Christopher Dede

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7334944/publications.pdf

Version: 2024-02-01

331670 276875 4,758 49 21 citations h-index g-index papers

49 49 49 3237 docs citations times ranked citing authors all docs

41

#	Article	IF	CITATIONS
1	Interaction principles for digital puppeteering to promote teacher learning. Journal of Research on Technology in Education, 2021, 53, 107-123.	6.5	11
2	Assessing computational thinking through the lenses of functionality and computational fluency. Computer Science Education, 2021, 31, 199-223.	3.7	5
3	Artificial Intelligence and Technology in Teaching Negotiation. Negotiation Journal, 2021, 37, 65-82.	0.5	9
4	Analyzing student thinking reflected in self-constructed cognitive maps and its influence on inquiry task performance. Instructional Science, 2021, 49, 287.	2.0	6
5	Assessing Science Identity Exploration in Immersive Virtual Environments: A Mixed Methods Approach. Journal of Experimental Education, 2021, 89, 468-489.	2.6	7
6	When Do Students in Low-SES Schools Perform Better-Than-Expected on a High-Stakes Test? Analyzing School, Teacher, Teaching, and Professional Development Characteristics. Urban Education, 2020, 55, 1280-1314.	1.8	13
7	Online Learning and Residents' Acquisition of Mechanical Ventilation Knowledge: Sequencing Matters. Critical Care Medicine, 2020, 48, e1-e8.	0.9	7
8	From the Inside Out: Teacher Responses to the AP Curriculum Redesign. Journal of Science Teacher Education, 2020, 31, 208-225.	2.5	2
9	Culture and vision in virtual reality narratives. Foreign Language Annals, 2020, 53, 733-760.	1.0	5
10	Identifying Levers Related to Student Performance on High-Stakes Science Exams: Examining School, Teaching, Teacher, and Professional Development Characteristics. Teachers College Record, 2020, 122, 1-64.	0.9	6
11	Scaffolding ecosystems science practice by blending immersive environments and computational modeling. British Journal of Educational Technology, 2019, 50, 2181-2202.	6.3	13
12	Differences in Student Trajectories via Filtered Time Series Analysis in an Immersive Virtual World., 2019,,.		5
13	Adapting to large-scale changes in Advanced Placement Biology, Chemistry, and Physics: the impact of online teacher communities. International Journal of Science Education, 2018, 40, 397-420.	1.9	22
14	Using a threeâ€dimensional thinking graph to support inquiry learning. Journal of Research in Science Teaching, 2018, 55, 1239-1263.	3.3	32
15	Investigating relationships between school context, teacher professional development, teaching practices, and student achievement in response to a nationwide science reform. Teaching and Teacher Education, 2018, 72, 107-121.	3.2	79
16	Supports for deeper learning of inquiry-based ecosystem science in virtual environments - Comparing virtual and physical concept mapping. Computers in Human Behavior, 2018, 87, 459-469.	8.5	24
17	Technology-rich activities: One type does not motivate all. Contemporary Educational Psychology, 2018, 54, 153-170.	2.9	12
18	Using Mobile Locationâ€Based Augmented Reality to Support Outdoor Learning in Undergraduate Ecology and Environmental Science Courses. Bulletin of the Ecological Society of America, 2018, 99, 259-276.	0.2	29

#	Article	IF	CITATIONS
19	Using Digital Resources for Motivation and Engagement in Learning Mathematics: Reflections from Teachers and Students. Digital Experiences in Mathematics Education, 2016, 2, 253-277.	1.5	23
20	A multi-user virtual environment to support students' self-efficacy and interest in science: A latent growth model analysis. Learning and Instruction, 2016, 41, 11-22.	3.2	60
21	Many ways to walk a mile in another's moccasins: Type of social perspective taking and its effect on negotiation outcomes. Computers in Human Behavior, 2015, 52, 523-532.	8.5	51
22	Exploring Ecosystems from the Inside: How Immersive Multi-user Virtual Environments Can Support Development of Epistemologically Grounded Modeling Practices in Ecosystem Science Instruction. Journal of Science Education and Technology, 2015, 24, 148-167.	3.9	27
23	Shifts in Student Motivation during Usage of a Multi-User Virtual Environment for Ecosystem Science. International Journal of Virtual and Personal Learning Environments, 2014, 5, 1-16.	0.6	9
24	Situated Learning in Virtual Worlds and Immersive Simulations. , 2014, , 723-734.		100
25	EcoMOBILE: Integrating augmented reality and probeware with environmental education field trips. Computers and Education, 2013, 68, 545-556.	8.3	357
26	Learning to Reason about Ecosystems Dynamics over Time: The Challenges of an Event-Based Causal Focus. BioScience, 2013, 63, 288-296.	4.9	42
27	Teacher Perceptions of the Practicality and Effectiveness of Immersive Ecological Simulations as Classroom Curricula. International Journal of Virtual and Personal Learning Environments, 2013, 4, 66-77.	0.6	15
28	A multiâ€user virtual environment for building and assessing higher order inquiry skills in science. British Journal of Educational Technology, 2010, 41, 56-68.	6.3	156
29	Assessment, Technology, and Change. Journal of Research on Technology in Education, 2010, 42, 309-328.	6.5	121
30	<i>Comments on Greenhow, Robelia, and Hughes: Knowledge and Possibly Wisdom. Educational Researcher, 2009, 38, 260-263.</i>	5.4	38
31	Immersive Interfaces for Engagement and Learning. Science, 2009, 323, 66-69.	12.6	1,016
32	Affordances and Limitations of Immersive Participatory Augmented Reality Simulations for Teaching and Learning. Journal of Science Education and Technology, 2009, 18, 7-22.	3.9	953
33	Design for Scalability: A Case Study of the River City Curriculum. Journal of Science Education and Technology, 2009, 18, 353-365.	3.9	101
34	Emerging Technologies for Learning Science: A Time of Rapid Advances. Journal of Science Education and Technology, 2009, 18, 301-304.	3.9	51
35	A Research Agenda for Online Teacher Professional Development. Journal of Teacher Education, 2009, 60, 8-19.	3.5	400
36	"Neomillennial" Learning Styles Propagated by Wireless Handheld Devices., 2009,, 626-650.		3

#	Article	IF	CITATIONS
37	Designing a Distributed Learning Experience. , 2009, , 548-554.		1
38	Games and Immersive Participatory Simulations for Science Education: An Emerging Type of Curricula. Journal of Science Education and Technology, 2007, 16, 1-3.	3.9	131
39	"Neomillennial" Learning Styles Propagated by Wireless Handheld Devices. , 2007, , 35-66.		24
40	Reinventing the Role of Information and Communications Technologies in Education. Teachers College Record, 2007, 109, 11-38.	0.9	3
41	Designing a Distributed Learning Experience. , 2005, , 518-524.		0
42	Model-Based Teaching and Learning with BioLogicaâ, ¢: What Do They Learn? How Do They Learn? How Do We Know?. Journal of Science Education and Technology, 2004, 13, 23-41.	3.9	100
43	Emerging influences of information technology on school curriculum. Journal of Curriculum Studies, 2000, 32, 281-303.	2.1	137
44	A Model for Understanding How Virtual Reality Aids Complex Conceptual Learning. Presence: Teleoperators and Virtual Environments, 1999, 8, 293-316.	0.6	218
45	Emerging Technologies in Distance Education for Business. Journal of Education for Business, 1996, 71, 197-204.	1.6	23
46	The evolution of distance education: Emerging technologies and distributed learning. American Journal of Distance Education, 1996, 10, 4-36.	1.5	310
47	The Long-Term Evolution of Effective Schools. Educational Forum, 1987, 51, 65-79.	1.8	1
48	Future survey annual 1981–82. Futures, 1983, 15, 419-420.	2.5	0
49	Changing Images of man. Futures, 1982, 14, 568-569.	2.5	O