
Xiao-Dong Guo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7335225/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lithium–Sulfur Batteries: Electrochemistry, Materials, and Prospects. Angewandte Chemie - International Edition, 2013, 52, 13186-13200.	7.2	2,329
2	Nanostructured Materials for Electrochemical Energy Conversion and Storage Devices. Advanced Materials, 2008, 20, 2878-2887.	11.1	2,054
3	Smaller Sulfur Molecules Promise Better Lithium–Sulfur Batteries. Journal of the American Chemical Society, 2012, 134, 18510-18513.	6.6	1,499
4	Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nature Communications, 2015, 6, 8058.	5.8	1,305
5	An Artificial Solid Electrolyte Interphase Layer for Stable Lithium Metal Anodes. Advanced Materials, 2016, 28, 1853-1858.	11.1	1,291
6	Carbon Coated Fe ₃ O ₄ Nanospindles as a Superior Anode Material for Lithiumâ€lon Batteries. Advanced Functional Materials, 2008, 18, 3941-3946.	7.8	1,177
7	Binding SnO ₂ Nanocrystals in Nitrogenâ€Doped Graphene Sheets as Anode Materials for Lithiumâ€Ion Batteries. Advanced Materials, 2013, 25, 2152-2157.	11.1	1,089
8	Tinâ€Nanoparticles Encapsulated in Elastic Hollow Carbon Spheres for Highâ€Performance Anode Material in Lithiumâ€Ion Batteries. Advanced Materials, 2008, 20, 1160-1165.	11.1	1,002
9	High-quality Prussian blue crystals as superior cathode materials for room-temperature sodium-ion batteries. Energy and Environmental Science, 2014, 7, 1643-1647.	15.6	852
10	High Lithium Electroactivity of Nanometer-Sized Rutile TiO2. Advanced Materials, 2006, 18, 1421-1426.	11.1	830
11	Pt Hollow Nanospheres: Facile Synthesis and Enhanced Electrocatalysts. Angewandte Chemie - International Edition, 2004, 43, 1540-1543.	7.2	662
12	LiFePO ₄ Nanoparticles Embedded in a Nanoporous Carbon Matrix: Superior Cathode Material for Electrochemical Energyâ€6torage Devices. Advanced Materials, 2009, 21, 2710-2714.	11.1	647
13	Synthesis and Lithium Storage Properties of Co ₃ O ₄ Nanosheetâ€Assembled Multishelled Hollow Spheres. Advanced Functional Materials, 2010, 20, 1680-1686.	7.8	642
14	Rutile-TiO ₂ Nanocoating for a High-Rate Li ₄ Ti ₅ O ₁₂ Anode of a Lithium-Ion Battery. Journal of the American Chemical Society, 2012, 134, 7874-7879.	6.6	602
15	Superior Electrode Performance of Nanostructured Mesoporous TiO ₂ (Anatase) through Efficient Hierarchical Mixed Conducting Networks. Advanced Materials, 2007, 19, 2087-2091.	11.1	592
16	A Flexible Solid Electrolyte Interphase Layer for Long‣ife Lithium Metal Anodes. Angewandte Chemie - International Edition, 2018, 57, 1505-1509.	7.2	590
17	Mass Production and High Photocatalytic Activity of ZnS Nanoporous Nanoparticles. Angewandte Chemie - International Edition, 2005, 44, 1269-1273.	7.2	558
18	Nanocarbon Networks for Advanced Rechargeable Lithium Batteries. Accounts of Chemical Research, 2012, 45, 1759-1769.	7.6	533

#	Article	IF	CITATIONS
19	Safetyâ€Reinforced Poly(Propylene Carbonate)â€Based Allâ€Solidâ€State Polymer Electrolyte for Ambientâ€Temperature Solid Polymer Lithium Batteries. Advanced Energy Materials, 2015, 5, 1501082.	10.2	532
20	A Highâ€Energy Roomâ€Temperature Sodiumâ€Sulfur Battery. Advanced Materials, 2014, 26, 1261-1265.	11.1	525
21	Layered Oxide Cathodes for Sodiumâ€ion Batteries: Phase Transition, Air Stability, and Performance. Advanced Energy Materials, 2018, 8, 1701912.	10.2	519
22	Watermelonâ€Inspired Si/C Microspheres with Hierarchical Buffer Structures for Densely Compacted Lithiumâ€Ion Battery Anodes. Advanced Energy Materials, 2017, 7, 1601481.	10.2	508
23	Graphitized Carbon Fibers as Multifunctional 3D Current Collectors for High Areal Capacity Li Anodes. Advanced Materials, 2017, 29, 1700389.	11.1	495
24	Rice husk-derived hierarchical silicon/nitrogen-doped carbon/carbon nanotube spheres as low-cost and high-capacity anodes for lithium-ion batteries. Nano Energy, 2016, 25, 120-127.	8.2	454
25	Selfâ€Assembled Nanocomposite of Silicon Nanoparticles Encapsulated in Graphene through Electrostatic Attraction for Lithiumâ€lon Batteries. Advanced Energy Materials, 2012, 2, 1086-1090.	10.2	447
26	Advanced Micro/Nanostructures for Lithium Metal Anodes. Advanced Science, 2017, 4, 1600445.	5.6	444
27	Suppressing the P2–O2 Phase Transition of Na _{0.67} Mn _{0.67} Ni _{0.33} O ₂ by Magnesium Substitution for Improved Sodiumâ€lon Batteries. Angewandte Chemie - International Edition, 2016, 55, 7445-7449.	7.2	439
28	Improving the Electrode Performance of Ge through Ge@C Core–Shell Nanoparticles and Graphene Networks. Journal of the American Chemical Society, 2012, 134, 2512-2515.	6.6	436
29	Nanostructured Polyaniline-Decorated Pt/C@PANI Core–Shell Catalyst with Enhanced Durability and Activity. Journal of the American Chemical Society, 2012, 134, 13252-13255.	6.6	430
30	Facile synthesis of silicon nanoparticles inserted into graphene sheets as improved anode materials for lithium-ion batteries. Chemical Communications, 2012, 48, 2198.	2.2	417
31	Stable Li Plating/Stripping Electrochemistry Realized by a Hybrid Li Reservoir in Spherical Carbon Granules with 3D Conducting Skeletons. Journal of the American Chemical Society, 2017, 139, 5916-5922.	6.6	410
32	Subzeroâ€Temperature Cathode for a Sodiumâ€ion Battery. Advanced Materials, 2016, 28, 7243-7248.	11.1	406
33	Dendrite-Free Li-Metal Battery Enabled by a Thin Asymmetric Solid Electrolyte with Engineered Layers. Journal of the American Chemical Society, 2018, 140, 82-85.	6.6	404
34	Towards better Li metal anodes: Challenges and strategies. Materials Today, 2020, 33, 56-74.	8.3	404
35	Uniform Lithium Nucleation/Growth Induced by Lightweight Nitrogenâ€Doped Graphitic Carbon Foams for Highâ€Performance Lithium Metal Anodes. Advanced Materials, 2018, 30, 1706216.	11.1	401
36	Reshaping Lithium Plating/Stripping Behavior via Bifunctional Polymer Electrolyte for Room-Temperature Solid Li Metal Batteries. Journal of the American Chemical Society, 2016, 138, 15825-15828.	6.6	399

#	Article	IF	CITATIONS
37	Sulfur Encapsulated in Graphitic Carbon Nanocages for Highâ€Rate and Longâ€Cycle Lithium–Sulfur Batteries. Advanced Materials, 2016, 28, 9539-9544.	11.1	392
38	An Advanced Selenium–Carbon Cathode for Rechargeable Lithium–Selenium Batteries. Angewandte Chemie - International Edition, 2013, 52, 8363-8367.	7.2	391
39	Synthesis of CuO/graphene nanocomposite as a high-performance anode material for lithium-ion batteries. Journal of Materials Chemistry, 2010, 20, 10661.	6.7	383
40	Stable Li Metal Anodes via Regulating Lithium Plating/Stripping in Vertically Aligned Microchannels. Advanced Materials, 2017, 29, 1703729.	11.1	381
41	Improved Electrode Performance of Porous LiFePO ₄ Using RuO ₂ as an Oxidic Nanoscale Interconnect. Advanced Materials, 2007, 19, 1963-1966.	11.1	380
42	A Sandwichâ€Like Hierarchically Porous Carbon/Graphene Composite as a Highâ€Performance Anode Material for Sodiumâ€Ion Batteries. Advanced Energy Materials, 2014, 4, 1301584.	10.2	365
43	Mono dispersed SnO2 nanoparticles on both sides of single layer graphene sheets as anode materials in Li-ion batteries. Journal of Materials Chemistry, 2010, 20, 5462.	6.7	362
44	Carbonâ€Nanotubeâ€Decorated Nanoâ€LiFePO ₄ @C Cathode Material with Superior Highâ€Rate and Lowâ€Temperature Performances for Lithiumâ€Ion Batteries. Advanced Energy Materials, 2013, 3, 1155-1160.	10.2	351
45	Highâ€Energy/Power and Lowâ€Temperature Cathode for Sodiumâ€Ion Batteries: In Situ XRD Study and Superior Fullâ€Cell Performance. Advanced Materials, 2017, 29, 1701968.	11.1	350
46	Suppressing Surface Lattice Oxygen Release of Liâ€Rich Cathode Materials via Heterostructured Spinel Li ₄ Mn ₅ O ₁₂ Coating. Advanced Materials, 2018, 30, e1801751.	11.1	348
47	Na ⁺ /vacancy disordering promises high-rate Na-ion batteries. Science Advances, 2018, 4, eaar6018.	4.7	341
48	Upgrading traditional liquid electrolyte via in situ gelation for future lithium metal batteries. Science Advances, 2018, 4, eaat5383.	4.7	337
49	High apacity Cathode Material with High Voltage for Liâ€Ion Batteries. Advanced Materials, 2018, 30, 1705575.	11.1	333
50	Extended Electrochemical Window of Solid Electrolytes via Heterogeneous Multilayered Structure for Highâ€Voltage Lithium Metal Batteries. Advanced Materials, 2019, 31, e1807789.	11.1	333
51	Free-Standing Hollow Carbon Fibers as High-Capacity Containers for Stable Lithium Metal Anodes. Joule, 2017, 1, 563-575.	11.7	329
52	Solid-State Lithium Metal Batteries Promoted by Nanotechnology: Progress and Prospects. ACS Energy Letters, 2017, 2, 1385-1394.	8.8	314
53	Highly Dispersed RuO ₂ Nanoparticles on Carbon Nanotubes: Facile Synthesis and Enhanced Supercapacitance Performance. Journal of Physical Chemistry C, 2010, 114, 2448-2451.	1.5	312
54	Ultraâ€Uniform SnO <i>_x</i> /Carbon Nanohybrids toward Advanced Lithiumâ€Ion Battery Anodes. Advanced Materials, 2014, 26, 3943-3949.	11.1	311

#	Article	IF	CITATIONS
55	Tiâ€&ubstituted NaNi _{0.5} Mn _{0.5â€} <i>_x</i> Ti <i>_x</i> O ₂ Cathodes with Reversible O3â`P3 Phase Transition for Highâ€Performance Sodiumâ€Ion Batteries. Advanced Materials, 2017, 29, 1700210.	11.1	309
56	Designing Air-Stable O3-Type Cathode Materials by Combined Structure Modulation for Na-Ion Batteries. Journal of the American Chemical Society, 2017, 139, 8440-8443.	6.6	303
57	Three-Dimensional Self-Organization of Supramolecular Self-Assembled Porphyrin Hollow Hexagonal Nanoprisms. Journal of the American Chemical Society, 2005, 127, 17090-17095.	6.6	302
58	Synthesis of MoS2 nanosheet–graphene nanosheet hybrid materials for stable lithium storage. Chemical Communications, 2013, 49, 1838.	2.2	293
59	Sodium iron hexacyanoferrate with high Na content as a Na-rich cathode material for Na-ion batteries. Nano Research, 2015, 8, 117-128.	5.8	292
60	Recent Advancements in Polymer-Based Composite Electrolytes for Rechargeable Lithium Batteries. Electrochemical Energy Reviews, 2018, 1, 113-138.	13.1	290
61	Enhancing the Kinetics of Liâ€Rich Cathode Materials through the Pinning Effects of Gradient Surface Na ⁺ Doping. Advanced Energy Materials, 2016, 6, 1501914.	10.2	288
62	Guiding Uniform Li Plating/Stripping through Lithium–Aluminum Alloying Medium for Longâ€Life Li Metal Batteries. Angewandte Chemie - International Edition, 2019, 58, 1094-1099.	7.2	287
63	Insight into the Effect of Boron Doping on Sulfur/Carbon Cathode in Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2014, 6, 8789-8795.	4.0	286
64	Cuâ€6i Nanocable Arrays as Highâ€Rate Anode Materials for Lithiumâ€Ion Batteries. Advanced Materials, 2011, 23, 4415-4420.	11.1	283
65	Ionothermal synthesis of sulfur-doped porous carbons hybridized with graphene as superior anode materials for lithium-ion batteries. Chemical Communications, 2012, 48, 10663.	2.2	278
66	Research progress regarding Si-based anode materials towards practical application in high energy density Li-ion batteries. Materials Chemistry Frontiers, 2017, 1, 1691-1708.	3.2	277
67	Engineering Janus Interfaces of Ceramic Electrolyte via Distinct Functional Polymers for Stable High-Voltage Li-Metal Batteries. Journal of the American Chemical Society, 2019, 141, 9165-9169.	6.6	272
68	Introducing Dual Functional CNT Networks into CuO Nanomicrospheres toward Superior Electrode Materials for Lithium-Ion Batteries. Chemistry of Materials, 2008, 20, 3617-3622.	3.2	270
69	Facile Synthesis of Blocky SiO <i>_x</i> /C with Graphite‣ike Structure for Highâ€Performance Lithiumâ€Ion Battery Anodes. Advanced Functional Materials, 2018, 28, 1705235.	7.8	260
70	High-Yield Gasâ^'Liquid Interfacial Synthesis of Highly Dispersed Fe ₃ O ₄ Nanocrystals and Their Application in Lithium-Ion Batteries. Chemistry of Materials, 2009, 21, 1162-1166.	3.2	256
71	SiO <i>_x</i> Encapsulated in Graphene Bubble Film: An Ultrastable Li″on Battery Anode. Advanced Materials, 2018, 30, e1707430.	11.1	243
72	Synthesis of Monodispersed Wurtzite Structure CuInSe ₂ Nanocrystals and Their Application in High-Performance Organicâ^Inorganic Hybrid Photodetectors. Journal of the American Chemical Society, 2010, 132, 12218-12221.	6.6	242

#	Article	IF	CITATIONS
73	Superior radical polymer cathode material with a two-electron process redox reaction promoted by graphene. Energy and Environmental Science, 2012, 5, 5221-5225.	15.6	241
74	Facile synthesis of MoS2@CMK-3 nanocomposite as an improved anode material for lithium-ion batteries. Nanoscale, 2012, 4, 5868.	2.8	240
75	Anisotropic Photoresponse Properties of Single Micrometerâ€Sized GeSe Nanosheet. Advanced Materials, 2012, 24, 4528-4533.	11.1	229
76	In-situ plasticized polymer electrolyte with double-network for flexible solid-state lithium-metal batteries. Energy Storage Materials, 2018, 10, 85-91.	9.5	227
77	Elemental Selenium for Electrochemical Energy Storage. Journal of Physical Chemistry Letters, 2015, 6, 256-266.	2.1	226
78	Synthesis of hierarchically mesoporous anatase spheres and their application in lithium batteries. Chemical Communications, 2006, , 2783.	2.2	221
79	Passivation of Lithium Metal Anode via Hybrid Ionic Liquid Electrolyte toward Stable Li Plating/Stripping. Advanced Science, 2017, 4, 1600400.	5.6	220
80	Electrochemical lithiation synthesis of nanoporous materials with superior catalytic and capacitive activity. Nature Materials, 2006, 5, 713-717.	13.3	219
81	Electrochemical (De)Lithiation of 1D Sulfur Chains in Li–S Batteries: A Model System Study. Journal of the American Chemical Society, 2015, 137, 2215-2218.	6.6	209
82	Advanced Porous Carbon Materials for High‣fficient Lithium Metal Anodes. Advanced Energy Materials, 2017, 7, 1700530.	10.2	208
83	α-Fe ₂ O ₃ Nanostructures: Inorganic Salt-Controlled Synthesis and Their Electrochemical Performance toward Lithium Storage. Journal of Physical Chemistry C, 2008, 112, 16824-16829.	1.5	206
84	A zero-strain insertion cathode material of nickel ferricyanide for sodium-ion batteries. Journal of Materials Chemistry A, 2013, 1, 14061.	5.2	206
85	A Dualâ€5alt Gel Polymer Electrolyte with 3D Cross‣inked Polymer Network for Dendriteâ€Free Lithium Metal Batteries. Advanced Science, 2018, 5, 1800559.	5.6	204
86	Mitigating Voltage Decay of Li-Rich Cathode Material via Increasing Ni Content for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 20138-20146.	4.0	197
87	Symbiotic Coaxial Nanocables: Facile Synthesis and an Efficient and Elegant Morphological Solution to the Lithium Storage Problem. Chemistry of Materials, 2010, 22, 1908-1914.	3.2	193
88	Mitigating Interfacial Potential Drop of Cathode–Solid Electrolyte via Ionic Conductor Layer To Enhance Interface Dynamics for Solid Batteries. Journal of the American Chemical Society, 2018, 140, 6767-6770.	6.6	192
89	A Stable Layered Oxide Cathode Material for Highâ€Performance Sodiumâ€ŀon Battery. Advanced Energy Materials, 2019, 9, 1803978.	10.2	191
90	Tuning the porous structure of carbon hosts for loading sulfur toward long lifespan cathode materials for Li–S batteries. Journal of Materials Chemistry A, 2013, 1, 6602.	5.2	189

#	Article	IF	CITATIONS
91	Wet milled synthesis of an Sb/MWCNT nanocomposite for improved sodium storage. Journal of Materials Chemistry A, 2013, 1, 13727.	5.2	188
92	Synergism of Al-containing solid electrolyte interphase layer and Al-based colloidal particles for stable lithium anode. Nano Energy, 2017, 36, 411-417.	8.2	187
93	Improving cycling performance and rate capability of Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode materials by Li4Ti5O12 coating. Electrochimica Acta, 2018, 268, 358-365.	2.6	186
94	An O3-type NaNi _{0.5} Mn _{0.5} O ₂ cathode for sodium-ion batteries with improved rate performance and cycling stability. Journal of Materials Chemistry A, 2016, 4, 17660-17664.	5.2	185
95	Solvothermal Synthesis of LiFePO4 Hierarchically Dumbbell-Like Microstructures by Nanoplate Self-Assembly and Their Application as a Cathode Material in Lithium-Ion Batteries. Journal of Physical Chemistry C, 2009, 113, 3345-3351.	1.5	184
96	SnO ₂ -Based Hierarchical Nanomicrostructures: Facile Synthesis and Their Applications in Gas Sensors and Lithium-Ion Batteries. Journal of Physical Chemistry C, 2009, 113, 14213-14219.	1.5	183
97	Progress of the Interface Design in Allâ€Solidâ€State Li–S Batteries. Advanced Functional Materials, 2018, 28, 1707533.	7.8	182
98	Rational Design of Anode Materials Based on Groupâ€IVA Elements (Si, Ge, and Sn) for Lithiumâ€ l on Batteries. Chemistry - an Asian Journal, 2013, 8, 1948-1958.	1.7	181
99	Tuning wettability of molten lithium via a chemical strategy for lithium metal anodes. Nature Communications, 2019, 10, 4930.	5.8	181
100	Electrospray Synthesis of Silicon/Carbon Nanoporous Microspheres as Improved Anode Materials for Lithium-Ion Batteries. Journal of Physical Chemistry C, 2011, 115, 14148-14154.	1.5	177
101	Conductive graphite fiber as a stable host for zinc metal anodes. Electrochimica Acta, 2017, 244, 172-177.	2.6	175
102	Electrospun Silicon Nanoparticle/Porous Carbon Hybrid Nanofibers for Lithiumâ€lon Batteries. Small, 2013, 9, 2684-2688.	5.2	164
103	Construction of homogeneously Al3+ doped Ni rich Ni-Co-Mn cathode with high stable cycling performance and storage stability via scalable continuous precipitation. Electrochimica Acta, 2018, 291, 84-94.	2.6	163
104	Advances of polymer binders for <scp>siliconâ€based</scp> anodes in high energy density <scp>lithiumâ€ion</scp> batteries. InformaÄnÃ-Materiály, 2021, 3, 460-501.	8.5	163
105	Nitridingâ€Interfaceâ€Regulated Lithium Plating Enables Flameâ€Retardant Electrolytes for Highâ€Voltage Lithium Metal Batteries. Angewandte Chemie - International Edition, 2019, 58, 7802-7807.	7.2	161
106	Highly Disordered Carbon as a Superior Anode Material for Roomâ€Temperature Sodiumâ€Ion Batteries. ChemElectroChem, 2014, 1, 83-86.	1.7	158
107	The 2021 battery technology roadmap. Journal Physics D: Applied Physics, 2021, 54, 183001.	1.3	158
108	Improving the Electrochemical Performance of the Li ₄ Ti ₅ O ₁₂ Electrode in a Rechargeable Magnesium Battery by Lithium–Magnesium Coâ€Intercalation. Angewandte Chemie - International Edition, 2015, 54, 5757-5761.	7.2	156

#	Article	IF	CITATIONS
109	Reducing the volume deformation of high capacity SiOx/G/C anode toward industrial application in high energy density lithium-ion batteries. Nano Energy, 2019, 60, 485-492.	8.2	156
110	Microemulsion Assisted Assembly of 3D Porous S/Graphene@gâ€C ₃ N ₄ Hybrid Sponge as Freeâ€Standing Cathodes for High Energy Density Li–S Batteries. Advanced Energy Materials, 2018, 8, 1702839.	10.2	147
111	Bridging Interparticle Li ⁺ Conduction in a Soft Ceramic Oxide Electrolyte. Journal of the American Chemical Society, 2021, 143, 5717-5726.	6.6	144
112	Exposing {010} Active Facets by Multiple‣ayer Oriented Stacking Nanosheets for Highâ€Performance Capacitive Sodiumâ€Ion Oxide Cathode. Advanced Materials, 2018, 30, e1803765.	11.1	142
113	A P2/P3 composite layered cathode for high-performance Na-ion full batteries. Nano Energy, 2019, 55, 143-150.	8.2	142
114	Layered Oxide Cathodes Promoted by Structure Modulation Technology for Sodiumâ€lon Batteries. Advanced Functional Materials, 2020, 30, 2001334.	7.8	142
115	The Electrochemistry with Lithium versus Sodium of Selenium Confined To Slit Micropores in Carbon. Nano Letters, 2016, 16, 4560-4568.	4.5	140
116	Direct tracking of the polysulfide shuttling and interfacial evolution in all-solid-state lithium–sulfur batteries: a degradation mechanism study. Energy and Environmental Science, 2019, 12, 2496-2506.	15.6	140
117	Synthesis of Single-Crystalline Co ₃ O ₄ Octahedral Cages with Tunable Surface Aperture and Their Lithium Storage Properties. Journal of Physical Chemistry C, 2009, 113, 15553-15558.	1.5	138
118	Microfluidic etching for fabrication of flexible and all-solid-state micro supercapacitor based on MnO2 nanoparticles. Nanoscale, 2011, 3, 2703.	2.8	138
119	Uniform Nucleation of Lithium in 3D Current Collectors via Bromide Intermediates for Stable Cycling Lithium Metal Batteries. Journal of the American Chemical Society, 2018, 140, 18051-18057.	6.6	138
120	Efficient 3D Conducting Networks Built by Graphene Sheets and Carbon Nanoparticles for High-Performance Silicon Anode. ACS Applied Materials & Interfaces, 2012, 4, 2824-2828.	4.0	135
121	Advanced Se–C nanocomposites: a bifunctional electrode material for both Li–Se and Li-ion batteries. Journal of Materials Chemistry A, 2014, 2, 13293.	5.2	133
122	A Highâ€Performance Composite Electrode for Vanadium Redox Flow Batteries. Advanced Energy Materials, 2017, 7, 1700461.	10.2	133
123	A highly reversible, low-strain Mg-ion insertion anode material for rechargeable Mg-ion batteries. NPG Asia Materials, 2014, 6, e120-e120.	3.8	130
124	Trapping Lithium into Hollow Silica Microspheres with a Carbon Nanotube Core for Dendrite-Free Lithium Metal Anodes. Nano Letters, 2018, 18, 297-301.	4.5	130
125	A robust composite of SnO2 hollow nanospheres enwrapped by graphene as a high-capacity anode material for lithium-ion batteries. Journal of Materials Chemistry, 2012, 22, 17456.	6.7	129
126	Layer Structured α-Fe ₂ O ₃ Nanodisk/Reduced Graphene Oxide Composites as High-Performance Anode Materials for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2013, 5, 3932-3936.	4.0	129

#	Article	IF	CITATIONS
127	Progress of rechargeable lithium metal batteries based on conversion reactions. National Science Review, 2017, 4, 54-70.	4.6	128
128	Insights into the Improved High-Voltage Performance of Li-Incorporated Layered Oxide Cathodes for Sodium-Ion Batteries. CheM, 2018, 4, 2124-2139.	5.8	128
129	Selfâ€Healable Solid Polymeric Electrolytes for Stable and Flexible Lithium Metal Batteries. Angewandte Chemie - International Edition, 2019, 58, 18146-18149.	7.2	128
130	Building an Air Stable and Lithium Deposition Regulable Garnet Interface from Moderateâ€Temperature Conversion Chemistry. Angewandte Chemie - International Edition, 2020, 59, 12069-12075.	7.2	128
131	High-safety lithium-sulfur battery with prelithiated Si/C anode and ionic liquid electrolyte. Electrochimica Acta, 2013, 91, 58-61.	2.6	127
132	Advanced P2-Na _{2/3} Ni _{1/3} Mn _{7/12} Fe _{1/12} O ₂ Cathode Material with Suppressed P2–O2 Phase Transition toward High-Performance Sodium-Ion Battery. ACS Applied Materials & Interfaces, 2018, 10, 34272-34282.	4.0	127
133	Ameliorating the Interfacial Problems of Cathode and Solid‣tate Electrolytes by Interface Modification of Functional Polymers. Advanced Energy Materials, 2018, 8, 1801528.	10.2	127
134	3D zinc@carbon fiber composite framework anode for aqueous Zn–MnO ₂ batteries. RSC Advances, 2018, 8, 19157-19163.	1.7	126
135	Interfacial Mechanism in Lithium–Sulfur Batteries: How Salts Mediate the Structure Evolution and Dynamics. Journal of the American Chemical Society, 2018, 140, 8147-8155.	6.6	125
136	Boron-doped sodium layered oxide for reversible oxygen redox reaction in Na-ion battery cathodes. Nature Communications, 2021, 12, 5267.	5.8	122
137	Controllable AuPt bimetallic hollow nanostructures. Chemical Communications, 2004, , 1496.	2.2	121
138	Hierarchically micro/mesoporous activated graphene with a large surface area for high sulfur loading in Li–S batteries. Journal of Materials Chemistry A, 2015, 3, 4799-4802.	5.2	121
139	Tin Nanoparticles Impregnated in Nitrogen-Doped Graphene for Lithium-Ion Battery Anodes. Journal of Physical Chemistry C, 2013, 117, 25367-25373.	1.5	120
140	Better lithium-ion batteries with nanocable-like electrode materials. Energy and Environmental Science, 2011, 4, 1634.	15.6	119
141	Insight into the Interfacial Process and Mechanism in Lithium–Sulfur Batteries: An In Situ AFM Study. Angewandte Chemie - International Edition, 2016, 55, 15835-15839.	7.2	119
142	High-Performance Lithiated SiO <i>_x</i> Anode Obtained by a Controllable and Efficient Prelithiation Strategy. ACS Applied Materials & Interfaces, 2019, 11, 32062-32068.	4.0	119
143	Spin-coated silicon nanoparticle/graphene electrode as a binder-free anode for high-performance lithium-ion batteries. Nano Research, 2012, 5, 845-853.	5.8	117
144	Wurtzite Cu2ZnSnSe4 nanocrystals for high-performance organic–inorganic hybrid photodetectors. NPG Asia Materials, 2012, 4, e2-e2.	3.8	116

#	Article	IF	CITATIONS
145	A Layered–Tunnel Intergrowth Structure for Highâ€Performance Sodiumâ€lon Oxide Cathode. Advanced Energy Materials, 2018, 8, 1800492.	10.2	116
146	Scalable synthesis of spherical Si/C granules with 3D conducting networks as ultrahigh loading anodes in lithium-ion batteries. Energy Storage Materials, 2018, 12, 54-60.	9.5	115
147	Ordered Niâ^'Cu Nanowire Array with Enhanced Coercivity. Chemistry of Materials, 2003, 15, 664-667.	3.2	113
148	Facile Synthesis of Mesoporous TiO2â^'C Nanosphere as an Improved Anode Material for Superior High Rate 1.5 V Rechargeable Li Ion Batteries Containing LiFePO4â^'C Cathode. Journal of Physical Chemistry C, 2010, 114, 10308-10313.	1.5	113
149	Interfacial design for lithium–sulfur batteries: From liquid to solid. EnergyChem, 2019, 1, 100002.	10.1	113
150	Tunable Layered (Na,Mn)V ₈ O ₂₀ Â∙ <i>n</i> H ₂ O Cathode Material for Highâ€Performance Aqueous Zinc Ion Batteries. Advanced Science, 2020, 7, 2000083.	5.6	113
151	Superior Hybrid Cathode Material Containing Lithium-Excess Layered Material and Graphene for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2012, 4, 4858-4863.	4.0	112
152	Enabling SiO <i>_x</i> /C Anode with High Initial Coulombic Efficiency through a Chemical Pre-Lithiation Strategy for High-Energy-Density Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 27202-27209.	4.0	112
153	Low-cost and large-scale synthesis of alkaline earth metal germanate nanowires as a new class of lithium ion battery anode material. Energy and Environmental Science, 2012, 5, 8007.	15.6	111
154	Rational Design of Robust Si/C Microspheres for High-Tap-Density Anode Materials. ACS Applied Materials & Interfaces, 2019, 11, 4057-4064.	4.0	111
155	Prussian blue nanocubes as cathode materials for aqueous Na-Zn hybrid batteries. Journal of Power Sources, 2017, 355, 18-22.	4.0	109
156	An Abnormal 3.7â€Volt O3â€Type Sodiumâ€lon Battery Cathode. Angewandte Chemie - International Edition, 2018, 57, 8178-8183.	7.2	109
157	High Performance Photodetectors of Individual InSe Single Crystalline Nanowire. Journal of the American Chemical Society, 2009, 131, 15602-15603.	6.6	108
158	Wet Chemistry Synthesis of Multidimensional Nanocarbon–Sulfur Hybrid Materials with Ultrahigh Sulfur Loading for Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2016, 8, 3584-3590.	4.0	108
159	Hydrothermal reduction of three-dimensional graphene oxide for binder-free flexible supercapacitors. Journal of Materials Chemistry A, 2014, 2, 10830.	5.2	107
160	Synergy of doping and coating induced heterogeneous structure and concentration gradient in Ni-rich cathode for enhanced electrochemical performance. Journal of Power Sources, 2019, 423, 144-151.	4.0	106
161	Highâ€Efficiency Cathode Sodium Compensation for Sodiumâ€ŀon Batteries. Advanced Materials, 2020, 32, e2001419.	11.1	106
162	Progress in the sustainable recycling of spent lithiumâ€ion batteries. SusMat, 2021, 1, 241-254.	7.8	104

#	Article	IF	CITATIONS
163	TiO2-Based Composite Nanotube Arrays Prepared via Layer-by-Layer Assembly. Advanced Functional Materials, 2005, 15, 196-202.	7.8	103
164	Facile Synthesis of Germanium Nanocrystals and Their Application in Organic–Inorganic Hybrid Photodetectors. Advanced Materials, 2011, 23, 3704-3707.	11.1	102
165	Advanced Electrolytes Enabling Safe and Stable Rechargeable Liâ€Metal Batteries: Progress and Prospects. Advanced Functional Materials, 2021, 31, 2105253.	7.8	102
166	Recent progress on confinement of polysulfides through physical and chemical methods. Journal of Energy Chemistry, 2018, 27, 1555-1565.	7.1	101
167	Single Nanowire Electrode Electrochemistry of Silicon Anode by in Situ Atomic Force Microscopy: Solid Electrolyte Interphase Growth and Mechanical Properties. ACS Applied Materials & Interfaces, 2014, 6, 20317-20323.	4.0	100
168	Self-Assembled LiFePO ₄ /C Nano/Microspheres by Using Phytic Acid as Phosphorus Source. Journal of Physical Chemistry C, 2012, 116, 5019-5024.	1.5	99
169	Realizing a highly stable sodium battery with dendrite-free sodium metal composite anodes and O3-type cathodes. Nano Energy, 2018, 48, 369-376.	8.2	99
170	In Situ Electrochemical Regeneration of Degraded LiFePO ₄ Electrode with Functionalized Prelithiation Separator. Advanced Energy Materials, 2022, 12, .	10.2	99
171	A carbon-coated Li3V2(PO4)3 cathode material with an enhanced high-rate capability and long lifespan for lithium-ion batteries. Journal of Materials Chemistry A, 2013, 1, 2508.	5.2	98
172	Cu ²⁺ Dual-Doped Layer-Tunnel Hybrid Na _{0.6} Mn _{1–<i>x</i>} Cu _{<i>x</i>} O ₂ as a Cathode of Sodium-Ion Battery with Enhanced Structure Stability, Electrochemical Property, and Air Stability. ACS Applied Materials & amp; Interfaces, 2018, 10, 10147-10156.	4.0	98
173	In-situ encapsulating flame-retardant phosphate into robust polymer matrix for safe and stable quasi-solid-state lithium metal batteries. Energy Storage Materials, 2021, 39, 186-193.	9.5	98
174	Improved kinetics of LiNi1/3Mn1/3Co1/3O2 cathode material through reduced graphene oxide networks. Physical Chemistry Chemical Physics, 2012, 14, 2934.	1.3	97
175	Selfâ€Wound Composite Nanomembranes as Electrode Materials for Lithium Ion Batteries. Advanced Materials, 2010, 22, 4591-4595.	11.1	96
176	Bandgap Engineering of Monodispersed Cu _{2–<i>x</i>} S _{<i>y</i>} Se _{1–<i>y</i>} Nanocrystals through Chalcogen Ratio and Crystal Structure. Journal of the American Chemical Society, 2011, 133, 18558-18561.	6.6	96
177	Enhanced Li+ conductivity in PEO–LiBOB polymer electrolytes by using succinonitrile as a plasticizer. Solid State Ionics, 2011, 186, 1-6.	1.3	96
178	Porous carbon for high-energy density symmetrical supercapacitor and lithium-ion hybrid electrochemical capacitors. Chemical Engineering Journal, 2019, 375, 122020.	6.6	96
179	Increased residual lithium compounds guided design for green recycling of spent lithium-ion cathodes. Energy and Environmental Science, 2021, 14, 1461-1468.	15.6	96
180	Mitigating the Largeâ€Volume Phase Transition of P2â€Type Cathodes by Synergetic Effect of Multiple Ions for Improved Sodiumâ€Ion Batteries. Advanced Energy Materials, 2022, 12, .	10.2	96

#	Article	IF	CITATIONS
181	Preparation and Li Storage Properties of Hierarchical Porous Carbon Fibers Derived from Alginic Acid. ChemSusChem, 2010, 3, 703-707.	3.6	95
182	A Flexible Solid Electrolyte with Multilayer Structure for Sodium Metal Batteries. Advanced Energy Materials, 2020, 10, 1903966.	10.2	94
183	Tin/Platinum Bimetallic Nanotube Array and its Electrocatalytic Activity for Methanol Oxidation. Advanced Materials, 2005, 17, 746-750.	11.1	93
184	Viscoelastic and Nonflammable Interface Design–Enabled Dendriteâ€Free and Safe Solid Lithium Metal Batteries. Advanced Energy Materials, 2019, 9, 1803854.	10.2	93
185	Subunits controlled synthesis of α-Fe ₂ O ₃ multi-shelled core–shell microspheres and their effects on lithium/sodium ion battery performances. Journal of Materials Chemistry A, 2015, 3, 10092-10099.	5.2	92
186	Both cationic and anionic redox chemistry in a P2-type sodium layered oxide. Nano Energy, 2020, 69, 104474.	8.2	91
187	Advances in rechargeable Mg batteries. Journal of Materials Chemistry A, 2020, 8, 25601-25625.	5.2	91
188	Encapsulation of Sulfur in a Hollow Porous Carbon Substrate for Superior Liâ€6 Batteries with Long Lifespan. Particle and Particle Systems Characterization, 2013, 30, 321-325.	1.2	90
189	Manipulating Electrode/Electrolyte Interphases of Sodium-Ion Batteries: Strategies and Perspectives. , 2021, 3, 18-41.		90
190	A Rational Reconfiguration of Electrolyte for Highâ€Energy and Longâ€Life Lithium–Chalcogen Batteries. Advanced Materials, 2020, 32, e2000302.	11.1	88
191	Designing solid-state interfaces on lithium-metal anodes: a review. Science China Chemistry, 2019, 62, 1286-1299.	4.2	86
192	Spray-Drying-Induced Assembly of Skeleton-Structured SnO ₂ /Graphene Composite Spheres as Superior Anode Materials for High-Performance Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 2515-2525.	4.0	85
193	Suppressing the P2–O2 Phase Transition of Na _{0.67} Mn _{0.67} Ni _{0.33} O ₂ by Magnesium Substitution for Improved Sodiumâ€Ion Batteries. Angewandte Chemie, 2016, 128, 7571-7575.	1.6	84
194	Manipulating Layered P2@P3 Integrated Spinel Structure Evolution for Highâ€Performance Sodiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2020, 59, 9299-9304.	7.2	84
195	Enabling a Durable Electrochemical Interface via an Artificial Amorphous Cathode Electrolyte Interphase for Hybrid Solid/Liquid Lithiumâ€Metal Batteries. Angewandte Chemie - International Edition, 2020, 59, 6585-6589.	7.2	84
196	An integral interface with dynamically stable evolution on micron-sized SiOx particle anode. Nano Energy, 2020, 74, 104890.	8.2	84
197	An Outlook on Low-Volume-Change Lithium Metal Anodes for Long-Life Batteries. ACS Central Science, 2020, 6, 661-671.	5.3	83
198	An Airâ€Stable Highâ€Nickel Cathode with Reinforced Electrochemical Performance Enabled by Convertible Amorphous Li ₂ CO ₃ Modification. Advanced Materials, 2022, 34, e2108947.	11.1	83

#	Article	IF	CITATIONS
199	Micrometerâ€Sized SiMg <i>_y</i> O <i>_x</i> with Stable Internal Structure Evolution for Highâ€Performance Liâ€Ion Battery Anodes. Advanced Materials, 2022, 34, e2200672.	11.1	83
200	Excellent Comprehensive Performance of Naâ€Based Layered Oxide Benefiting from the Synergetic Contributions of Multimetal Ions. Advanced Energy Materials, 2017, 7, 1700189.	10.2	82
201	A Flexible Solid Electrolyte Interphase Layer for Long‣ife Lithium Metal Anodes. Angewandte Chemie, 2018, 130, 1521-1525.	1.6	82
202	Niâ^'Pt Multilayered Nanowire Arrays with Enhanced Coercivity and High Remanence Ratio. Inorganic Chemistry, 2005, 44, 3013-3015.	1.9	81
203	Carbon materials with hierarchical porosity: Effect of template removal strategy and study on their electrochemical properties. Carbon, 2018, 130, 680-691.	5.4	80
204	Interfacial Regulation of Ni-Rich Cathode Materials with an Ion-Conductive and Pillaring Layer by Infusing Gradient Boron for Improved Cycle Stability. ACS Applied Materials & Interfaces, 2020, 12, 10240-10251.	4.0	80
205	Formulating the Electrolyte Towards Highâ€Energy and Safe Rechargeable Lithium–Metal Batteries. Angewandte Chemie - International Edition, 2021, 60, 16554-16560.	7.2	80
206	Mitigating the Kinetic Hindrance of Singleâ€Crystalline Niâ€Rich Cathode via Surface Gradient Penetration of Tantalum. Angewandte Chemie - International Edition, 2021, 60, 26535-26539.	7.2	80
207	Atom-Thick Interlayer Made of CVD-Grown Graphene Film on Separator for Advanced Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2017, 9, 43696-43703.	4.0	79
208	Heteroatom-doped electrodes for all-vanadium redox flow batteries with ultralong lifespan. Journal of Materials Chemistry A, 2018, 6, 41-44.	5.2	79
209	Agl Nanoplates with Mesoscopic Superionic Conductivity at Room Temperature. Advanced Materials, 2005, 17, 2815-2819.	11.1	78
210	Deciphering an Abnormal Layered‶unnel Heterostructure Induced by Chemical Substitution for the Sodium Oxide Cathode. Angewandte Chemie - International Edition, 2020, 59, 1491-1495.	7.2	78
211	Silicon-based nanomaterials for lithium-ion batteries. Science Bulletin, 2012, 57, 4104-4110.	1.7	77
212	Nonaqueous Sodiumâ€ion Full Cells: Status, Strategies, and Prospects. Small, 2019, 15, e1900233.	5.2	77
213	A Universal Strategy toward Airâ€Stable and Highâ€Rate O3 Layered Oxide Cathodes for Naâ€Ion Batteries. Advanced Functional Materials, 2022, 32, .	7.8	77
214	Rechargeable dual-metal-ion batteries for advanced energy storage. Physical Chemistry Chemical Physics, 2016, 18, 9326-9333.	1.3	76
215	Host Structural Stabilization of Li1.232Mn0.615Ni0.154O2 through K-Doping Attempt: toward Superior Electrochemical Performances. Electrochimica Acta, 2016, 188, 336-343.	2.6	75
216	Fungiâ€Enabled Synthesis of Ultrahighâ€Surfaceâ€Area Porous Carbon. Advanced Materials, 2019, 31, e1805134.	11.1	75

#	Article	IF	CITATIONS
217	Solidifying Cathode–Electrolyte Interface for Lithium–Sulfur Batteries. Advanced Energy Materials, 2021, 11, 2000791.	10.2	75
218	High-Thermal- and Air-Stability Cathode Material with Concentration-Gradient Buffer for Li-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 42829-42835.	4.0	74
219	Copper germanate nanowire/reduced graphene oxide anode materials for high energy lithium-ion batteries. Journal of Materials Chemistry A, 2013, 1, 11404.	5.2	73
220	Direct regeneration of spent LiFePO ₄ <i>via</i> a graphite prelithiation strategy. Chemical Communications, 2020, 56, 245-248.	2.2	73
221	Structure Design of Cathode Electrodes for Solid‣tate Batteries: Challenges and Progress. Small Structures, 2020, 1, 2000042.	6.9	73
222	Selective Extraction of Transition Metals from Spent LiNi _{<i>x</i>} Co _y Mn _{1â^<i>x</i>â^²<i>y</i>} O ₂ Cathode via Regulation of Coordination Environment. Angewandte Chemie - International Edition, 2022, 61, .	7.2	72
223	Wet chemical synthesis of Cu/TiO2 nanocomposites with integrated nano-current-collectors as high-rate anode materials in lithium-ion batteries. Physical Chemistry Chemical Physics, 2011, 13, 2014.	1.3	70
224	Honeycomb-Ordered Na ₃ Ni _{1.5} M _{0.5} BiO ₆ (M = Ni, Cu,) Tj ET 2715-2722.	Qq0 0 0 rş 8.8	gBT /Overlock 70
225	Micromechanism in All-Solid-State Alloy-Metal Batteries: Regulating Homogeneous Lithium Precipitation and Flexible Solid Electrolyte Interphase Evolution. Journal of the American Chemical Society, 2021, 143, 839-848.	6.6	70
226	A PEO-assisted electrospun silicon–graphene composite as an anode material for lithium-ion batteries. Journal of Materials Chemistry A, 2013, 1, 9019.	5.2	69
227	High-Capacity Te Anode Confined in Microporous Carbon for Long-Life Na-Ion Batteries. ACS Applied Materials & Interfaces, 2015, 7, 27838-27844.	4.0	68
228	Low volume change composite lithium metal anodes. Nano Energy, 2019, 64, 103910.	8.2	68
229	Cooperative Shielding of Bi-Electrodes via In Situ Amorphous Electrode–Electrolyte Interphases for Practical High-Energy Lithium-Metal Batteries. Journal of the American Chemical Society, 2021, 143, 16768-16776.	6.6	68
230	Synthesis of FeS@C-N hierarchical porous microspheres for the applications in lithium/sodium ion batteries. Journal of Alloys and Compounds, 2016, 688, 790-797.	2.8	67
231	Well-Defined Fullerene Nanowire Arrays. Advanced Functional Materials, 2003, 13, 626-630.	7.8	66
232	A Highâ€Capacity Tellurium@Carbon Anode Material for Lithiumâ€lon Batteries. Energy Technology, 2014, 2, 757-762.	1.8	66
233	Non-sacrificial template synthesis of Cr2O3–C hierarchical core/shell nanospheres and their application as anode materials in lithium-ion batteries. Journal of Materials Chemistry, 2010, 20, 7565.	6.7	65
234	An Ordered Ni ₆ â€Ring Superstructure Enables a Highly Stable Sodium Oxide Cathode. Advanced Materials. 2019. 31. e1903483.	11.1	65

#	Article	IF	CITATIONS
235	Gold/Titania Core/Sheath Nanowires Prepared by Layer-by-Layer Assembly. Journal of Physical Chemistry B, 2003, 107, 5441-5444.	1.2	64
236	Local Conductivity Effects in Polymer Electrolytes. Advanced Materials, 2005, 17, 2630-2634.	11.1	64
237	Lithiation-Derived Repellent toward Lithium Anode Safeguard in Quasi-solid Batteries. CheM, 2018, 4, 298-307.	5.8	63
238	Kinetic Origin of Planar Gliding in Single-Crystalline Ni-Rich Cathodes . Journal of the American Chemical Society, 2022, 144, 11338-11347.	6.6	63
239	Interface Assembly Synthesis of Inorganic Composite Hollow Spheres. Journal of Physical Chemistry B, 2004, 108, 9734-9738.	1.2	62
240	Highly Dispersed Metal Nanoparticles in Porous Anodic Alumina Films Prepared by a Breathing Process of Polyacrylamide Hydrogel. Chemistry of Materials, 2003, 15, 4332-4336.	3.2	61
241	Superior storage performance of carbon nanosprings as anode materials for lithium-ion batteries. Electrochemistry Communications, 2009, 11, 1468-1471.	2.3	61
242	A novel polymer electrolyte with improved high-temperature-tolerance up to 170°C for high-temperature lithium-ion batteries. Journal of Power Sources, 2013, 244, 234-239.	4.0	61
243	A 3D Lithium/Carbon Fiber Anode with Sustained Electrolyte Contact for Solidâ€ S tate Batteries. Advanced Energy Materials, 2020, 10, 1903325.	10.2	61
244	A facile synthesis and lithium storage properties of Co3O4–C hybrid core-shell and hollow spheres. Journal of Materials Chemistry, 2011, 21, 17998.	6.7	60
245	Mn-Based Cathode with Synergetic Layered-Tunnel Hybrid Structures and Their Enhanced Electrochemical Performance in Sodium Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 21267-21275.	4.0	60
246	Stabilizing Polymer–Lithium Interface in a Rechargeable Solid Battery. Advanced Functional Materials, 2020, 30, 1908047.	7.8	59
247	Interfacial Evolution of Lithium Dendrites and Their Solid Electrolyte Interphase Shells of Quasiâ€6olidâ€5tate Lithiumâ€Metal Batteries. Angewandte Chemie - International Edition, 2020, 59, 18120-18125.	7.2	59
248	Constructing a stable interfacial phase on single-crystalline Ni-rich cathode via chemical reaction with phosphomolybdic acid. Nano Energy, 2021, 87, 106172.	8.2	59
249	Air-Stable and High-Voltage Layered P3-Type Cathode for Sodium-Ion Full Battery. ACS Applied Materials & Interfaces, 2019, 11, 24184-24191.	4.0	58
250	Dynamic Evolution of a Cathode Interphase Layer at the Surface of LiNi _{0.5} Co _{0.2} Mn _{0.3} O ₂ in Quasi-Solid-State Lithium Batteries. Journal of the American Chemical Society, 2020, 142, 20752-20762.	6.6	58
251	Core-shell meso/microporous carbon host for sulfur loading toward applications in lithium-sulfur batteries. Journal of Energy Chemistry, 2014, 23, 308-314.	7.1	57
252	Hydrangeaâ€Like CuS with Irreversible Amorphization Transition for Highâ€Performance Sodiumâ€lon Storage. Advanced Science, 2020, 7, 1903279.	5.6	57

#	Article	IF	CITATIONS
253	Improving the structural stability of Li-rich cathode materials via reservation of cations in the Li-slab for Li-ion batteries. Nano Research, 2017, 10, 4201-4209.	5.8	56
254	Dual Elements Coupling Effect Induced Modification from the Surface into the Bulk Lattice for Ni-Rich Cathodes with Suppressed Capacity and Voltage Decay. ACS Applied Materials & Interfaces, 2020, 12, 8146-8156.	4.0	56
255	Three-dimensional hollow spheres of porous SnO2/rGO composite as high-performance anode for sodium ion batteries. Applied Surface Science, 2019, 479, 198-208.	3.1	55
256	Competitive Doping Chemistry for Nickelâ€Rich Layered Oxide Cathode Materials. Angewandte Chemie - International Edition, 2022, 61, .	7.2	55
257	Nitrogen and Sulfur Codoped Reduced Graphene Oxide as a General Platform for Rapid and Sensitive Fluorescent Detection of Biological Species. ACS Applied Materials & Interfaces, 2016, 8, 11255-11261.	4.0	54
258	Graphitic Nanocarbon–Selenium Cathode with Favorable Rate Capability for Li–Se Batteries. ACS Applied Materials & Interfaces, 2017, 9, 8759-8765.	4.0	54
259	Three-Dimensional Carbon Nanotubes Forest/Carbon Cloth as an Efficient Electrode for Lithium–Polysulfide Batteries. ACS Applied Materials & Interfaces, 2017, 9, 1553-1561.	4.0	54
260	An effective LiBO2 coating to ameliorate the cathode/electrolyte interfacial issues of LiNi0.6Co0.2Mn0.2O2 in solid-state Li batteries. Journal of Power Sources, 2019, 426, 242-249.	4.0	54
261	Three-dimensional carbon nanotube networks enhanced sodium trimesic: a new anode material for sodium ion batteries and Na-storage mechanism revealed by ex situ studies. Journal of Materials Chemistry A, 2017, 5, 16622-16629.	5.2	54
262	Improving the stability of LiNi0.80Co0.15Al0.05O2 by AlPO4 nanocoating for lithium-ion batteries. Science China Chemistry, 2017, 60, 1230-1235.	4.2	52
263	Guiding Uniform Li Plating/Stripping through Lithium–Aluminum Alloying Medium for Longâ€Life Li Metal Batteries. Angewandte Chemie, 2019, 131, 1106-1111.	1.6	52
264	Improving the Li-Ion Storage Performance of Layered Zinc Silicate through the Interlayer Carbon and Reduced Graphene Oxide Networks. ACS Applied Materials & Interfaces, 2013, 5, 5777-5782.	4.0	51
265	Effect of cations in ionic liquids on the electrochemical performance of lithium-sulfur batteries. Science China Chemistry, 2014, 57, 1564-1569.	4.2	51
266	Size effect on the growth and pulverization behavior of Si nanodomains in SiO anode. Nano Energy, 2020, 78, 105101.	8.2	51
267	A New All-Solid-State Hyperbranched Star Polymer Electrolyte for Lithium Ion Batteries: Synthesis and Electrochemical Properties. Electrochimica Acta, 2016, 212, 372-379.	2.6	50
268	Methods for the Stabilization of Nanostructured Electrode Materials for Advanced Rechargeable Batteries. Small Methods, 2017, 1, 1700094.	4.6	50
269	Chemically converting residual lithium to a composite coating layer to enhance the rate capability and stability of single-crystalline Ni-rich cathodes. Nano Energy, 2022, 94, 106901.	8.2	50
270	MgSc ₂ Se ₄ —A Magnesium Solid Ionic Conductor for Allâ€Solidâ€State Mg Batteries?. ChemSusChem, 2019, 12, 2286-2293.	3.6	49

#	Article	IF	CITATIONS
271	In situ fluorinated solid electrolyte interphase towards long-life lithium metal anodes. Nano Research, 2020, 13, 430-436.	5.8	49
272	P3/O3 Integrated Layered Oxide as Highâ€Power and Longâ€Life Cathode toward Naâ€lon Batteries. Small, 2021, 17, e2007236.	5.2	49
273	Preparation and characterization of Agl nanoparticles with controlled size, morphology and crystal structure. Solid State Ionics, 2006, 177, 2467-2471.	1.3	48
274	Two-dimensional Cr ₂ O ₃ and interconnected graphene–Cr ₂ O ₃ nanosheets: synthesis and their application in lithium storage. Journal of Materials Chemistry A, 2014, 2, 944-948.	5.2	48
275	Hierarchical Carbon Micro/Nanonetwork with Superior Electrocatalysis for Highâ€Rate and Endurable Vanadium Redox Flow Batteries. Advanced Science, 2018, 5, 1801281.	5.6	48
276	Hierarchically structured microspheres consisting of carbon coated silicon nanocomposites with controlled porosity as superior anode material for lithium-ion batteries. Electrochimica Acta, 2019, 324, 134850.	2.6	48
277	Suppression of Monoclinic Phase Transitions of O3-Type Cathodes Based on Electronic Delocalization for Na-Ion Batteries. ACS Applied Materials & amp; Interfaces, 2019, 11, 22067-22073.	4.0	48
278	Chalcogen cathode and its conversion electrochemistry in rechargeable Li/Na batteries. Science China Chemistry, 2020, 63, 1402-1415.	4.2	48
279	Tunable structure and dynamics of solid electrolyte interphase at lithium metal anode. Nano Energy, 2020, 75, 104967.	8.2	48
280	Nitridingâ€Interfaceâ€Regulated Lithium Plating Enables Flameâ€Retardant Electrolytes for Highâ€Voltage Lithium Metal Batteries. Angewandte Chemie, 2019, 131, 7884-7889.	1.6	47
281	Air-stability of sodium-based layered-oxide cathode materials. Science China Chemistry, 2022, 65, 1076-1087.	4.2	46
282	Nitroxide radical polymer/graphene nanocomposite as an improved cathode material for rechargeable lithium batteries. Electrochimica Acta, 2012, 72, 81-86.	2.6	45
283	Highâ€īemperature Formation of a Functional Film at the Cathode/Electrolyte Interface in Lithium–Sulfur Batteries: An Inâ€Situ AFM Study. Angewandte Chemie - International Edition, 2017, 56, 14433-14437.	7.2	45
284	Constructing a Stable Lithium Metal–Gel Electrolyte Interface for Quasi-Solid-State Lithium Batteries. ACS Applied Materials & Interfaces, 2018, 10, 30065-30070.	4.0	45
285	Novel P2-type Na _{2/3} Ni _{1/6} Mg _{1/6} Ti _{2/3} O ₂ as an anode material for sodium-ion batteries. Chemical Communications, 2017, 53, 1957-1960.	2.2	43
286	Single rystalline Cathodes for Advanced Liâ€Ion Batteries: Progress and Challenges. Small, 2022, 18, e2107048.	5.2	43
287	Eco-friendly visible-wavelength photodetectors based on bandgap engineerable nanomaterials. Journal of Materials Chemistry, 2011, 21, 17582.	6.7	42
288	Integrated Prototype Nanodevices via SnO2 Nanoparticles Decorated SnSe Nanosheets. Scientific Reports, 2013, 3, 2613.	1.6	42

#	Article	IF	CITATIONS
289	Improving the electrochemical properties of the red P anode in Na-ion batteries via the space confinement of carbon nanopores. Journal of Materials Chemistry A, 2015, 3, 24221-24225.	5.2	42
290	A novel bismuth-based anode material with a stable alloying process by the space confinement of an <i>in situ</i> conversion reaction for a rechargeable magnesium ion battery. Chemical Communications, 2018, 54, 1714-1717.	2.2	42
291	Designing High-Performance Composite Electrodes for Vanadium Redox Flow Batteries: Experimental and Computational Investigation. ACS Applied Materials & amp; Interfaces, 2018, 10, 22381-22388.	4.0	42
292	Programmed Fabrication of Metal Oxides Nanostructures Using Dual Templates to Spatially Disperse Metal Oxide Nanocrystals. Chemistry of Materials, 2010, 22, 414-419.	3.2	41
293	Suppressing Manganese Dissolution via Exposing Stable {111} Facets for Highâ€Performance Lithiumâ€lon Oxide Cathode. Advanced Science, 2019, 6, 1801908.	5.6	41
294	A Rational Biphasic Tailoring Strategy Enabling Highâ€Performance Layered Cathodes for Sodiumâ€lon Batteries. Angewandte Chemie - International Edition, 2022, 61, .	7.2	41
295	Three-dimensional sandwich-type graphene@microporous carbon architecture for lithium–sulfur batteries. RSC Advances, 2016, 6, 617-622.	1.7	40
296	Direct insights into the electrochemical processes at anode/electrolyte interfaces in magnesium-sulfur batteries. Nano Energy, 2018, 49, 453-459.	8.2	40
297	In Situ Copolymerizated Gel Polymer Electrolyte with Cross-Linked Network for Sodium-Ion Batteries. CCS Chemistry, 2020, 2, 589-597.	4.6	39
298	Polyethylene glycol-directed SnO2 nanowires for enhanced gas-sensing properties. Nanoscale, 2011, 3, 1802.	2.8	38
299	Sizeâ€Dependent Electrochemical Magnesium Storage Performance of Spinel Lithium Titanate. Chemistry - an Asian Journal, 2014, 9, 2099-2102.	1.7	38
300	Ladderlike carbon nanoarrays on 3D conducting skeletons enable uniform lithium nucleation for stable lithium metal anodes. Chemical Communications, 2018, 54, 5330-5333.	2.2	38
301	Carbon-supported Ni@NiO/Al2O3 integrated nanocomposite derived from layered double hydroxide precursor as cycling-stable anode materials for lithium-ion batteries. Electrochimica Acta, 2013, 108, 429-434.	2.6	37
302	High electro-catalytic graphite felt/MnO2 composite electrodes for vanadium redox flow batteries. Science China Chemistry, 2018, 61, 732-738.	4.2	37
303	Ionâ€Transferâ€Based Growth: A Mechanism for CuTCNQ Nanowire Formation. Advanced Materials, 2008, 20, 4879-4882.	11.1	36
304	Nano/Microâ€Structured Si/C Anodes with High Initial Coulombic Efficiency in Liâ€Ion Batteries. Chemistry - an Asian Journal, 2016, 11, 1205-1209.	1.7	36
305	Graphene@hierarchical meso-/microporous carbon for ultrahigh energy density lithium-ion capacitors. Electrochimica Acta, 2018, 281, 459-465.	2.6	36
306	A super-lithiophilic nanocrystallization strategy for stable lithium metal anodes. Nano Energy, 2020, 73, 104731.	8.2	36

#	Article	IF	CITATIONS
307	Template Synthesis of Sc@C82(I) Nanowires and Nanotubes at Room Temperature. Advanced Materials, 2005, 17, 71-73.	11.1	35
308	Understanding the structural evolution and Na+ kinetics in honeycomb-ordered O′3-Na3Ni2SbO6 cathodes. Nano Research, 2018, 11, 3258-3271.	5.8	35
309	A facile strategy to reconcile 3D anodes and ceramic electrolytes for stable solid-state Li metal batteries. Energy Storage Materials, 2020, 32, 458-464.	9.5	35
310	High-performance rechargeable all-solid-state silver battery based on superionic AgI nanoplates. Electrochemistry Communications, 2006, 8, 1179-1184.	2.3	34
311	Initial solid electrolyte interphase formation process of graphite anode in LiPF6 electrolyte: an in situ ECSTM investigation. Physical Chemistry Chemical Physics, 2012, 14, 7330.	1.3	34
312	Facile synthesis of a SiO _x /asphalt membrane for high performance lithium-ion battery anodes. Chemical Communications, 2017, 53, 12080-12083.	2.2	34
313	Large-Scale Synthesis of the Stable Co-Free Layered Oxide Cathode by the Synergetic Contribution of Multielement Chemical Substitution for Practical Sodium-Ion Battery. Research, 2020, 2020, 1469301.	2.8	33
314	SnO2 hollow spheres: Polymer bead-templated hydrothermal synthesis and their electrochemical properties for lithium storage. Science China Chemistry, 2012, 55, 1314-1318.	4.2	32
315	Enhanced working temperature of PEO-based polymer electrolyte via porous PTFE film as an efficient heat resister. Solid State Ionics, 2013, 245-246, 1-7.	1.3	32
316	Submicrometer porous Li3V2(PO4)3/C composites with high rate electrochemical performance prepared by sol-gel combustion method. Electrochimica Acta, 2014, 137, 489-496.	2.6	32
317	l-Histidine-assisted template-free hydrothermal synthesis of α-Fe2O3 porous multi-shelled hollow spheres with enhanced lithium storage properties. Journal of Materials Chemistry A, 2014, 2, 12361-12367.	5.2	32
318	Unexpected effects of zirconium-doping in the high performance sodium manganese-based layer-tunnel cathode. Journal of Materials Chemistry A, 2018, 6, 13934-13942.	5.2	32
319	Composite‣tructure Material Design for Highâ€Energy Lithium Storage. Small, 2018, 14, e1800887.	5.2	32
320	Porous SnO ₂ /Graphene Composites as Anode Materials for Lithium-Ion Batteries: Morphology Control and Performance Improvement. Energy & Fuels, 2020, 34, 13126-13136.	2.5	32
321	Dual-Modified Compact Layer and Superficial Ti Doping for Reinforced Structural Integrity and Thermal Stability of Ni-Rich Cathodes. ACS Applied Materials & Interfaces, 2021, 13, 54997-55006.	4.0	32
322	A polymer organosulfur redox mediator for high-performance lithium-sulfur batteries. Energy Storage Materials, 2022, 46, 313-321.	9.5	32
323	Influence of self-assembly monolayers on the characteristics of copper phthalacyanine thin film transistor. Applied Physics A: Materials Science and Processing, 2005, 80, 1541-1545.	1.1	31
324	Amine-free preparation of SnSe nanosheets with high crystallinity and their lithium storage properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 406, 1-5.	2.3	31

#	Article	IF	CITATIONS
325	Insight into the loading temperature of sulfur on sulfur/carbon cathode in lithium-sulfur batteries. Electrochimica Acta, 2015, 185, 62-68.	2.6	31
326	Investigation into the Surface Chemistry of Li ₄ Ti ₅ O ₁₂ Nanoparticles for Lithium Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 26008-26012.	4.0	31
327	Recent advances in nanostructured electrode-electrolyte design for safe and next-generation electrochemical energy storage. Materials Today Nano, 2019, 8, 100057.	2.3	31
328	New insights to build Na+/vacancy disordering for high-performance P2-type layered oxide cathodes. Nano Energy, 2022, 97, 107207.	8.2	31
329	Fabrication and characterization of highly ordered Pt nanotubule arrays. Physical Chemistry Chemical Physics, 2004, 6, 1766.	1.3	30
330	Size effects in lithium ion batteries. Chinese Physics B, 2016, 25, 018203.	0.7	30
331	Phosphorus and oxygen co-doped composite electrode with hierarchical electronic and ionic mixed conducting networks for vanadium redox flow batteries. Chemical Communications, 2019, 55, 11515-11518.	2.2	30
332	Building an Air Stable and Lithium Deposition Regulable Garnet Interface from Moderateâ€Temperature Conversion Chemistry. Angewandte Chemie, 2020, 132, 12167-12173.	1.6	30
333	Interfacial Evolution of the Solid Electrolyte Interphase and Lithium Deposition in Graphdiyne-Based Lithium-Ion Batteries. Journal of the American Chemical Society, 2022, 144, 9354-9362.	6.6	30
334	Novel electrocatalytic activity in layered Ni–Cu nanowire arrays. Chemical Communications, 2003, , 3022-3023.	2.2	29
335	DNAâ€Templated Synthesis of Cationic Poly(3,4â€ethylenedioxythiophene) Derivative for Supercapacitor Electrodes. Macromolecular Rapid Communications, 2010, 31, 1892-1896.	2.0	28
336	Template-Free Synthesis and Supercapacitance Performance of a Hierachically Porous Oxygen-Enriched Carbon Material. Journal of Nanoscience and Nanotechnology, 2011, 11, 1897-1904.	0.9	28
337	lon-Doping-Site-Variation-Induced Composite Cathode Adjustment: A Case Study of Layer–Tunnel Na _{0.6} MnO ₂ with Mg ²⁺ Doping at Na/Mn Site. ACS Applied Materials & Interfaces, 2019, 11, 26938-26945.	4.0	28
338	Elucidating the interfacial evolution and anisotropic dynamics on silicon anodes in lithium-ion batteries. Nano Energy, 2019, 61, 304-310.	8.2	27
339	Hierarchical hollow structured lithium nickel cobalt manganese oxide microsphere synthesized by template-sacrificial route as high performance cathode for lithium ion batteries. Journal of Alloys and Compounds, 2019, 777, 434-442.	2.8	27
340	Strategies to Build Highâ€Rate Cathode Materials for Naâ€Ion Batteries. ChemNanoMat, 2019, 5, 1253-1262.	1.5	26
341	Manipulating Layered P2@P3 Integrated Spinel Structure Evolution for Highâ€Performance Sodiumâ€lon Batteries. Angewandte Chemie, 2020, 132, 9385-9390.	1.6	26
342	Enabling a Durable Electrochemical Interface via an Artificial Amorphous Cathode Electrolyte Interphase for Hybrid Solid/Liquid Lithiumâ€Metal Batteries. Angewandte Chemie, 2020, 132, 6647-6651.	1.6	26

#	Article	IF	CITATIONS
343	Preparation of intergrown P/O-type biphasic layered oxides as high-performance cathodes for sodium ion batteries. Journal of Materials Chemistry A, 2021, 9, 13151-13160.	5.2	26
344	Microspheres comprise Si nanoparticles modified with TiO2 and wrapped by graphene as high-performance anode for lithium-ion batteries. Applied Surface Science, 2022, 598, 153790.	3.1	26
345	Sulfur Confined in Subâ€Nanometerâ€6ized 2 D Graphene Interlayers and Its Electrochemical Behavior in Lithium–Sulfur Batteries. Chemistry - an Asian Journal, 2016, 11, 2690-2694.	1.7	25
346	Insights on Electrochemical Behaviors of Sodium Peroxide as a Sacrificial Cathode Additive for Boosting Energy Density of Na-Ion Battery. ACS Applied Materials & Interfaces, 2021, 13, 2772-2778.	4.0	25
347	Edgeâ€Rich Multidimensional Frame Carbon as Highâ€Performance Electrode Material for Vanadium Redox Flow Batteries. Advanced Energy Materials, 2022, 12, .	10.2	25
348	Stable Sodium Storage of Red Phosphorus Anode Enabled by a Dual-Protection Strategy. ACS Applied Materials & Interfaces, 2018, 10, 30479-30486.	4.0	24
349	A Li-substituted hydrostable layered oxide cathode material with oriented stacking nanoplate structure for high-performance sodium-ion battery. Chemical Engineering Journal, 2021, 412, 128719.	6.6	24
350	Nanoarchitectured metal film electrodes with high electroactive surface areas. Thin Solid Films, 2005, 484, 341-345.	0.8	23
351	Au–Cu alloy bridged synthesis and optoelectronic properties of Au@CuInSe ₂ core–shell hybrid nanostructures. Journal of Materials Chemistry, 2012, 22, 1765-1769.	6.7	23
352	PTMA/Graphene as a Novel Cathode Material for Rechargeable Magnesium Batteries. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2013, 29, 2295-2299.	2.2	23
353	Gradiently Polymerized Solid Electrolyte Meets with Micro-/Nanostructured Cathode Array. ACS Applied Materials & Interfaces, 2018, 10, 18005-18011.	4.0	23
354	An Abnormal 3.7â€Volt O3â€Type Sodiumâ€lon Battery Cathode. Angewandte Chemie, 2018, 130, 8310-8315.	1.6	23
355	Nanoparticles Engineering for Lithiumâ€lon Batteries. Particle and Particle Systems Characterization, 2013, 30, 737-753.	1.2	22
356	Structurally modulated Li-rich cathode materials through cooperative cation doping and anion hybridization. Science China Chemistry, 2017, 60, 1554-1560.	4.2	22
357	Green <i>in Situ</i> Growth Solid Electrolyte Interphase Layer with High Rebound Resilience for Long-Life Lithium Metal Anodes. ACS Applied Materials & Interfaces, 2019, 11, 43200-43205.	4.0	22
358	Synthesis of Wurtzite Cu ₂ ZnGeSe ₄ Nanocrystals and their Thermoelectric Properties. Chemistry - an Asian Journal, 2013, 8, 2383-2387.	1.7	21
359	Nanocrystal size control by bath temperature in electrodeposited CdSe thin films. Journal of Materials Chemistry, 2003, 13, 360-364.	6.7	20
360	Synthesis of a novel tunnel Na _{0.5} K _{0.1} MnO ₂ composite as a cathode for sodium ion batteries. RSC Advances, 2016, 6, 54404-54409.	1.7	20

#	Article	IF	CITATIONS
361	Stabilizing the Structure of Nickelâ€Rich Lithiated Oxides via Cr Doping as Cathode with Boosted Highâ€Voltage/Temperature Cycling Performance for Liâ€Ion Battery. Energy Technology, 2020, 8, 1900498.	1.8	20
362	AgI Nanoplates in Unusual 7H/9R Structures. Journal of the Electrochemical Society, 2007, 154, K51.	1.3	19
363	Robust Electrodes with Maximized Spatial Catalysis for Vanadium Redox Flow Batteries. ACS Applied Materials & Interfaces, 2018, 10, 38922-38927.	4.0	19
364	The devil is in the electrons. Nature Energy, 2019, 4, 174-175.	19.8	19
365	Graphene-encapsulated ZnO composites as high-performance anode materials for lithium ion batteries. Ionics, 2020, 26, 565-577.	1.2	19
366	Highly Thermal Conductive Separator with Inâ€Built Phosphorus Stabilizer for Superior Niâ€Rich Cathode Based Lithium Metal Batteries. Advanced Energy Materials, 2021, 11, 2003285.	10.2	19
367	Insights into the pre-oxidation process of phenolic resin-based hard carbon for sodium storage. Materials Chemistry Frontiers, 2021, 5, 3911-3917.	3.2	19
368	Stable Li storage in micron-sized SiO particles with rigid-flexible coating. Journal of Energy Chemistry, 2022, 64, 309-314.	7.1	19
369	Highly Ordered and Well-oriented Single-crystal CdTe Nanowire Arrays by Direct-current Electrodeposition. Journal of Materials Research, 2002, 17, 1711-1714.	1.2	18
370	Preparation and dispersion of Ni–Cu composite nanoparticles. Physical Chemistry Chemical Physics, 2002, 4, 3422-3424.	1.3	18
371	Synthesis and electrochemical performance of sulfur–carbon composite cathode for lithium–sulfur batteries. Journal of Solid State Electrochemistry, 2013, 17, 115-119.	1.2	18
372	A further electrochemical investigation on solutions to high energetical power sources: isomerous compound 0.75Li _{1.2} Ni _{0.2} Mn _{0.6} O ₂ ·0.25LiNi _{0.5} Mn _{ RSC Advances, 2015, 5, 37330-37339.}	1.5	•0 ¹⁸ sub>4
373	Unveiling the Role of Heteroatom Gradient-Distributed Carbon Fibers for Vanadium Redox Flow Batteries with Long Service Life. ACS Applied Materials & Interfaces, 2019, 11, 11451-11458.	4.0	18
374	Confined Red Phosphorus in Edible Fungus Slag-Derived Porous Carbon as an Improved Anode Material in Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 47948-47955.	4.0	18
375	Revealing the Superiority of Fast Ion Conductor in Composite Electrolyte for Dendrite-Free Lithium-Metal Batteries. ACS Applied Materials & Interfaces, 2021, 13, 22978-22986.	4.0	18
376	In Situ Copolymerizated Gel Polymer Electrolyte with Cross-Linked Network for Sodium-Ion Batteries. CCS Chemistry, 2020, 2, 589-597.	4.6	18
377	Lithium/Boron Co-doped Micrometer SiO _{<i>x</i>} as Promising Anode Materials for High-Energy-Density Li-Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 27854-27860.	4.0	18
378	Deciphering an Abnormal Layeredâ€Tunnel Heterostructure Induced by Chemical Substitution for the Sodium Oxide Cathode. Angewandte Chemie, 2020, 132, 1507-1511.	1.6	17

#	Article	IF	CITATIONS
379	Iron oxyfluorides as lithium-free cathode materials for solid-state Li metal batteries. Journal of Materials Chemistry A, 2017, 5, 18464-18468.	5.2	16
380	<i>trans</i> -Difluoroethylene Carbonate as an Electrolyte Additive for Microsized SiO _{<i>x</i>} @C Anodes. ACS Applied Materials & Interfaces, 2021, 13, 24916-24924.	4.0	16
381	Scientific and technological challenges toward application of lithium–sulfur batteries. Chinese Physics B, 2016, 25, 018801.	0.7	15
382	Simultaneous enhancement of initial Coulombic efficiency and cycling performance of silicon-based anode materials for lithium-ion batteries. Applied Surface Science, 2022, 585, 152643.	3.1	15
383	The influences of sodium sources on the structure evolution and electrochemical performances of layered-tunnel hybrid Na 0.6 MnO 2 cathode. Ceramics International, 2017, 43, 6303-6311.	2.3	14
384	Lithiumâ€lon Batteries: Suppressing Manganese Dissolution via Exposing Stable {111} Facets for Highâ€Performance Lithiumâ€lon Oxide Cathode (Adv. Sci. 13/2019). Advanced Science, 2019, 6, 1970076.	5.6	14
385	Exploiting Lithiumâ€Depleted Cathode Materials for Solidâ€State Li Metal Batteries. Advanced Energy Materials, 2019, 9, 1901335.	10.2	14
386	Mitigating the Kinetic Hindrance of Singleâ€Crystalline Niâ€Rich Cathode via Surface Gradient Penetration of Tantalum. Angewandte Chemie, 2021, 133, 26739-26743.	1.6	14
387	Selfâ€Healable Solid Polymeric Electrolytes for Stable and Flexible Lithium Metal Batteries. Angewandte Chemie, 2019, 131, 18314-18317.	1.6	13
388	Porous lamellar carbon assembled from Bacillus mycoides as high-performance electrode materials for vanadium redox flow batteries. Journal of Power Sources, 2020, 450, 227633.	4.0	13
389	Minimized Lithium Trapping for High Initial Coulombic Efficiency of Silicon Anodes. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2020, 36, 1912010-0.	2.2	13
390	Hydrogen Isotope Effects on Aqueous Electrolyte for Electrochemical Lithiumâ€Ion Storage. Angewandte Chemie - International Edition, 2022, 61, .	7.2	13
391	A Rational Biphasic Tailoring Strategy Enabling Highâ€Performance Layered Cathodes for Sodiumâ€lon Batteries. Angewandte Chemie, 2022, 134, .	1.6	13
392	A dynamic polyanion framework with anion/cation co-doping for robust Na/Zn-ion batteries. Journal of Power Sources, 2022, 530, 231257.	4.0	13
393	Synthesis of Nanostructured Fibers Consisting of Carbon Coated Mn ₃ O ₄ Nanoparticles and Their Application in Electrochemical Capacitors. Journal of Nanoscience and Nanotechnology, 2010, 10, 8158-8163.	0.9	12
394	Nanostructures and Nanomaterials for Batteries. , 2019, , .		12
395	Raising the capacity of lithium vanadium phosphate via anion and cation co-substitution. Science China Chemistry, 2020, 63, 203-207.	4.2	12
396	Templating preparation of cannular congeries of MnO2 and porous spheres of carbon and their applications to high performance asymmetric supercapacitor and lithium-sulfur battery. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 610, 125740.	2.3	12

#	Article	IF	CITATIONS
397	Constructing a stable interface between the sulfide electrolyte and the Li metal anode <i>via</i> a Li ⁺ -conductive gel polymer interlayer. Materials Chemistry Frontiers, 2021, 5, 5328-5335.	3.2	12
398	Formulating the Electrolyte Towards Highâ€Energy and Safe Rechargeable Lithium–Metal Batteries. Angewandte Chemie, 2021, 133, 16690-16696.	1.6	12
399	Synthesis of Nanostructured SnO2/C Microfibers with Improved Performances as Anode Material for Li-Ion Batteries. Journal of Nanoscience and Nanotechnology, 2012, 12, 2581-2585.	0.9	11
400	Facile Fabrication of Core–Shell Structure Fe3O4@C Nanodots for Enhanced Lithium–Sulfur Batteries. Acta Metallurgica Sinica (English Letters), 2021, 34, 410-416.	1.5	11
401	Insights into the nitride-regulated processes at the electrolyte/electrode interface in quasi-solid-state lithium metal batteries. Journal of Energy Chemistry, 2022, 67, 780-786.	7.1	11
402	A N-Rich porous carbon nanocube anchored with Co/Fe dual atoms: an efficient bifunctional catalytic host for Li–S batteries. Materials Chemistry Frontiers, 2022, 6, 2095-2102.	3.2	11
403	The effects of annealing on the structures and electrical conductivities of fullerene-derived nanowires. Journal of Materials Chemistry, 2004, 14, 914.	6.7	10
404	Preparation of sulfur/multiple pore size porous carbon composite via gas-phase loading method for lithium-sulfur batteries. Electrochimica Acta, 2014, 137, 411-415.	2.6	10
405	Cathode Materials: Enhancing the Kinetics of Liâ€Rich Cathode Materials through the Pinning Effects of Gradient Surface Na ⁺ Doping (Adv. Energy Mater. 6/2016). Advanced Energy Materials, 2016, 6, .	10.2	10
406	Insight into the Interfacial Process and Mechanism in Lithium–Sulfur Batteries: An In Situ AFM Study. Angewandte Chemie, 2016, 128, 16067-16071.	1.6	10
407	Recent progress and design principles of nanocomposite solid electrolytes. Current Opinion in Electrochemistry, 2020, 22, 195-202.	2.5	9
408	Optimization of the electrochemical properties of LiNi0.8Co0.1Mn0.1O2 cathode material by titanium doping. Ionics, 2020, 26, 3223-3230.	1.2	9
409	Synthesis and Electrochemical Properties of a High Capacity Li-rich Cathode Material in molten KCl-Na2CO3 flux. Electrochimica Acta, 2016, 196, 749-755.	2.6	8
410	A compared investigation of different biogum polymer binders for silicon anode of lithium-ion batteries. Ionics, 2021, 27, 1829-1836.	1.2	8
411	Stabilizing the Electrochemistry of Lithium-Selenium Battery via In situ Gelated Polymer Electrolyte: A Look from Anode. Chemical Research in Chinese Universities, 2021, 37, 298-303.	1.3	8
412	The Booming Li Metal Anodes. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2020, .	2.2	8
413	A highly stable pre-lithiated SiO _{<i>x</i>} anode coated with a "salt-in-polymer―layer. Chemical Communications, 2022, 58, 7920-7923.	2.2	8
414	Highâ€Temperature Formation of a Functional Film at the Cathode/Electrolyte Interface in Lithium–Sulfur Batteries: An In Situ AFM Study. Angewandte Chemie, 2017, 129, 14625-14629.	1.6	7

#	Article	IF	CITATIONS
415	Competitive Doping Chemistry for Nickelâ€Rich Layered Oxide Cathode Materials. Angewandte Chemie, 2022, 134, .	1.6	7
416	Layered Oxide Cathodeâ€Electrolyte Interface towards Naâ€Ion Batteries: Advances and Perspectives. Chemistry - an Asian Journal, 2022, 17, e202200213.	1.7	7
417	Porous microspheres consisting of carbon-modified LiFePO4 grains prepared by a spray-drying assisted approach using cellulose as carbon source. Ionics, 2020, 26, 2737-2746.	1.2	6
418	Selective Extraction of Transition Metals from Spent LiNi _{<i>x</i>} Co _y Mn _{1â^'<i>x</i>á^'<i>y</i>} O ₂ Cathode via Regulation of Coordination Environment. Angewandte Chemie, 2022, 134, .	1.6	6
419	O3-Type Na _{2/3} Ni _{1/3} Ti _{2/3} O ₂ Layered Oxide as a Stable and High-Rate Anode Material for Sodium Storage. ACS Applied Materials & Interfaces, 2022, 14, 677-683.	4.0	6
420	Supercapacitor-battery hybrid energy storage devices from an aqueous nitroxide radical active material. Science Bulletin, 2011, 56, 2433-2436.	1.7	5
421	Special topic on electrochemical power sources. Science China Chemistry, 2017, 60, 1481-1482.	4.2	5
422	New Insights into the Mechanism of Enhanced Performance of Li[Ni _{0.8} Co _{0.1} Mn _{0.1}]O ₂ with a Polyacrylic Acid-Modified Binder. ACS Applied Materials & Interfaces, 2021, 13, 10064-10070.	4.0	5
423	Synthesis of Flake-Like MnO ₂ /CNT Composite Nanotubes and Their Applications in Electrochemical Capacitors. Journal of Nanoscience and Nanotechnology, 2011, 11, 1996-2002.	0.9	4
424	Preparation of ZnO Nanostructures by Thermal Degradation of Zinc Alginate Fibers. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2008, 24, 2179-2184.	2.2	4
425	New Insight into High-Rate Performance Lithium-Rich Cathode Synthesis through Controlling the Reaction Pathways by Low-Temperature Intermediates. Industrial & Engineering Chemistry Research, 2022, 61, 453-463.	1.8	4
426	Batteries: A High-Energy Room-Temperature Sodium-Sulfur Battery (Adv. Mater. 8/2014). Advanced Materials, 2014, 26, 1308-1308.	11.1	3
427	Hydrogen Isotope Effects on Aqueous Electrolyte for Electrochemical Lithiumâ€lon Storage. Angewandte Chemie, 0, , .	1.6	3
428	SYNTHESIS AND ELECTROCHEMICAL PROPERTIES OF POLY-[2, 5-DI- N -(2, 2, 6,) Tj ETQq0 0 0 rgBT /C	Overlock 1 0.9	0 Tf 50 227 2
429	Innentitelbild: A Flexible Solid Electrolyte Interphase Layer for Longâ€Life Lithium Metal Anodes (Angew.) Tj ETQq1	1 0.7843 1.6	314 rgBT /0
430	Nanostructures and Nanomaterials for Solid-State Batteries. , 2019, , 215-263.		2
431	Electrochemical Deposition, Characterization and the Study of Giant Magnetoresistance of Cu/Co Superlattice Multilayer. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2003, 19, 892-895.	2.2	2
432	Controlled fabrication of fullerene derivative one-dimensional nanostruc-tures via electrophoretic depo-sition of its clusters. Science Bulletin, 2004, 49, 2021.	1.7	1

#	Article	IF	CITATIONS
433	Microscopic Evidence of a New 9R-AgI Polytype Heterostructure. Journal of Nanoscience and Nanotechnology, 2010, 10, 3341-3345.	0.9	1
434	Batteries: Encapsulation of Sulfur in a Hollow Porous Carbon Substrate for Superior Liâ€5 Batteries with Long Lifespan (Part. Part. Syst. Charact. 4/2013). Particle and Particle Systems Characterization, 2013, 30, 392-392.	1.2	1
435	Nanostructures and Nanomaterials for Sodium Batteries. , 2019, , 265-312.		1
436	Nanostrucutres and Nanomaterials for Lithium-Ion Batteries. , 2019, , 89-158.		1
437	Pt Hollow Nanospheres: Facile Synthesis and Enhanced Electrocatalysts ChemInform, 2004, 35, no.	0.1	0
438	Battery Electrodes: Self-Wound Composite Nanomembranes as Electrode Materials for Lithium Ion Batteries (Adv. Mater. 41/2010). Advanced Materials, 2010, 22, n/a-n/a.	11.1	0
439	Introduction to Electrochemical Energy Storage. , 2019, , 1-28.		0
440	Conclusions and Perspectives on New Opportunities of Nanostrucutres and Nanomaterials in Batteries. , 2019, , 359-379.		0
441	Nanostructures and Nanomaterials for Lithium Metal Batteries. , 2019, , 159-214.		0
442	Traditional Nanostructures and Nanomaterials in Batteries. , 2019, , 313-357.		0
443	Charge Transfer and Storage of an Electrochemical Cell and Its Nano Effects. , 2019, , 29-87.		0
444	Hierarchically Nanostructured Electrode Materials for Lithium-Ion Batteries. , 2011, , 237-266.		0
445	Preparation and Electrochemical Properties of LiMn0.8Fe0.2PO4/C Nanocomposite. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2013, 28, 1248-1254.	0.6	0