbon Nanotube Core for Dendrite-Free Lithium Metal Anodes. <i>Nano Letters</i> , 2018 , 18, 297-301	11.5	111
312	Tin Nanoparticles Impregnated in Nitrogen-Doped Graphene for Lithium-Ion Battery Anodes. Journal of Physical Chemistry C, 2013 , 117, 25367-25373	3.8	110
311	Wurtzite Cu2ZnSnSe4 nanocrystals for high-performance organicIhorganic hybrid photodetectors. <i>NPG Asia Materials</i> , 2012 , 4, e2-e2	10.3	109
310	Facile Synthesis of Mesoporous TiO2tt Nanosphere as an Improved Anode Material for Superior High Rate 1.5 V Rechargeable Li Ion Batteries Containing LiFePO4tt Cathode. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 10308-10313	3.8	109
309	Low-cost and large-scale synthesis of alkaline earth metal germanate nanowires as a new class of lithium ion battery anode material. <i>Energy and Environmental Science</i> , 2012 , 5, 8007	35.4	106
308	Construction of homogeneously Al3+ doped Ni rich Ni-Co-Mn cathode with high stable cycling performance and storage stability via scalable continuous precipitation. <i>Electrochimica Acta</i> , 2018 , 291, 84-94	6.7	106
307	A highly reversible, low-strain Mg-ion insertion anode material for rechargeable Mg-ion batteries. <i>NPG Asia Materials</i> , 2014 , 6, e120-e120	10.3	105
306	Spin-coated silicon nanoparticle/graphene electrode as a binder-free anode for high-performance lithium-ion batteries. <i>Nano Research</i> , 2012 , 5, 845-853	10	105

3	05	Superior hybrid cathode material containing lithium-excess layered material and graphene for lithium-ion batteries. <i>ACS Applied Materials & Samp; Interfaces</i> , 2012 , 4, 4858-63	9.5	105	
3	04	Ordered Nitu Nanowire Array with Enhanced Coercivity. <i>Chemistry of Materials</i> , 2003 , 15, 664-667	9.6	105	
3	103	Nitriding-Interface-Regulated Lithium Plating Enables Flame-Retardant Electrolytes for High-Voltage Lithium Metal Batteries. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 7802-7807	16.4	102	
3	02	Progress of rechargeable lithium metal batteries based on conversion reactions. <i>National Science Review</i> , 2017 , 4, 54-70	10.8	102	
3	01	TiO2-Based Composite Nanotube Arrays Prepared via Layer-by-Layer Assembly. <i>Advanced Functional Materials</i> , 2005 , 15, 196-202	15.6	99	
3	00	High performance photodetectors of individual InSe single crystalline nanowire. <i>Journal of the American Chemical Society</i> , 2009 , 131, 15602-3	16.4	98	
2	.99	Wet Chemistry Synthesis of Multidimensional Nanocarbon-Sulfur Hybrid Materials with Ultrahigh Sulfur Loading for Lithium-Sulfur Batteries. <i>ACS Applied Materials & Discourse (Material Science)</i> 1, 3584-90	9.5	97	
2	.98	Uniform Nucleation of Lithium in 3D Current Collectors via Bromide Intermediates for Stable Cycling Lithium Metal Batteries. <i>Journal of the American Chemical Society</i> , 2018 , 140, 18051-18057	16.4	96	
2	97	A High-Performance Composite Electrode for Vanadium Redox Flow Batteries. <i>Advanced Energy Materials</i> , 2017 , 7, 1700461	21.8	95	
2	.96	Direct tracking of the polysulfide shuttling and interfacial evolution in all-solid-state lithium ulfur batteries: a degradation mechanism study. <i>Energy and Environmental Science</i> , 2019 , 12, 2496-2506	35.4	94	
2	95	Reducing the volume deformation of high capacity SiOx/G/C anode toward industrial application in high energy density lithium-ion batteries. <i>Nano Energy</i> , 2019 , 60, 485-492	17.1	94	
2	94	Facile synthesis of germanium nanocrystals and their application in organic-inorganic hybrid photodetectors. <i>Advanced Materials</i> , 2011 , 23, 3704-7	24	94	
2	93	Insight into the Interfacial Process and Mechanism in Lithium-Sulfur Batteries: An In Situ AFM Study. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 15835-15839	16.4	93	
2	192	Self-Assembled LiFePO4/C Nano/Microspheres by Using Phytic Acid as Phosphorus Source. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 5019-5024	3.8	93	
2	.91	Exposing {010} Active Facets by Multiple-Layer Oriented Stacking Nanosheets for High-Performance Capacitive Sodium-Ion Oxide Cathode. <i>Advanced Materials</i> , 2018 , 30, e1803765	24	92	
2	.90	Self-wound composite nanomembranes as electrode materials for lithium ion batteries. <i>Advanced Materials</i> , 2010 , 22, 4591-5	24	92	
2	:89	Interfacial Mechanism in Lithium-Sulfur Batteries: How Salts Mediate the Structure Evolution and Dynamics. <i>Journal of the American Chemical Society</i> , 2018 , 140, 8147-8155	16.4	91	
2	:88	Hydrothermal reduction of three-dimensional graphene oxide for binder-free flexible supercapacitors. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 10830	13	90	

287	A carbon-coated Li3V2(PO4)3 cathode material with an enhanced high-rate capability and long lifespan for lithium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 2508	13	90
286	Tin/Platinum Bimetallic Nanotube Array and its Electrocatalytic Activity for Methanol Oxidation. <i>Advanced Materials</i> , 2005 , 17, 746-750	24	90
285	Scalable synthesis of spherical Si/C granules with 3D conducting networks as ultrahigh loading anodes in lithium-ion batteries. <i>Energy Storage Materials</i> , 2018 , 12, 54-60	19.4	90
284	Recent progress on confinement of polysulfides through physical and chemical methods. <i>Journal of Energy Chemistry</i> , 2018 , 27, 1555-1565	12	89
283	Preparation and li storage properties of hierarchical porous carbon fibers derived from alginic acid. <i>ChemSusChem</i> , 2010 , 3, 703-7	8.3	87
282	Bandgap engineering of monodispersed Cu(2-x)S(y)Se(1-y) nanocrystals through chalcogen ratio and crystal structure. <i>Journal of the American Chemical Society</i> , 2011 , 133, 18558-61	16.4	86
281	Tuning wettability of molten lithium via a chemical strategy for lithium metal anodes. <i>Nature Communications</i> , 2019 , 10, 4930	17.4	85
2 80	Encapsulation of Sulfur in a Hollow Porous Carbon Substrate for Superior Li-S Batteries with Long Lifespan. <i>Particle and Particle Systems Characterization</i> , 2013 , 30, 321-325	3.1	85
279	Improved kinetics of LiNi(1/3)Mn(1/3)Co(1/3)O2 cathode material through reduced graphene oxide networks. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 2934-9	3.6	85
278	A P2/P3 composite layered cathode for high-performance Na-ion full batteries. <i>Nano Energy</i> , 2019 , 55, 143-150	17.1	85
277	A LayeredII unnel Intergrowth Structure for High-Performance Sodium-Ion Oxide Cathode. <i>Advanced Energy Materials</i> , 2018 , 8, 1800492	21.8	85
276	3D zinc@carbon fiber composite framework anode for aqueous Zn-MnO batteries <i>RSC Advances</i> , 2018 , 8, 19157-19163	3.7	84
275	Subunits controlled synthesis of Fe2O3 multi-shelled corellhell microspheres and their effects on lithium/sodium ion battery performances. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 10092-10099	13	82
274	An Abnormal 3.7 Volt O3-Type Sodium-Ion Battery Cathode. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 8178-8183	16.4	82
273	Enhanced Li+ conductivity in PEOliBOB polymer electrolytes by using succinonitrile as a plasticizer. <i>Solid State Ionics</i> , 2011 , 186, 1-6	3.3	81
272	Interfacial design for lithiumBulfur batteries: From liquid to solid. <i>EnergyChem</i> , 2019 , 1, 100002	36.9	80
271	Single nanowire electrode electrochemistry of silicon anode by in situ atomic force microscopy: solid electrolyte interphase growth and mechanical properties. <i>ACS Applied Materials & Amp; Interfaces,</i> 2014 , 6, 20317-23	9.5	80
270	Advanced P2-NaNiMnFeO Cathode Material with Suppressed P2-O2 Phase Transition toward High-Performance Sodium-Ion Battery. <i>ACS Applied Materials & amp; Interfaces</i> , 2018 , 10, 34272-34282	9.5	80

269	Prussian blue nanocubes as cathode materials for aqueous Na-Zn hybrid batteries. <i>Journal of Power Sources</i> , 2017 , 355, 18-22	8.9	79
268	Ni-Pt multilayered nanowire arrays with enhanced coercivity and high remanence ratio. <i>Inorganic Chemistry</i> , 2005 , 44, 3013-5	5.1	78
267	Ameliorating the Interfacial Problems of Cathode and Solid-State Electrolytes by Interface Modification of Functional Polymers. <i>Advanced Energy Materials</i> , 2018 , 8, 1801528	21.8	77
266	Spray-Drying-Induced Assembly of Skeleton-Structured SnO/Graphene Composite Spheres as Superior Anode Materials for High-Performance Lithium-Ion Batteries. <i>ACS Applied Materials & Interfaces</i> , 2018 , 10, 2515-2525	9.5	76
265	Insights into the Improved High-Voltage Performance of Li-Incorporated Layered Oxide Cathodes for Sodium-Ion Batteries. <i>CheM</i> , 2018 , 4, 2124-2139	16.2	76
264	Realizing a highly stable sodium battery with dendrite-free sodium metal composite anodes and O3-type cathodes. <i>Nano Energy</i> , 2018 , 48, 369-376	17.1	75
263	Rational Design of Robust Si/C Microspheres for High-Tap-Density Anode Materials. <i>ACS Applied Materials & Materia</i>	9.5	73
262	Self-Healable Solid Polymeric Electrolytes for Stable and Flexible Lithium Metal Batteries. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 18146-18149	16.4	72
261	Excellent Comprehensive Performance of Na-Based Layered Oxide Benefiting from the Synergetic Contributions of Multimetal Ions. <i>Advanced Energy Materials</i> , 2017 , 7, 1700189	21.8	69
260	Synergy of doping and coating induced heterogeneous structure and concentration gradient in Ni-rich cathode for enhanced electrochemical performance. <i>Journal of Power Sources</i> , 2019 , 423, 144-1	5 ^{8.9}	68
259	Building an Air Stable and Lithium Deposition Regulable Garnet Interface from Moderate-Temperature Conversion Chemistry. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 12	069:42	098
258	Copper germanate nanowire/reduced graphene oxide anode materials for high energy lithium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 11404	13	67
257	Layered Oxide Cathodes Promoted by Structure Modulation Technology for Sodium-Ion Batteries. <i>Advanced Functional Materials</i> , 2020 , 30, 2001334	15.6	66
256	Cu Dual-Doped Layer-Tunnel Hybrid NaMnCu O as a Cathode of Sodium-Ion Battery with Enhanced Structure Stability, Electrochemical Property, and Air Stability. <i>ACS Applied Materials & amp; Interfaces</i> , 2018 , 10, 10147-10156	9.5	66
255	A PEO-assisted electrospun silicongraphene composite as an anode material for lithium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 9019	13	66
254	Wet chemical synthesis of Cu/TiO2 nanocomposites with integrated nano-current-collectors as high-rate anode materials in lithium-ion batteries. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 2014-2	03.6	66
253	Rechargeable dual-metal-ion batteries for advanced energy storage. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 9326-33	3.6	66
252	Viscoelastic and Nonflammable Interface Design E nabled Dendrite-Free and Safe Solid Lithium Metal Batteries. <i>Advanced Energy Materials</i> , 2019 , 9, 1803854	21.8	64

251	AgI Nanoplates with Mesoscopic Superionic Conductivity at Room Temperature. <i>Advanced Materials</i> , 2005 , 17, 2815-2819	24	63
250	The 2021 battery technology roadmap. <i>Journal Physics D: Applied Physics</i> , 2021 , 54, 183001	3	63
249	Atom-Thick Interlayer Made of CVD-Grown Graphene Film on Separator for Advanced Lithium-Sulfur Batteries. <i>ACS Applied Materials & Interfaces</i> , 2017 , 9, 43696-43703	9.5	62
248	Non-sacrificial template synthesis of Cr2O3tt hierarchical core/shell nanospheres and their application as anode materials in lithium-ion batteries. <i>Journal of Materials Chemistry</i> , 2010 , 20, 7565		62
247	Designing solid-state interfaces on lithium-metal anodes: a review. <i>Science China Chemistry</i> , 2019 , 62, 1286-1299	7.9	61
246	Porous carbon for high-energy density symmetrical supercapacitor and lithium-ion hybrid electrochemical capacitors. <i>Chemical Engineering Journal</i> , 2019 , 375, 122020	14.7	60
245	High-Efficiency Cathode Sodium Compensation for Sodium-Ion Batteries. <i>Advanced Materials</i> , 2020 , 32, e2001419	24	60
244	Well-Defined Fullerene Nanowire Arrays. Advanced Functional Materials, 2003, 13, 626-630	15.6	60
243	Gold/Titania Core/Sheath Nanowires Prepared by Layer-by-Layer Assembly. <i>Journal of Physical Chemistry B</i> , 2003 , 107, 5441-5444	3.4	60
242	Host Structural Stabilization of Li1.232Mn0.615Ni0.154O2 through K-Doping Attempt: toward Superior Electrochemical Performances. <i>Electrochimica Acta</i> , 2016 , 188, 336-343	6.7	59
241	High-Thermal- and Air-Stability Cathode Material with Concentration-Gradient Buffer for Li-Ion Batteries. <i>ACS Applied Materials & Discrete States</i> , 2017, 9, 42829-42835	9.5	59
240	A Flexible Solid Electrolyte Interphase Layer for Long-Life Lithium Metal Anodes. <i>Angewandte Chemie</i> , 2018 , 130, 1521-1525	3.6	58
239	High-Performance Lithiated SiO Anode Obtained by a Controllable and Efficient Prelithiation Strategy. <i>ACS Applied Materials & Acs Applied &</i>	9.5	58
238	Interface Assembly Synthesis of Inorganic Composite Hollow Spheres. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 9734-9738	3.4	58
237	Tunable Layered (Na,Mn)VOIHO Cathode Material for High-Performance Aqueous Zinc Ion Batteries. <i>Advanced Science</i> , 2020 , 7, 2000083	13.6	57
236	Synthesis of FeS@C-N hierarchical porous microspheres for the applications in lithium/sodium ion batteries. <i>Journal of Alloys and Compounds</i> , 2016 , 688, 790-797	5.7	57
235	Superior storage performance of carbon nanosprings as anode materials for lithium-ion batteries. <i>Electrochemistry Communications</i> , 2009 , 11, 1468-1471	5.1	56
234	Local Conductivity Effects in Polymer Electrolytes. <i>Advanced Materials</i> , 2005 , 17, 2630-2634	24	56

233	Nonaqueous Sodium-Ion Full Cells: Status, Strategies, and Prospects. Small, 2019, 15, e1900233	11	55
232	Carbon materials with hierarchical porosity: Effect of template removal strategy and study on their electrochemical properties. <i>Carbon</i> , 2018 , 130, 680-691	10.4	55
231	High-Capacity Te Anode Confined in Microporous Carbon for Long-Life Na-Ion Batteries. <i>ACS Applied Materials & District Sciences</i> , 2015 , 7, 27838-44	9.5	55
230	Silicon-based nanomaterials for lithium-ion batteries. <i>Science Bulletin</i> , 2012 , 57, 4104-4110		55
229	A facile synthesis and lithium storage properties of Co3O4L hybrid core-shell and hollow spheres. <i>Journal of Materials Chemistry</i> , 2011 , 21, 17998		55
228	Highly Dispersed Metal Nanoparticles in Porous Anodic Alumina Films Prepared by a Breathing Process of Polyacrylamide Hydrogel. <i>Chemistry of Materials</i> , 2003 , 15, 4332-4336	9.6	55
227	Advances of polymer binders for silicon-based anodes in high energy density lithium-ion batteries. <i>Informal</i> Materilly, 2021 , 3, 460-501	23.1	55
226	Honeycomb-Ordered Na3Ni1.5M0.5BiO6 (M = Ni, Cu, Mg, Zn) as High-Voltage Layered Cathodes for Sodium-Ion Batteries. <i>ACS Energy Letters</i> , 2017 , 2, 2715-2722	20.1	54
225	A High-Capacity Tellurium@Carbon Anode Material for Lithium-Ion Batteries. <i>Energy Technology</i> , 2014 , 2, 757-762	3.5	54
224	Heteroatom-doped electrodes for all-vanadium redox flow batteries with ultralong lifespan. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 41-44	13	54
223	Suppressing the P2D2 Phase Transition of Na0.67Mn0.67Ni0.33O2 by Magnesium Substitution for Improved Sodium-Ion Batteries. <i>Angewandte Chemie</i> , 2016 , 128, 7571-7575	3.6	53
222	Deciphering an Abnormal Layered-Tunnel Heterostructure Induced by Chemical Substitution for the Sodium Oxide Cathode. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 1491-1495	16.4	52
221	Lithiation-Derived Repellent toward Lithium Anode Safeguard in Quasi-solid Batteries. <i>CheM</i> , 2018 , 4, 298-307	16.2	51
220	A novel polymer electrolyte with improved high-temperature-tolerance up to 170 for high-temperature lithium-ion batteries. <i>Journal of Power Sources</i> , 2013 , 244, 234-239	8.9	50
219	Core-shell meso/microporous carbon host for sulfur loading toward applications in lithium-sulfur batteries. <i>Journal of Energy Chemistry</i> , 2014 , 23, 308-314	12	49
218	Mn-Based Cathode with Synergetic Layered-Tunnel Hybrid Structures and Their Enhanced Electrochemical Performance in Sodium Ion Batteries. <i>ACS Applied Materials & Discrete Section</i> 2017, 9, 21267-21275	9.5	48
217	Three-Dimensional Carbon Nanotubes Forest/Carbon Cloth as an Efficient Electrode for Lithium-Polysulfide Batteries. <i>ACS Applied Materials & Discourse (Materials & Discours)</i> , 9, 1553-1561	9.5	47
216	A Flexible Solid Electrolyte with Multilayer Structure for Sodium Metal Batteries. <i>Advanced Energy Materials</i> , 2020 , 10, 1903966	21.8	47

215	An Advanced Selenium larbon Cathode for Rechargeable Lithium Belenium Batteries. <i>Angewandte Chemie</i> , 2013 , 125, 8521-8525	3.6	47
214	Enabling a Durable Electrochemical Interface via an Artificial Amorphous Cathode Electrolyte Interphase for Hybrid Solid/Liquid Lithium-Metal Batteries. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 6585-6589	16.4	47
213	Fungi-Enabled Synthesis of Ultrahigh-Surface-Area Porous Carbon. <i>Advanced Materials</i> , 2019 , 31, e1805	1234	46
212	Interfacial Regulation of Ni-Rich Cathode Materials with an Ion-Conductive and Pillaring Layer by Infusing Gradient Boron for Improved Cycle Stability. <i>ACS Applied Materials & Discrete Stability</i> . 12, 10240-10251	9.5	45
211	Low volume change composite lithium metal anodes. <i>Nano Energy</i> , 2019 , 64, 103910	17.1	45
210	Improving the Li-ion storage performance of layered zinc silicate through the interlayer carbon and reduced graphene oxide networks. <i>ACS Applied Materials & Distriction of the Interlayer carbon and Paper a</i>	9.5	45
209	Graphitic Nanocarbon-Selenium Cathode with Favorable Rate Capability for Li-Se Batteries. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> 1, 8759-8765	9.5	44
208	Two-dimensional Cr2O3 and interconnected graphene@r2O3 nanosheets: synthesis and their application in lithium storage. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 944-948	13	44
207	Effect of cations in ionic liquids on the electrochemical performance of lithium-sulfur batteries. <i>Science China Chemistry</i> , 2014 , 57, 1564-1569	7.9	44
206	Both cationic and anionic redox chemistry in a P2-type sodium layered oxide. <i>Nano Energy</i> , 2020 , 69, 104474	17.1	44
205	Bridging Interparticle Li Conduction in a Soft Ceramic Oxide Electrolyte. <i>Journal of the American Chemical Society</i> , 2021 , 143, 5717-5726	16.4	44
204	Improving the structural stability of Li-rich cathode materials via reservation of cations in the Li-slab for Li-ion batteries. <i>Nano Research</i> , 2017 , 10, 4201-4209	10	43
203	Manipulating Layered P2@P3 Integrated Spinel Structure Evolution for High-Performance Sodium-Ion Batteries. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 9299-9304	16.4	43
202	Three-dimensional carbon nanotube networks enhanced sodium trimesic: a new anode material for sodium ion batteries and Na-storage mechanism revealed by ex situ studies. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 16622-16629	13	43
201	Methods for the Stabilization of Nanostructured Electrode Materials for Advanced Rechargeable Batteries. <i>Small Methods</i> , 2017 , 1, 1700094	12.8	42
200	A Rational Reconfiguration of Electrolyte for High-Energy and Long-Life Lithium-Chalcogen Batteries. <i>Advanced Materials</i> , 2020 , 32, e2000302	24	42
199	An Outlook on Low-Volume-Change Lithium Metal Anodes for Long-Life Batteries. <i>ACS Central Science</i> , 2020 , 6, 661-671	16.8	42
198	An Ordered Ni -Ring Superstructure Enables a Highly Stable Sodium Oxide Cathode. <i>Advanced Materials</i> , 2019 , 31, e1903483	24	42

(2020-2013)

197	Integrated prototype nanodevices via SnOIhanoparticles decorated SnSe nanosheets. <i>Scientific Reports</i> , 2013 , 3, 2613	4.9	41	
196	Improving the electrochemical properties of the red P anode in Na-ion batteries via the space confinement of carbon nanopores. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 24221-24225	13	41	
195	Three-dimensional hollow spheres of porous SnO2/rGO composite as high-performance anode for sodium ion batteries. <i>Applied Surface Science</i> , 2019 , 479, 198-208	6.7	40	
194	Enabling SiO/C Anode with High Initial Coulombic Efficiency through a Chemical Pre-Lithiation Strategy for High-Energy-Density Lithium-Ion Batteries. <i>ACS Applied Materials & Description</i> (2008), 12, 27202-27209	9.5	40	
193	Programmed Fabrication of Metal Oxides Nanostructures Using Dual Templates to Spatially Disperse Metal Oxide Nanocrystals. <i>Chemistry of Materials</i> , 2010 , 22, 414-419	9.6	40	
192	A 3D Lithium/Carbon Fiber Anode with Sustained Electrolyte Contact for Solid-State Batteries. <i>Advanced Energy Materials</i> , 2020 , 10, 1903325	21.8	40	
191	Three-dimensional sandwich-type graphene@microporous carbon architecture for lithiumBulfur batteries. <i>RSC Advances</i> , 2016 , 6, 617-622	3.7	38	
190	Eco-friendly visible-wavelength photodetectors based on bandgap engineerable nanomaterials. Journal of Materials Chemistry, 2011 , 21, 17582		38	
189	Guiding Uniform Li Plating/Stripping through LithiumAluminum Alloying Medium for Long-Life Li Metal Batteries. <i>Angewandte Chemie</i> , 2019 , 131, 1106-1111	3.6	38	
188	Solidifying Cathode E lectrolyte Interface for Lithium B ulfur Batteries. <i>Advanced Energy Materials</i> , 2021 , 11, 2000791	21.8	38	
187	Improving the stability of LiNi0.80Co0.15Al0.05O2 by AlPO4 nanocoating for lithium-ion batteries. <i>Science China Chemistry</i> , 2017 , 60, 1230-1235	7.9	37	
186	A New All-Solid-State Hyperbranched Star Polymer Electrolyte for Lithium Ion Batteries: Synthesis and Electrochemical Properties. <i>Electrochimica Acta</i> , 2016 , 212, 372-379	6.7	37	
185	Nitrogen and Sulfur Codoped Reduced Graphene Oxide as a General Platform for Rapid and Sensitive Fluorescent Detection of Biological Species. <i>ACS Applied Materials & Detection of Biological Species</i> , 11255-61	9.5	37	
184	Novel P2-type NaNiMgTiO as an anode material for sodium-ion batteries. <i>Chemical Communications</i> , 2017 , 53, 1957-1960	5.8	36	
183	An effective LiBO2 coating to ameliorate the cathode/electrolyte interfacial issues of LiNi0.6Co0.2Mn0.2O2 in solid-state Li batteries. <i>Journal of Power Sources</i> , 2019 , 426, 242-249	8.9	36	
182	Nitroxide radical polymer/graphene nanocomposite as an improved cathode material for rechargeable lithium batteries. <i>Electrochimica Acta</i> , 2012 , 72, 81-86	6.7	36	
181	Preparation and characterization of AgI nanoparticles with controlled size, morphology and crystal structure. <i>Solid State Ionics</i> , 2006 , 177, 2467-2471	3.3	36	
180	An integral interface with dynamically stable evolution on micron-sized SiOx particle anode. <i>Nano Energy</i> , 2020 , 74, 104890	17.1	36	

179	Structure Design of Cathode Electrodes for Solid-State Batteries: Challenges and Progress. <i>Small Structures</i> , 2020 , 1, 2000042	8.7	36
178	Nitriding-Interface-Regulated Lithium Plating Enables Flame-Retardant Electrolytes for High-Voltage Lithium Metal Batteries. <i>Angewandte Chemie</i> , 2019 , 131, 7884-7889	3.6	35
177	Ion-Transfer-Based Growth: A Mechanism for CuTCNQ Nanowire Formation. <i>Advanced Materials</i> , 2008 , 20, 4879-4882	24	35
176	Advances in rechargeable Mg batteries. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 25601-25625	13	35
175	Progress in the sustainable recycling of spent lithium-ion batteries. SusMat, 2021, 1, 241-254		35
174	Carbon-supported Ni@NiO/Al2O3 integrated nanocomposite derived from layered double hydroxide precursor as cycling-stable anode materials for lithium-ion batteries. <i>Electrochimica Acta</i> , 2013 , 108, 429-434	6.7	34
173	Hierarchically structured microspheres consisting of carbon coated silicon nanocomposites with controlled porosity as superior anode material for lithium-ion batteries. <i>Electrochimica Acta</i> , 2019 , 324, 134850	6.7	33
172	High-Temperature Formation of a Functional Film at the Cathode/Electrolyte Interface in Lithium-Sulfur Batteries: An In Situ AFM Study. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 14	14 3 5-44	14 37
171	Polyethylene glycol-directed SnO2 nanowires for enhanced gas-sensing properties. <i>Nanoscale</i> , 2011 , 3, 1802-6	7.7	33
170	Template Synthesis of Sc@C82(I) Nanowires and Nanotubes at Room Temperature. <i>Advanced Materials</i> , 2005 , 17, 71-73	24	33
169	Graphene@hierarchical meso-/microporous carbon for ultrahigh energy density lithium-ion capacitors. <i>Electrochimica Acta</i> , 2018 , 281, 459-465	6.7	33
168	Air-Stable and High-Voltage Layered P3-Type Cathode for Sodium-Ion Full Battery. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 24184-24191	9.5	32
167	Ladderlike carbon nanoarrays on 3D conducting skeletons enable uniform lithium nucleation for stable lithium metal anodes. <i>Chemical Communications</i> , 2018 , 54, 5330-5333	5.8	32
166	MgSc Se -A Magnesium Solid Ionic Conductor for All-Solid-State Mg Batteries?. <i>ChemSusChem</i> , 2019 , 12, 2286-2293	8.3	31
165	Insight into the loading temperature of sulfur on sulfur/carbon cathode in lithium-sulfur batteries. <i>Electrochimica Acta</i> , 2015 , 185, 62-68	6.7	31
164	L-Histidine-assisted template-free hydrothermal synthesis of #Fe2O3 porous multi-shelled hollow spheres with enhanced lithium storage properties. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 12361-12	36 ¹ 7	31
163	Initial solid electrolyte interphase formation process of graphite anode in LiPF6 electrolyte: an in situ ECSTM investigation. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 7330-6	3.6	31
162	A novel bismuth-based anode material with a stable alloying process by the space confinement of an in situ conversion reaction for a rechargeable magnesium ion battery. <i>Chemical Communications</i> , 2018 , 54, 1714-1717	5.8	31

(2021-2020)

Hydrangea-Like CuS with Irreversible Amorphization Transition for High-Performance Sodium-Ion Storage. <i>Advanced Science</i> , 2020 , 7, 1903279	13.6	30	
Direct insights into the electrochemical processes at anode/electrolyte interfaces in magnesium-sulfur batteries. <i>Nano Energy</i> , 2018 , 49, 453-459	17.1	30	
Investigation into the Surface Chemistry of LiTiO Nanoparticles for Lithium Ion Batteries. <i>ACS Applied Materials & Discourse (Materials & Discours)</i> 10 (2008) 12 (2008) 12 (2008) 12 (2008) 13 (2008) 15 (2008) 16 (20	9.5	30	
Nano/Micro-Structured Si/C Anodes with High Initial Coulombic Efficiency in Li-Ion Batteries. <i>Chemistry - an Asian Journal</i> , 2016 , 11, 1205-9	4.5	30	
Submicrometer porous Li3V2(PO4)3/C composites with high rate electrochemical performance prepared by sol-gel combustion method. <i>Electrochimica Acta</i> , 2014 , 137, 489-496	6.7	30	
SnO2 hollow spheres: Polymer bead-templated hydrothermal synthesis and their electrochemical properties for lithium storage. <i>Science China Chemistry</i> , 2012 , 55, 1314-1318	7.9	30	
Fabrication and characterization of highly ordered Pt nanotubule arrays. <i>Physical Chemistry Chemical Physics</i> , 2004 , 6, 1766	3.6	30	
Influence of self-assembly monolayers on the characteristics of copper phthalacyanine thin film transistor. <i>Applied Physics A: Materials Science and Processing</i> , 2005 , 80, 1541-1545	2.6	30	
Stabilizing Polymer Lithium Interface in a Rechargeable Solid Battery. <i>Advanced Functional Materials</i> , 2020 , 30, 1908047	15.6	30	
Formulating the Electrolyte Towards High-Energy and Safe Rechargeable Lithium-Metal Batteries. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 16554-16560	16.4	30	
Manipulating Electrode/Electrolyte Interphases of Sodium-Ion Batteries: Strategies and Perspectives 2021 , 3, 18-41		30	
Increased residual lithium compounds guided design for green recycling of spent lithium-ion cathodes. <i>Energy and Environmental Science</i> , 2021 , 14, 1461-1468	35.4	30	
Constructing a Stable Lithium Metal-Gel Electrolyte Interface for Quasi-Solid-State Lithium Batteries. <i>ACS Applied Materials & Samp; Interfaces</i> , 2018 , 10, 30065-30070	9.5	29	
High-performance rechargeable all-solid-state silver battery based on superionic AgI nanoplates. <i>Electrochemistry Communications</i> , 2006 , 8, 1179-1184	5.1	29	
Dual Elements Coupling Effect Induced Modification from the Surface into the Bulk Lattice for Ni-Rich Cathodes with Suppressed Capacity and Voltage Decay. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 8146-8156	9.5	28	
Size-dependent electrochemical magnesium storage performance of spinel lithium titanate. <i>Chemistry - an Asian Journal</i> , 2014 , 9, 2099-102	4.5	28	
Micromechanism in All-Solid-State Alloy-Metal Batteries: Regulating Homogeneous Lithium Precipitation and Flexible Solid Electrolyte Interphase Evolution. <i>Journal of the American Chemical Society</i> , 2021 , 143, 839-848	16.4	28	
In-situ encapsulating flame-retardant phosphate into robust polymer matrix for safe and stable quasi-solid-state lithium metal batteries. <i>Energy Storage Materials</i> , 2021 , 39, 186-193	19.4	28	
	Direct insights into the electrochemical processes at anode/electrolyte interfaces in magnesium-sulfur batteries. <i>Nano Energy</i> , 2018, 49, 453-459 Investigation into the Surface Chemistry of LiTiO Nanoparticles for Lithium Ion Batteries. <i>ACS Applied Materials & amp; Interfaces</i> , 2016, 8, 26008-26012 Nano/Micro-Structured Si/C Anodes with High Initial Coulombic Efficiency in Li-lon Batteries. <i>Chemistry - an Asian Journal</i> , 2016, 11, 1205-9 Submicrometer porous Li3V2(PO4)3/C composites with high rate electrochemical performance prepared by sol-gel combustion method. <i>Electrochimica Acta</i> , 2014, 137, 489-496 SnO2 hollow spheres: Polymer bead-templated hydrothermal synthesis and their electrochemical properties for lithium storage. <i>Science China Chemistry</i> , 2012, 55, 1314-1318 Fabrication and characterization of highly ordered Pt nanotubule arrays. <i>Physical Chemistry Chemical Physics</i> , 2004, 6, 1766 Influence of self-assembly monolayers on the characteristics of copper phthalacyanine thin film transistor. <i>Applied Physics A: Materials Science and Processing</i> , 2005, 80, 1541-1545 Stabilizing Polymerllithium Interface in a Rechargeable Solid Battery. <i>Advanced Functional Materials</i> , 2020, 30, 1908047 Formulating the Electrolyte Towards High-Energy and Safe Rechargeable Lithium-Metal Batteries. <i>Angewandte Chemie - International Edition</i> , 2021, 60, 16554-16560 Manipulating Electrode/Electrolyte Interphases of Sodium-Ion Batteries: Strategies and Perspectives 2021, 3, 18-41 Increased residual Lithium compounds guided design for green recycling of spent lithium-ion cathodes. <i>Energy and Environmental Science</i> , 2021, 14, 1461-1468 Constructing a Stable Lithium Metal-Gel Electrolyte Interfaces for Quasi-Solid-State Lithium Batteries. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018, 10, 30065-30070 High-performance rechargeable all-solid-state silver battery based on superionic Agl nanoplates. <i>Electrochemistry Communications</i> , 2006, 8, 1179-1184 Dual Elements Coupling Effect Induced Modification from the	Storage. Advanced Science, 2020, 7, 1903279 Direct insights into the electrochemical processes at anode/electrolyte interfaces in magnesium-sulfur batteries. Nano Energy, 2018, 49, 453-459 Investigation into the Surface Chemistry of LiTiO Nanoparticles for Lithium Ion Batteries. ACS Applied Materials & Description, 2016, 81, 26008-26012 Nano/Micro-Structured Si/C Anodes with High Initial Coulombic Efficiency in Li-Ion Batteries. Chemistry - an Asian Journal, 2016, 11, 1205-9 Submicrometer porous Li3V2(PO4)3/C composites with high rate electrochemical performance prepared by sol-gel combustion method. Electrochimica Acta, 2014, 137, 489-496 67 SnO2 hollow spheres: Polymer bead-templated hydrothermal synthesis and their electrochemical properties for lithium storage. Science China Chemistry, 2012, 55, 1314-1318 79 Fabrication and characterization of highly ordered Pt nanotubule arrays. Physical Chemistry Chemical Physics, 2004, 6, 1766 Influence of self-assembly monolayers on the characteristics of copper phthalacyanine thin film transistor. Applied Physics A: Materials Science and Processing, 2005, 80, 1541-1545 Stabilizing Polymerflithium Interface in a Rechargeable Solid Battery. Advanced Functional Materials, 2020, 30, 1908047 Formulating the Electrolyte Towards High-Energy and Safe Rechargeable Lithium-Metal Batteries. Angewandte Chemie - International Edition, 2021, 60, 16554-16560 Manipulating Electrode/Electrolyte Interphases of Sodium-Ion Batteries: Strategies and Perspectives 2021, 3, 18-41 Increased residual lithium compounds guided design for green recycling of spent lithium-ion cathodes. Energy and Environmental Science, 2021, 14, 1461-1468 Constructing a Stable Lithium Metal-Gel Electrolyte Interfaces for Quasi-Solid-State Lithium Batteries. ACS Applied Materials & Designations, 2006, 8, 1179-1184 Constructing a Stable Lithium Effect Induced Modification from the Surface into the Bulk Lattice for Ni-Rich Cathodes with Suppressed Capacity and Voltage Decay. ACS Applied Materials & Desc	Storage. Advanced Science, 2020, 7, 1903279 Direct insights into the electrochemical processes at anode/electrolyte interfaces in magnesium-sulfur batteries. Nano Energy, 2018, 49, 453-459 Investigation into the Surface Chemistry of LITIO Nanoparticles for Lithium Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2016, 8, 26008-26012 Nano/Micro-Structured Si/C Anodes with High Initial Coulombic Efficiency in Li-Ion Batteries. ACS Applied Materials & Amount (2016, 11, 1205-9) Submicrometer porous Li3V2(PO4)3/C composites with high rate electrochemical performance prepared by sol-gel combustion method. Electrochimica Acta, 2014, 137, 489-496 SnO2 hollow spheres: Polymer bead-templated hydrothermal synthesis and their electrochemical properties for lithium storage. Science China Chemistry, 2012, 55, 1314-1318 Fabrication and characterization of highly ordered Pt nanotubule arrays. Physical Chemistry Chemical Physics, 2004, 6, 1766 Influence of self-assembly monolayers on the characteristics of copper phthalacyanine thin film transistor. Applied Physics A: Materials Science and Processing, 2005, 80, 1541-1545 Stabilizing Polymerilithium Interface in a Rechargeable Solid Battery. Advanced Functional Materials, 2020, 30, 1908047 Formulating the Electrolyte Towards High-Energy and Safe Rechargeable Lithium-Metal Batteries. Angewandte Chemie- International Edition, 2021, 60, 16554-16560 Manipulating Electrode/Electrolyte Interphases of Sodium-Ion Batteries: Strategies and Perspectives 2021, 3, 18-41 Increased residual lithium compounds guided design for green recycling of spent lithium-ion cathodes. Energy and Environmental Science, 2021, 14, 1461-1468 Constructing a Stable Lithium Metal-Gel Electrolyte Interfaces, 2018, 10, 30065-30070 High-performance rechargeable all-solid-state silver battery based on superionic Agl nanoplates. Electrochemistry Communications, 2006, 8, 1179-1184 Dual Elements Coupling Effect Induced Modification from the Surface into the Bulk Lattice for Ni-Rich Cathodes with S

143	Facile synthesis of a SiO/asphalt membrane for high performance lithium-ion battery anodes. <i>Chemical Communications</i> , 2017 , 53, 12080-12083	5.8	27
142	Tunable structure and dynamics of solid electrolyte interphase at lithium metal anode. <i>Nano Energy</i> , 2020 , 75, 104967	17.1	27
141	Understanding the structural evolution and Na+ kinetics in honeycomb-ordered O?3-Na3Ni2SbO6 cathodes. <i>Nano Research</i> , 2018 , 11, 3258-3271	10	27
140	Amine-free preparation of SnSe nanosheets with high crystallinity and their lithium storage properties. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2012 , 406, 1-5	5.1	27
139	Designing High-Performance Composite Electrodes for Vanadium Redox Flow Batteries: Experimental and Computational Investigation. <i>ACS Applied Materials & Design Services</i> , 2018, 10, 22381	-22388	8 ²⁶
138	Enhanced working temperature of PEO-based polymer electrolyte via porous PTFE film as an efficient heat resister. <i>Solid State Ionics</i> , 2013 , 245-246, 1-7	3.3	26
137	Improving the Electrochemical Performance of the Li4Ti5O12 Electrode in a Rechargeable Magnesium Battery by Lithium Magnesium Co-Intercalation. <i>Angewandte Chemie</i> , 2015 , 127, 5849-5853	3.6	26
136	Novel electrocatalytic activity in layered Ni-Cu nanowire arrays. <i>Chemical Communications</i> , 2003 , 3022-3	3 5.8	26
135	Suppressing Manganese Dissolution via Exposing Stable {111} Facets for High-Performance Lithium-Ion Oxide Cathode. <i>Advanced Science</i> , 2019 , 6, 1801908	13.6	25
134	Composite-Structure Material Design for High-Energy Lithium Storage. <i>Small</i> , 2018 , 14, e1800887	11	25
133	Interfacial Evolution of Lithium Dendrites and Their Solid Electrolyte Interphase Shells of Quasi-Solid-State Lithium-Metal Batteries. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 18120-1	18125	24
132	Template-free synthesis and supercapacitance performance of a hierachically porous oxygen-enriched carbon material. <i>Journal of Nanoscience and Nanotechnology</i> , 2011 , 11, 1897-904	1.3	24
131	DNA-Templated Synthesis of Cationic Poly(3,4-ethylenedioxythiophene) Derivative for Supercapacitor Electrodes. <i>Macromolecular Rapid Communications</i> , 2010 , 31, 1892-6	4.8	24
130	Dynamic Evolution of a Cathode Interphase Layer at the Surface of LiNiCoMnO in Quasi-Solid-State Lithium Batteries. <i>Journal of the American Chemical Society</i> , 2020 , 142, 20752-20762	16.4	24
129	Recent advances in nanostructured electrode-electrolyte design for safe and next-generation electrochemical energy storage. <i>Materials Today Nano</i> , 2019 , 8, 100057	9.7	23
128	In situ fluorinated solid electrolyte interphase towards long-life lithium metal anodes. <i>Nano Research</i> , 2020 , 13, 430-436	10	23
127	High electro-catalytic graphite felt/MnO2 composite electrodes for vanadium redox flow batteries. <i>Science China Chemistry</i> , 2018 , 61, 732-738	7.9	23
126	Direct regeneration of spent LiFePOvia a graphite prelithiation strategy. <i>Chemical Communications</i> , 2019 , 56, 245-248	5.8	23

125	Constructing a stable interfacial phase on single-crystalline Ni-rich cathode via chemical reaction with phosphomolybdic acid. <i>Nano Energy</i> , 2021 , 87, 106172	17.1	23
124	Elucidating the interfacial evolution and anisotropic dynamics on silicon anodes in lithium-ion batteries. <i>Nano Energy</i> , 2019 , 61, 304-310	17.1	22
123	Nanoparticles Engineering for Lithium-Ion Batteries. <i>Particle and Particle Systems Characterization</i> , 2013 , 30, 737-753	3.1	22
122	Nanoarchitectured metal film electrodes with high electroactive surface areas. <i>Thin Solid Films</i> , 2005 , 484, 341-345	2.2	22
121	Size effect on the growth and pulverization behavior of Si nanodomains in SiO anode. <i>Nano Energy</i> , 2020 , 78, 105101	17.1	22
120	Suppression of Monoclinic Phase Transitions of O3-Type Cathodes Based on Electronic Delocalization for Na-Ion Batteries. <i>ACS Applied Materials & Samp; Interfaces</i> , 2019 , 11, 22067-22073	9.5	21
119	Manipulating Layered P2@P3 Integrated Spinel Structure Evolution for High-Performance Sodium-Ion Batteries. <i>Angewandte Chemie</i> , 2020 , 132, 9385-9390	3.6	21
118	Sulfur Confined in Sub-Nanometer-Sized 2 D Graphene Interlayers and Its Electrochemical Behavior in Lithium-Sulfur Batteries. <i>Chemistry - an Asian Journal</i> , 2016 , 11, 2690-2694	4.5	21
117	Hierarchical hollow structured lithium nickel cobalt manganese oxide microsphere synthesized by template-sacrificial route as high performance cathode for lithium ion batteries. <i>Journal of Alloys and Compounds</i> , 2019 , 777, 434-442	5.7	21
116	Hierarchical Carbon Micro/Nanonetwork with Superior Electrocatalysis for High-Rate and Endurable Vanadium Redox Flow Batteries. <i>Advanced Science</i> , 2018 , 5, 1801281	13.6	21
115	Boron-doped sodium layered oxide for reversible oxygen redox reaction in Na-ion battery cathodes. <i>Nature Communications</i> , 2021 , 12, 5267	17.4	21
114	Gradiently Polymerized Solid Electrolyte Meets with Micro-/Nanostructured Cathode Array. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> 10, 18005-18011	9.5	20
113	Size effects in lithium ion batteries. <i>Chinese Physics B</i> , 2016 , 25, 018203	1.2	20
112	Synthesis of wurtzite Cu2ZnGeSe4 nanocrystals and their thermoelectric properties. <i>Chemistry - an Asian Journal</i> , 2013 , 8, 2383-7	4.5	20
111	Autu alloy bridged synthesis and optoelectronic properties of Au@CuInSe2 corelhell hybrid nanostructures. <i>Journal of Materials Chemistry</i> , 2012 , 22, 1765-1769		20
110	Chalcogen cathode and its conversion electrochemistry in rechargeable Li/Na batteries. <i>Science China Chemistry</i> , 2020 , 63, 1402-1415	7.9	20
109	An Abnormal 3.7 Volt O3-Type Sodium-Ion Battery Cathode. <i>Angewandte Chemie</i> , 2018 , 130, 8310-8315	3.6	19
108	Unexpected effects of zirconium-doping in the high performance sodium manganese-based layer-tunnel cathode. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 13934-13942	13	19

107	Structurally modulated Li-rich cathode materials through cooperative cation doping and anion hybridization. <i>Science China Chemistry</i> , 2017 , 60, 1554-1560	7.9	19	
106	Nanocrystal size control by bath temperature in electrodeposited CdSe thin films. <i>Journal of Materials Chemistry</i> , 2003 , 13, 360-364		19	
105	Stable Sodium Storage of Red Phosphorus Anode Enabled by a Dual-Protection Strategy. <i>ACS Applied Materials & Dual-Protection Strategy</i> .	9.5	18	
104	Mitigating the Kinetic Hindrance of Single-Crystalline Ni-Rich Cathode via Surface Gradient Penetration of Tantalum. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 26535-26539	16.4	18	
103	Phosphorus and oxygen co-doped composite electrode with hierarchical electronic and ionic mixed conducting networks for vanadium redox flow batteries. <i>Chemical Communications</i> , 2019 , 55, 11515-115	5 1 8	17	
102	Enabling a Durable Electrochemical Interface via an Artificial Amorphous Cathode Electrolyte Interphase for Hybrid Solid/Liquid Lithium-Metal Batteries. <i>Angewandte Chemie</i> , 2020 , 132, 6647-6651	3.6	17	
101	A super-lithiophilic nanocrystallization strategy for stable lithium metal anodes. <i>Nano Energy</i> , 2020 , 73, 104731	17.1	17	
100	Ion-Doping-Site-Variation-Induced Composite Cathode Adjustment: A Case Study of Layer-Tunnel NaMnO with Mg Doping at Na/Mn Site. <i>ACS Applied Materials & Samp; Interfaces</i> , 2019 , 11, 26938-26945	9.5	17	
99	PTMA/Graphene as a Novel Cathode Material for Rechargeable Magnesium Batteries. <i>Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica</i> , 2013 , 29, 2295-2299	3.8	17	
98	Highly Ordered and Well-oriented Single-crystal CdTe Nanowire Arrays by Direct-current Electrodeposition. <i>Journal of Materials Research</i> , 2002 , 17, 1711-1714	2.5	17	
97	A further electrochemical investigation on solutions to high energetical power sources: isomerous compound 0.75Li1.2Ni0.2Mn0.6O2[0.25LiNi0.5Mn1.5O4. <i>RSC Advances</i> , 2015 , 5, 37330-37339	3.7	16	
96	Synthesis of a novel tunnel Na0.5K0.1MnO2 composite as a cathode for sodium ion batteries. <i>RSC Advances</i> , 2016 , 6, 54404-54409	3.7	16	
95	Synthesis and electrochemical performance of sulfurdarbon composite cathode for lithiumBulfur batteries. <i>Journal of Solid State Electrochemistry</i> , 2013 , 17, 115-119	2.6	16	
94	Cooperative Shielding of Bi-Electrodes via In Situ Amorphous Electrode-Electrolyte Interphases for Practical High-Energy Lithium-Metal Batteries. <i>Journal of the American Chemical Society</i> , 2021 , 143, 167	6 8 -167	776	
93	Stabilizing the Structure of Nickel-Rich Lithiated Oxides via Cr Doping as Cathode with Boosted High-Voltage/Temperature Cycling Performance for Li-Ion Battery. <i>Energy Technology</i> , 2020 , 8, 1900498	8 ^{3.5}	16	
92	Porous SnO2/Graphene Composites as Anode Materials for Lithium-Ion Batteries: Morphology Control and Performance Improvement. <i>Energy & Energy & En</i>	4.1	16	
91	Advanced Electrolytes Enabling Safe and Stable Rechargeable Li-Metal Batteries: Progress and Prospects. <i>Advanced Functional Materials</i> ,2105253	15.6	16	
90	Strategies to Build High-Rate Cathode Materials for Na-Ion Batteries. <i>ChemNanoMat</i> , 2019 , 5, 1253-126	23.5	15	

89	AgI Nanoplates in Unusual 7H/9R Structures. <i>Journal of the Electrochemical Society</i> , 2007 , 154, K51	3.9	15	
88	Preparation and dispersion of Nitu composite nanoparticles. <i>Physical Chemistry Chemical Physics</i> , 2002 , 4, 3422-3424	3.6	15	
87	Air-Stable High-Nickel Cathode with Reinforced Electrochemical Performance Enabled by Convertible Amorphous Li CO Modification <i>Advanced Materials</i> , 2022 , e2108947	24	15	
86	In Situ Copolymerizated Gel Polymer Electrolyte with Cross-Linked Network for Sodium-Ion Batteries. <i>CCS Chemistry</i> , 2020 , 2, 589-597	7.2	15	
85	Large-Scale Synthesis of the Stable Co-Free Layered Oxide Cathode by the Synergetic Contribution of Multielement Chemical Substitution for Practical Sodium-Ion Battery. <i>Research</i> , 2020 , 2020, 1469301	7.8	15	
84	Building an Air Stable and Lithium Deposition Regulable Garnet Interface from Moderate-Temperature Conversion Chemistry. <i>Angewandte Chemie</i> , 2020 , 132, 12167-12173	3.6	14	
83	Deciphering an Abnormal Layered-Tunnel Heterostructure Induced by Chemical Substitution for the Sodium Oxide Cathode. <i>Angewandte Chemie</i> , 2020 , 132, 1507-1511	3.6	14	
82	Unveiling the Role of Heteroatom Gradient-Distributed Carbon Fibers for Vanadium Redox Flow Batteries with Long Service Life. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 11451-11458	9.5	12	
81	Green Growth Solid Electrolyte Interphase Layer with High Rebound Resilience for Long-Life Lithium Metal Anodes. <i>ACS Applied Materials & Empty Interfaces</i> , 2019 , 11, 43200-43205	9.5	12	
80	Synthesis of nanostructured fibers consisting of carbon coated Mn3O4 nanoparticles and their application in electrochemical capacitors. <i>Journal of Nanoscience and Nanotechnology</i> , 2010 , 10, 8158-63	3 ^{1.3}	12	
79	A facile strategy to reconcile 3D anodes and ceramic electrolytes for stable solid-state Li metal batteries. <i>Energy Storage Materials</i> , 2020 , 32, 458-464	19.4	12	
78	Confined Red Phosphorus in Edible Fungus Slag-Derived Porous Carbon as an Improved Anode Material in Sodium-Ion Batteries. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 47948-47955	9.5	12	
77	Robust Electrodes with Maximized Spatial Catalysis for Vanadium Redox Flow Batteries. <i>ACS Applied Materials & Discourse Materials &</i>	9.5	12	
76	Iron oxyfluorides as lithium-free cathode materials for solid-state Li metal batteries. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 18464-18468	13	11	
75	Synthesis of nanostructured SnO2/C microfibers with improved performances as anode material for Li-ion batteries. <i>Journal of Nanoscience and Nanotechnology</i> , 2012 , 12, 2581-5	1.3	11	
74	In Situ Copolymerizated Gel Polymer Electrolyte with Cross-Linked Network for Sodium-Ion Batteries. <i>CCS Chemistry</i> , 2020 , 2, 589-597	7.2	11	
73	Highly Thermal Conductive Separator with In-Built Phosphorus Stabilizer for Superior Ni-Rich Cathode Based Lithium Metal Batteries. <i>Advanced Energy Materials</i> , 2021 , 11, 2003285	21.8	11	
72	Insights on Electrochemical Behaviors of Sodium Peroxide as a Sacrificial Cathode Additive for Boosting Energy Density of Na-Ion Battery. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 2772-2778	9.5	11	

71	Mitigating the Large-Volume Phase Transition of P2-Type Cathodes by Synergetic Effect of Multiple Ions for Improved Sodium-Ion Batteries. <i>Advanced Energy Materials</i> ,2103461	21.8	11
70	Preparation of sulfur/multiple pore size porous carbon composite via gas-phase loading method for lithium-sulfur batteries. <i>Electrochimica Acta</i> , 2014 , 137, 411-415	6.7	10
69	The effects of annealing on the structures and electrical conductivities of fullerene-derived nanowires. <i>Journal of Materials Chemistry</i> , 2004 , 14, 914		10
68	Revealing the Superiority of Fast Ion Conductor in Composite Electrolyte for Dendrite-Free Lithium-Metal Batteries. <i>ACS Applied Materials & Electrolyte</i> 13, 22978-22986	9.5	10
67	Graphene-encapsulated ZnO composites as high-performance anode materials for lithium ion batteries. <i>Ionics</i> , 2020 , 26, 565-577	2.7	10
66	P3/O3 Integrated Layered Oxide as High-Power and Long-Life Cathode toward Na-Ion Batteries. <i>Small</i> , 2021 , 17, e2007236	11	10
65	The influences of sodium sources on the structure evolution and electrochemical performances of layered-tunnel hybrid Na0.6MnO2 cathode. <i>Ceramics International</i> , 2017 , 43, 6303-6311	5.1	9
64	Exploiting Lithium-Depleted Cathode Materials for Solid-State Li Metal Batteries. <i>Advanced Energy Materials</i> , 2019 , 9, 1901335	21.8	9
63	Nanostructures and Nanomaterials for Batteries 2019,		9
62	Insight into the Interfacial Process and Mechanism in LithiumBulfur Batteries: An In Situ AFM Study. <i>Angewandte Chemie</i> , 2016 , 128, 16067-16071	3.6	9
61	Scientific and technological challenges toward application of lithium aulfur batteries. <i>Chinese Physics B</i> , 2016 , 25, 018801	1.2	9
60	Lithium-Ion Batteries: Suppressing Manganese Dissolution via Exposing Stable {111} Facets for High-Performance Lithium-Ion Oxide Cathode (Adv. Sci. 13/2019). <i>Advanced Science</i> , 2019 , 6, 1970076	13.6	9
59	A Li-substituted hydrostable layered oxide cathode material with oriented stacking nanoplate structure for high-performance sodium-ion battery. <i>Chemical Engineering Journal</i> , 2021 , 412, 128719	14.7	9
58	Minimized Lithium Trapping for High Initial Coulombic Efficiency of Silicon Anodes. <i>Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica</i> , 2020 , 36, 1912010-0	3.8	8
57	High-Temperature Formation of a Functional Film at the Cathode/Electrolyte Interface in LithiumBulfur Batteries: An In Situ AFM Study. <i>Angewandte Chemie</i> , 2017 , 129, 14625-14629	3.6	7
56	Micron-Sized SiMg O with Stable Internal Structure Evolution for High-Performance Li-Ion Battery Anodes <i>Advanced Materials</i> , 2022 , e2200672	24	7
55	Synthesis and Electrochemical Properties of a High Capacity Li-rich Cathode Material in molten KCl-Na2CO3 flux. <i>Electrochimica Acta</i> , 2016 , 196, 749-755	6.7	7
54	Chemically converting residual lithium to a composite coating layer to enhance the rate capability and stability of single-crystalline Ni-rich cathodes. <i>Nano Energy</i> , 2022 , 94, 106901	17.1	6

(2011-2021)

53	Mitigating the Kinetic Hindrance of Single-Crystalline Ni-Rich Cathode via Surface Gradient Penetration of Tantalum. <i>Angewandte Chemie</i> , 2021 , 133, 26739	3.6	6
52	Porous lamellar carbon assembled from Bacillus mycoides as high-performance electrode materials for vanadium redox flow batteries. <i>Journal of Power Sources</i> , 2020 , 450, 227633	8.9	6
51	Raising the capacity of lithium vanadium phosphate via anion and cation co-substitution. <i>Science China Chemistry</i> , 2020 , 63, 203-207	7.9	6
50	Recent progress and design principles of nanocomposite solid electrolytes. <i>Current Opinion in Electrochemistry</i> , 2020 , 22, 195-202	7.2	6
49	Formulating the Electrolyte Towards High-Energy and Safe Rechargeable Lithium Metal Batteries. <i>Angewandte Chemie</i> , 2021 , 133, 16690-16696	3.6	6
48	Templating preparation of cannular congeries of MnO2 and porous spheres of carbon and their applications to high performance asymmetric supercapacitor and lithium-sulfur battery. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2021 , 610, 125740	5.1	6
47	Preparation of intergrown P/O-type biphasic layered oxides as high-performance cathodes for sodium ion batteries. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 13151-13160	13	6
46	Self-Healable Solid Polymeric Electrolytes for Stable and Flexible Lithium Metal Batteries. <i>Angewandte Chemie</i> , 2019 , 131, 18314-18317	3.6	5
45	Supercapacitor-battery hybrid energy storage devices from an aqueous nitroxide radical active material. <i>Science Bulletin</i> , 2011 , 56, 2433-2436		5
44	A Universal Strategy toward Air-Stable and High-Rate O3 Layered Oxide Cathodes for Na-Ion Batteries. <i>Advanced Functional Materials</i> ,2111466	15.6	5
43	Competitive Doping Chemistry for Nickel-Rich Layered Oxide Cathode Materials <i>Angewandte Chemie - International Edition</i> , 2022 ,	16.4	5
42	Insights into the pre-oxidation process of phenolic resin-based hard carbon for sodium storage. <i>Materials Chemistry Frontiers</i> , 2021 , 5, 3911-3917	7.8	5
41	Stable Li storage in micron-sized SiO particles with rigid-flexible coating. <i>Journal of Energy Chemistry</i> , 2022 , 64, 309-314	12	5
40	Selective Extraction of Transition Metals from Spent LiNixCoyMn1-x-yO2 Cathode via Regulation of Coordination Environment <i>Angewandte Chemie - International Edition</i> , 2022 ,	16.4	5
39	In Situ Electrochemical Regeneration of Degraded LiFePO 4 Electrode with Functionalized Prelithiation Separator. <i>Advanced Energy Materials</i> ,2103630	21.8	5
38	Single-Crystalline Cathodes for Advanced Li-Ion Batteries: Progress and Challenges Small, 2022, e210	70:4:8	5
37	New insights to build Na+/vacancy disordering for high-performance P2-type layered oxide cathodes. <i>Nano Energy</i> , 2022 , 97, 107207	17.1	5
36	Synthesis of flake-like MnO2/CNT composite nanotubes and their applications in electrochemical capacitors. <i>Journal of Nanoscience and Nanotechnology</i> , 2011 , 11, 1996-2002	1.3	4

35	A polymer organosulfur redox mediator for high-performance lithium-sulfur batteries. <i>Energy Storage Materials</i> , 2022 , 46, 313-321	19.4	4
34	Cathode Materials: Enhancing the Kinetics of Li-Rich Cathode Materials through the Pinning Effects of Gradient Surface Na+ Doping (Adv. Energy Mater. 6/2016). <i>Advanced Energy Materials</i> , 2016 , 6,	21.8	4
33	Facile Fabrication of CoreBhell Structure Fe3O4@C Nanodots for Enhanced LithiumBulfur Batteries. <i>Acta Metallurgica Sinica (English Letters)</i> , 2021 , 34, 410-416	2.5	4
32	A compared investigation of different biogum polymer binders for silicon anode of lithium-ion batteries. <i>Jonics</i> , 2021 , 27, 1829-1836	2.7	4
31	Air-stability of sodium-based layered-oxide cathode materials. Science China Chemistry, 2022, 65, 1076-	1 9 87	4
30	Optimization of the electrochemical properties of LiNi0.8Co0.1Mn0.1O2 cathode material by titanium doping. <i>Jonics</i> , 2020 , 26, 3223-3230	2.7	3
29	Edge-Rich Multidimensional Frame Carbon as High-Performance Electrode Material for Vanadium Redox Flow Batteries. <i>Advanced Energy Materials</i> ,2103186	21.8	3
28	Preparation of ZnO Nanostructures by Thermal Degradation of Zinc Alginate Fibers. <i>Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica</i> , 2008 , 24, 2179-2184	3.8	3
27	-Difluoroethylene Carbonate as an Electrolyte Additive for Microsized SiO@C Anodes. <i>ACS Applied Materials & Discourt & Discourt Materials & Discourt & </i>	9.5	3
26	A dynamic polyanion framework with anion/cation co-doping for robust Na/Zn-ion batteries. <i>Journal of Power Sources</i> , 2022 , 530, 231257	8.9	3
25	Porous microspheres consisting of carbon-modified LiFePO4 grains prepared by a spray-drying assisted approach using cellulose as carbon source. <i>Ionics</i> , 2020 , 26, 2737-2746	2.7	2
24	Innentitelbild: A Flexible Solid Electrolyte Interphase Layer for Long-Life Lithium Metal Anodes (Angew. Chem. 6/2018). <i>Angewandte Chemie</i> , 2018 , 130, 1436-1436	3.6	2
23	Batteries: A High-Energy Room-Temperature Sodium-Sulfur Battery (Adv. Mater. 8/2014). <i>Advanced Materials</i> , 2014 , 26, 1308-1308	24	2
22	Simultaneous enhancement of initial Coulombic efficiency and cycling performance of silicon-based anode materials for lithium-ion batteries. <i>Applied Surface Science</i> , 2022 , 585, 152643	6.7	2
21	Dual-Modified Compact Layer and Superficial Ti Doping for Reinforced Structural Integrity and Thermal Stability of Ni-Rich Cathodes. <i>ACS Applied Materials & Description of Ni-Rich Cathodes</i> . <i>ACS Applied Materials & Description of Ni-Rich Cathodes</i> . <i>ACS Applied Materials & Description of Ni-Rich Cathodes</i> .	9.5	2
20	Nanostructures and Nanomaterials for Sodium Batteries 2019 , 265-312		1
19	Nanostrucutres and Nanomaterials for Lithium-Ion Batteries 2019 , 89-158		1
18	SYNTHESIS AND ELECTROCHEMICAL PROPERTIES OF POLY-[2, 5-DI-N-(2, 2, 6, 6-TETRAMETHYL-4-PIPERIDINEN-OXYL) BENZAMIDE] ANILINE AS A CATHODE MATERIAL FOR LITHIUM-ION BATTERIES. <i>Journal of Molecular and Engineering Materials</i> , 2013 , 01, 1340019	1.3	1

LIST OF PUBLICATIONS

17	Nanotechnology, 2010 , 10, 3341-5	1.3	1
16	Controlled fabrication of fullerene derivative one-dimensional nanostruc-tures via electrophoretic depo-sition of its clusters. <i>Science Bulletin</i> , 2004 , 49, 2021		1
15	Insights into the nitride-regulated processes at the electrolyte/electrode interface in quasi-solid-state lithium metal batteries. <i>Journal of Energy Chemistry</i> , 2021 , 67, 780-780	12	1
14	Stabilizing the Electrochemistry of Lithium-Selenium Battery via In situ Gelated Polymer Electrolyte: A Look from Anode. <i>Chemical Research in Chinese Universities</i> , 2021 , 37, 298-303	2.2	1
13	Constructing a stable interface between the sulfide electrolyte and the Li metal anode via a Li+-conductive gel polymer interlayer. <i>Materials Chemistry Frontiers</i> , 2021 , 5, 5328-5335	7.8	1
12	New Insights into the Mechanism of Enhanced Performance of Li[NiCoMn]O with a Polyacrylic Acid-Modified Binder. <i>ACS Applied Materials & Discrete Section</i> , 13, 10064-10070	9.5	1
11	New Insight into High-Rate Performance Lithium-Rich Cathode Synthesis through Controlling the Reaction Pathways by Low-Temperature Intermediates. <i>Industrial & Engineering Chemistry Research</i> , 2022 , 61, 453-463	3.9	1
10	Microspheres comprise Si nanoparticles modified with TiO2 and wrapped by graphene as high-performance anode for lithium-ion batteries. <i>Applied Surface Science</i> , 2022 , 153790	6.7	1
9	Introduction to Electrochemical Energy Storage 2019 , 1-28		
8	Nanostructures and Nanomaterials for Solid-State Batteries 2019 , 215-263		
7	Conclusions and Perspectives on New Opportunities of Nanostrucutres and Nanomaterials in Batteries 2019 , 359-379		
6	Nanostructures and Nanomaterials for Lithium Metal Batteries 2019 , 159-214		
5	Traditional Nanostructures and Nanomaterials in Batteries 2019 , 313-357		
4	Charge Transfer and Storage of an Electrochemical Cell and Its Nano Effects 2019 , 29-87		
3	Batteries: Encapsulation of Sulfur in a Hollow Porous Carbon Substrate for Superior Li-S Batteries with Long Lifespan (Part. Part. Syst. Charact. 4/2013). <i>Particle and Particle Systems Characterization</i> , 2013 , 30, 392-392	3.1	
2	Hierarchically Nanostructured Electrode Materials for Lithium-Ion Batteries 2011 , 237-266		
1	koLayered Oxide Cathode-Electrolyte Interface towards Na-Ion Batteries: Advances and Perspectives <i>Chemistry - an Asian Journal</i> , 2022 , e202200213	4.5	