Randall C O reilly

List of Publications by Citations

Source: https://exaly.com/author-pdf/7335040/randall-c-oreilly-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

97	15,893	52	118
papers	citations	h-index	g-index
118 ext. papers	17,826 ext. citations	5.7 avg, IF	6.86 L-index

#	Paper	IF	Citations
97	Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. <i>Psychological Review</i> , 1995 , 102, 419-457	6.3	3699
96	By carrot or by stick: cognitive reinforcement learning in parkinsonism. <i>Science</i> , 2004 , 306, 1940-3	33.3	1442
95	Modeling hippocampal and neocortical contributions to recognition memory: a complementary-learning-systems approach. <i>Psychological Review</i> , 2003 , 110, 611-46	6.3	888
94	Hippocampal conjunctive encoding, storage, and recall: avoiding a trade-off. <i>Hippocampus</i> , 1994 , 4, 661	- 8 2 5	685
93	Conjunctive representations in learning and memory: principles of cortical and hippocampal function. <i>Psychological Review</i> , 2001 , 108, 311-45	6.3	683
92	Making working memory work: a computational model of learning in the prefrontal cortex and basal ganglia. <i>Neural Computation</i> , 2006 , 18, 283-328	2.9	673
91	A unified framework for inhibitory control. <i>Trends in Cognitive Sciences</i> , 2011 , 15, 453-9	14	395
90	Computational Explorations in Cognitive Neuroscience 2000,		360
89	A mechanistic account of striatal dopamine function in human cognition: psychopharmacological studies with cabergoline and haloperidol. <i>Behavioral Neuroscience</i> , 2006 , 120, 497-517	2.1	337
88	Hippocampal and neocortical contributions to memory: advances in the complementary learning systems framework. <i>Trends in Cognitive Sciences</i> , 2002 , 6, 505-510	14	337
87	Dissociated overt and covert recognition as an emergent property of a lesioned neural network. <i>Psychological Review</i> , 1993 , 100, 571-88	6.3	330
86	Biologically based computational models of high-level cognition. <i>Science</i> , 2006 , 314, 91-4	33.3	324
85	Prefrontal cortex and flexible cognitive control: rules without symbols. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2005 , 102, 7338-43	11.5	302
84	Towards an executive without a homunculus: computational models of the prefrontal cortex/basal ganglia system. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2007 , 362, 1601-13	5.8	285
83	Anorexia nervosa and obesity are associated with opposite brain reward response. Neuropsychopharmacology, 2012 , 37, 2031-46	8.7	239
82	Biologically Plausible Error-Driven Learning Using Local Activation Differences: The Generalized Recirculation Algorithm. <i>Neural Computation</i> , 1996 , 8, 895-938	2.9	232
81	Six principles for biologically based computational models of cortical cognition. <i>Trends in Cognitive Sciences</i> , 1998 , 2, 455-62	14	222

(2012-1999)

80	Contextual fear conditioning, conjunctive representations, pattern completion, and the hippocampus <i>Behavioral Neuroscience</i> , 1999 , 113, 867-880	2.1	217
79	Hippocampal formation supports conditioning to memory of a context <i>Behavioral Neuroscience</i> , 2002 , 116, 530-538	2.1	211
78	Separate neural substrates for skill learning and performance in the ventral and dorsal striatum. <i>Nature Neuroscience</i> , 2007 , 10, 126-31	25.5	199
77	The What and How of prefrontal cortical organization. <i>Trends in Neurosciences</i> , 2010 , 33, 355-61	13.3	180
76	Testing computational models of dopamine and noradrenaline dysfunction in attention deficit/hyperactivity disorder. <i>Neuropsychopharmacology</i> , 2007 , 32, 1583-99	8.7	161
<i>75</i>	Prefrontal cortex and dynamic categorization tasks: representational organization and neuromodulatory control. <i>Cerebral Cortex</i> , 2002 , 12, 246-57	5.1	159
74	Hippocampus, cortex, and basal ganglia: insights from computational models of complementary learning systems. <i>Neurobiology of Learning and Memory</i> , 2004 , 82, 253-67	3.1	142
73	Transitivity, flexibility, conjunctive representations, and the hippocampus. II. A computational analysis. <i>Hippocampus</i> , 2003 , 13, 341-54	3.5	128
72	Computational principles of learning in the neocortex and hippocampus. <i>Hippocampus</i> , 2000 , 10, 389-9	7 3.5	127
71	Regional specialization within the human striatum for diverse psychological functions. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 1907-12	11.5	125
70	When memory fails, intuition reigns: midazolam enhances implicit inference in humans. <i>Psychological Science</i> , 2006 , 17, 700-7	7.9	116
69	Hippocampal formation supports conditioning to memory of a context. <i>Behavioral Neuroscience</i> , 2002 , 116, 530-8	2.1	109
68	Complementary learning systems. <i>Cognitive Science</i> , 2014 , 38, 1229-48	2.2	104
67	Memory for context is impaired by injecting anisomycin into dorsal hippocampus following context exploration. <i>Behavioural Brain Research</i> , 2002 , 134, 299-306	3.4	104
66	A Biologically Based Computational Model of Working Memory 1999 , 375-411		101
65	Contextual fear conditioning, conjunctive representations, pattern completion, and the hippocampus. <i>Behavioral Neuroscience</i> , 1999 , 113, 867-80	2.1	101
64	Neural mechanisms of cognitive control: an integrative model of stroop task performance and FMRI data. <i>Journal of Cognitive Neuroscience</i> , 2006 , 18, 22-32	3.1	91
63	The limits of feedforward vision: recurrent processing promotes robust object recognition when objects are degraded. <i>Journal of Cognitive Neuroscience</i> , 2012 , 24, 2248-61	3.1	90

62	SAL: an explicitly pluralistic cognitive architecture. <i>Journal of Experimental and Theoretical Artificial Intelligence</i> , 2008 , 20, 197-218	2	90
61	When logic fails: implicit transitive inference in humans. <i>Memory and Cognition</i> , 2005 , 33, 742-50	2.2	89
60	Figure-ground organization and object recognition processes: An interactive account <i>Journal of Experimental Psychology: Human Perception and Performance</i> , 1998 , 24, 441-462	2.6	86
59	Altered temporal difference learning in bulimia nervosa. <i>Biological Psychiatry</i> , 2011 , 70, 728-735	7.9	85
58	Neural mechanisms of acquired phasic dopamine responses in learning. <i>Neuroscience and Biobehavioral Reviews</i> , 2010 , 34, 701-20	9	83
57	PVLV: the primary value and learned value Pavlovian learning algorithm. <i>Behavioral Neuroscience</i> , 2007 , 121, 31-49	2.1	81
56	Recurrent Processing during Object Recognition. Frontiers in Psychology, 2013, 4, 124	3.4	77
55	A neural network model of individual differences in task switching abilities. <i>Neuropsychologia</i> , 2014 , 62, 375-89	3.2	74
54	Transitivity, flexibility, conjunctive representations, and the hippocampus. I. An empirical analysis. <i>Hippocampus</i> , 2003 , 13, 334-40	3.5	73
53	Generalization in interactive networks: the benefits of inhibitory competition and Hebbian learning. <i>Neural Computation</i> , 2001 , 13, 1199-241	2.9	73
52	Indirection and symbol-like processing in the prefrontal cortex and basal ganglia. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 16390-5	11.5	72
51	Computational models of cognitive control. Current Opinion in Neurobiology, 2010, 20, 257-61	7.6	69
50	Thalamic pathways underlying prefrontal cortex-medial temporal lobe oscillatory interactions. <i>Trends in Neurosciences</i> , 2015 , 38, 3-12	13.3	68
49	Neural inhibition enables selection during language processing. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 16483-8	11.5	65
48	Object Recognition and Sensitive Periods: A Computational Analysis of Visual Imprinting. <i>Neural Computation</i> , 1994 , 6, 357-389	2.9	58
47	Prefrontal cortex and the organization of recent and remote memories: an alternative view. <i>Learning and Memory</i> , 2005 , 12, 445-6	2.8	55
46	SIMULATION AND EXPLANATION IN NEUROPSYCHOLOGY AND BEYOND. <i>Cognitive Neuropsychology</i> , 1999 , 16, 49-72	2.3	53
45	Early recurrent feedback facilitates visual object recognition under challenging conditions. <i>Frontiers in Psychology</i> , 2014 , 5, 674	3.4	52

(2014-2012)

44	The function and organization of lateral prefrontal cortex: a test of competing hypotheses. <i>PLoS ONE</i> , 2012 , 7, e30284	3.7	50
43	Developing PFC representations using reinforcement learning. <i>Cognition</i> , 2009 , 113, 281-292	3.5	50
42	Persistence and accommodation in short-term priming and other perceptual paradigms: temporal segregation through synaptic depression. <i>Cognitive Science</i> , 2003 , 27, 403-430	2.2	49
41	Visual representation in the wild: how rhesus monkeys parse objects. <i>Journal of Cognitive Neuroscience</i> , 2001 , 13, 44-58	3.1	47
40	Distinct contributions of the caudate nucleus, rostral prefrontal cortex, and parietal cortex to the execution of instructed tasks. <i>Cognitive, Affective and Behavioral Neuroscience</i> , 2012 , 12, 611-28	3.5	42
39	Figure-ground organization and object recognition processes: an interactive account. <i>Journal of Experimental Psychology: Human Perception and Performance</i> , 1998 , 24, 441-62	2.6	40
38	Inhibiting PKMI reveals dorsal lateral and dorsal medial striatum store the different memories needed to support adaptive behavior. <i>Learning and Memory</i> , 2012 , 19, 307-14	2.8	39
37	Theta coordinated error-driven learning in the hippocampus. <i>PLoS Computational Biology</i> , 2013 , 9, e100	39067	35
36	Learning representations in a gated prefrontal cortex model of dynamic task switching. <i>Cognitive Science</i> , 2002 , 26, 503-520	2.2	30
35	Prediction error and somatosensory insula activation in women recovered from anorexia nervosa. Journal of Psychiatry and Neuroscience, 2016, 41, 304-11	4.5	30
34	The dynamics of integration and separation: ERP, MEG, and neural network studies of immediate repetition effects. <i>Journal of Experimental Psychology: Human Perception and Performance</i> , 2008 , 34, 1389-416	2.6	29
33	Attentional control of associative learninga possible role of the central cholinergic system. <i>Brain Research</i> , 2008 , 1202, 43-53	3.7	26
32	Expectancy, ambiguity, and behavioral flexibility: separable and complementary roles of the orbital frontal cortex and amygdala in processing reward expectancies. <i>Journal of Cognitive Neuroscience</i> , 2012 , 24, 351-66	3.1	22
31	Graded effects in hierarchical figure-ground organization: Reply to Peterson (1999) <i>Journal of Experimental Psychology: Human Perception and Performance</i> , 2000 , 26, 1221-1231	2.6	22
30	Receptive field characteristics that allow parietal lobe neurons to encode spatial properties of visual input: a computational analysis. <i>Journal of Cognitive Neuroscience</i> , 1990 , 2, 141-55	3.1	16
29	The Role of Competitive Inhibition and Top-Down Feedback in Binding during Object Recognition. <i>Frontiers in Psychology</i> , 2012 , 3, 182	3.4	15
28	Assembling old tricks for new tasks: a neural model of instructional learning and control. <i>Journal of Cognitive Neuroscience</i> , 2013 , 25, 843-51	3.1	15
27	A continuous-time neural model for sequential action. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2014 , 369,	5.8	12

26	Serial visual search from a parallel model. Vision Research, 2005, 45, 2987-92	2.1	12
25	Strategic cognitive sequencing: a computational cognitive neuroscience approach. <i>Computational Intelligence and Neuroscience</i> , 2013 , 2013, 149329	3	11
24	Persistence and accommodation in short-term priming and other perceptual paradigms: temporal segregation through synaptic depression 2003 , 27, 403		11
23	The role of the dorsal striatum and dorsal hippocampus in probabilistic and deterministic odor discrimination tasks. <i>Learning and Memory</i> , 2008 , 15, 294-8	2.8	10
22	Learning representations in a gated prefrontal cortex model of dynamic task switching 2002 , 26, 503		10
21	Latent structure in random sequences drives neural learning toward a rational bias. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 3788-92	11.5	9
20	Unraveling the Mysteries of Motivation. <i>Trends in Cognitive Sciences</i> , 2020 , 24, 425-434	14	7
19	A systems-neuroscience model of phasic dopamine. <i>Psychological Review</i> , 2020 , 127, 972-1021	6.3	6
18	The Leabra Cognitive Architecture 2015 ,		5
17	How Limited Systematicity Emerges 2014 , 191-226		5
16			
	Deep Predictive Learning in Neocortex and Pulvinar. Journal of Cognitive Neuroscience, 2021, 33, 1158-	1 13916	5
15	Deep Predictive Learning in Neocortex and Pulvinar. <i>Journal of Cognitive Neuroscience</i> , 2021 , 33, 1158- How the credit assignment problems in motor control could be solved after the cerebellum predicts increases in error. <i>Frontiers in Computational Neuroscience</i> , 2015 , 9, 39	1 396 3.5	5
15 14	How the credit assignment problems in motor control could be solved after the cerebellum		543
	How the credit assignment problems in motor control could be solved after the cerebellum predicts increases in error. <i>Frontiers in Computational Neuroscience</i> , 2015 , 9, 39 How Sequential Interactive Processing Within Frontostriatal Loops Supports a Continuum of	3.5	4
14	How the credit assignment problems in motor control could be solved after the cerebellum predicts increases in error. <i>Frontiers in Computational Neuroscience</i> , 2015 , 9, 39 How Sequential Interactive Processing Within Frontostriatal Loops Supports a Continuum of Habitual to Controlled Processing. <i>Frontiers in Psychology</i> , 2020 , 11, 380	3·5 3·4 7·9	3
14	How the credit assignment problems in motor control could be solved after the cerebellum predicts increases in error. <i>Frontiers in Computational Neuroscience</i> , 2015 , 9, 39 How Sequential Interactive Processing Within Frontostriatal Loops Supports a Continuum of Habitual to Controlled Processing. <i>Frontiers in Psychology</i> , 2020 , 11, 380 Individual differences in cognitive flexibility. <i>Biological Psychiatry</i> , 2013 , 74, 78-9	3·5 3·4 7·9	3
14 13 12	How the credit assignment problems in motor control could be solved after the cerebellum predicts increases in error. <i>Frontiers in Computational Neuroscience</i> , 2015 , 9, 39 How Sequential Interactive Processing Within Frontostriatal Loops Supports a Continuum of Habitual to Controlled Processing. <i>Frontiers in Psychology</i> , 2020 , 11, 380 Individual differences in cognitive flexibility. <i>Biological Psychiatry</i> , 2013 , 74, 78-9 The Leabra architecture: Specialization without modularity. <i>Behavioral and Brain Sciences</i> , 2010 , 33, 286	3.5 3.4 7.9	3 3

LIST OF PUBLICATIONS

8	Integrating theories of motor sequencing in the SAL hybrid architecture. <i>Biologically Inspired Cognitive Architectures</i> , 2014 , 8, 100-108	1	
7	Beyond red states and blue states in cognitive science. <i>Journal of Experimental and Theoretical Artificial Intelligence</i> , 2008 , 20, 265-268	1	
6	Psychological Function in Computational Models of Neural Networks637	1	
5	The Structure of Systematicity in the Brain. <i>Current Directions in Psychological Science</i> , 2022 , 31, 124-1306.5	1	
4	Effects of retrieval practice on tested and untested information: Cortico-hippocampal interactions and error-driven learning. <i>Psychology of Learning and Motivation - Advances in Research and Theory</i> , 2021 , 125-155	Ο	
3	Reply to Aksentijevic: It is a matter of what is countable and how neurons learn. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, E3160		
2	Complementary Structure-Learning Neural Networks for Relational Reasoning 2021 , 2021, 1560-1566		