
Brandon Lane

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/73352/publications.pdf Version: 2024-02-01

RRANDON LANE

#	Article	IF	CITATIONS
1	Application of finite element, phase-field, and CALPHAD-based methods to additive manufacturing of Ni-based superalloys. Acta Materialia, 2017, 139, 244-253.	3.8	294
2	Effect of Process Parameters on the Surface Roughness of Overhanging Structures in Laser Powder Bed Fusion Additive Manufacturing. Procedia CIRP, 2016, 45, 131-134.	1.0	259
3	Laser powder bed fusion of nickel alloy 625: Experimental investigations of effects of process parameters on melt pool size and shape with spatter analysis. International Journal of Machine Tools and Manufacture, 2017, 121, 22-36.	6.2	200
4	A review on measurement science needs for real-time control of additive manufacturing metal powder bed fusion processes. International Journal of Production Research, 2017, 55, 1400-1418.	4.9	161
5	Thermographic measurements of the commercial laser powder bed fusion process at NIST. Rapid Prototyping Journal, 2016, 22, 778-787.	1.6	129
6	Influence of scan strategy and process parameters on microstructure and its optimization in additively manufactured nickel alloy 625 via laser powder bed fusion. International Journal of Advanced Manufacturing Technology, 2017, 90, 1393-1417.	1.5	119
7	Identifying Uncertainty in Laser Powder Bed Fusion Additive Manufacturing Models. Journal of Mechanical Design, Transactions of the ASME, 2016, 138, .	1.7	60
8	Measurements of Melt Pool Geometry and Cooling Rates of Individual Laser Traces on IN625 Bare Plates. Integrating Materials and Manufacturing Innovation, 2020, 9, 16-30.	1.2	56
9	Diamond tool wear when machining Al6061 and 1215 steel. Wear, 2010, 268, 1434-1441.	1.5	52
10	Outcomes and Conclusions from the 2018 AM-Bench Measurements, Challenge Problems, Modeling Submissions, and Conference. Integrating Materials and Manufacturing Innovation, 2020, 9, 1-15.	1.2	47
11	Infrared thermography for laser-based powder bed fusion additive manufacturing processes. AIP Conference Proceedings, 2014, , .	0.3	46
12	Implementation of Advanced Laser Control Strategies for Powder Bed Fusion Systems. Procedia Manufacturing, 2018, 26, 871-879.	1.9	43
13	Thermo-chemical wear model and worn tool shapes for single-crystal diamond tools cutting steel. Wear, 2013, 300, 216-224.	1.5	39
14	Predictive modeling and optimization of multi-track processing for laser powder bed fusion of nickel alloy 625. Additive Manufacturing, 2017, 13, 14-36.	1.7	39
15	On thermal properties of metallic powder in laser powder bed fusion additive manufacturing. Journal of Manufacturing Processes, 2019, 47, 382-392.	2.8	39
16	Part geometry and conduction-based laser power control for powder bed fusion additive manufacturing. Additive Manufacturing, 2019, 30, 100844.	1.7	34
17	Toward determining melt pool quality metrics via coaxial monitoring in laser powder bed fusion. Manufacturing Letters, 2018, 15, 119-121.	1.1	33
18	In Situ Measurements of Melt-Pool Length and Cooling Rate During 3D Builds of the Metal AM-Bench Artifacts. Integrating Materials and Manufacturing Innovation, 2020, 9, 31-53.	1.2	32

Brandon Lane

#	Article	IF	CITATIONS
19	Process Monitoring Dataset from the Additive Manufacturing Metrology Testbed (AMMT): "Three-Dimensional Scan Strategies― Journal of Research of the National Institute of Standards and Technology, 2019, 124, 1-14.	0.4	26
20	A Combined Experimental-Numerical Method to Evaluate Powder Thermal Properties in Laser Powder Bed Fusion. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2018, 140, .	1.3	22
21	Multiple sensor detection of process phenomena in laser powder bed fusion. Proceedings of SPIE, 2016, 986104, .	0.8	21
22	Numerical Evaluation of Advanced Laser Control Strategies Influence on Residual Stresses for Laser Powder Bed Fusion Systems. Integrating Materials and Manufacturing Innovation, 2020, 9, 435-445.	1.2	20
23	Measurement of process dynamics through coaxially aligned high speed near-infrared imaging in laser powder bed fusion additive manufacturing. Proceedings of SPIE, 2017, , .	0.8	19
24	Transient Laser Energy Absorption, Co-axial Melt Pool Monitoring, and Relationship to Melt Pool Morphology. Additive Manufacturing, 2020, 36, 101504.	1.7	13
25	Process Monitoring Dataset from the Additive Manufacturing Metrology Testbed (AMMT): Overhang Part X4. Journal of Research of the National Institute of Standards and Technology, 2020, 125, .	0.4	11
26	Development of computational framework for titanium alloy phase transformation prediction in laser powder-bed fusion additive manufacturing. Materialia, 2020, 14, 100934.	1.3	10
27	In Situ Thermography of the Metal Bridge Structures Fabricated for the 2018 Additive Manufacturing Benchmark Test Series (AM-Bench 2018). Journal of Research of the National Institute of Standards and Technology, 2020, 125, .	0.4	9
28	Optical design and initial results from NIST's AMMT/TEMPS facility. Proceedings of SPIE, 2016, 9738, .	0.8	8
29	In-situ calibration of laser/galvo scanning system using dimensional reference artefacts. CIRP Annals - Manufacturing Technology, 2020, 69, 441-444.	1.7	8
30	Topographic Measurement of Individual Laser Tracks in Alloy 625 Bare Plates. Integrating Materials and Manufacturing Innovation, 2019, 8, 521-536.	1.2	7
31	Accurate determination of laser spot position during laser powder bed fusion process thermography. Manufacturing Letters, 2020, 23, 49-52.	1.1	7
32	Measurement Uncertainty of Surface Temperature Distributions for Laser Powder Bed Fusion Processes. Journal of Research of the National Institute of Standards and Technology, 2021, 126, .	0.4	4
33	Accurate determination of laser spot position during laser powder bed fusion process thermography. Manufacturing Letters, 2020, 23, .	1.1	2
34	X-ray Computed Tomography Data ofAdditive Manufacturing Metrology Testbed (AMMT) Parts: "Overhang Part X4â€: Journal of Research of the National Institute of Standards and Technology, 2020, 125, .	0.4	1
35	On thermal properties of metallic powder in laser powder bed fusion additive manufacturing. Journal of Manufacturing Processes, 2019, 47, .	2.8	1
36	Assessing the use of an infrared spectrum hyperpixel array imager to measure temperature during additive and subtractive manufacturing. Proceedings of SPIE, 2016, 9861, .	0.8	0

0

Powder thermal conductivity measurements in laser powder-bed fusion: an uncertainty study with 1.4 0 sensitivity analysis. Measurement Science and Technology, 2021, 32, 055007.	#	Article	IF	CITATIONS
	37	Powder thermal conductivity measurements in laser powder-bed fusion: an uncertainty study with sensitivity analysis. Measurement Science and Technology, 2021, 32, 055007.	1.4	0

38 A Combined Experimental-Numerical Method to Evaluate Powder Thermal Properties in Laser Powder Bed Fusion. , 2018, , .

4