Wei Zhou

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/7334878/wei-zhou-publications-by-year.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

708	41,523	100	169
papers	citations	h-index	g-index
734	49,994 ext. citations	10.7	8.23
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
708	Rational Design of a High-Durability Pt-Based ORR Catalyst Supported on Mn/N Codoped Carbon Sheets for PEMFCs. <i>Energy & Design</i> 2022, 36, 1707-1715	4.1	5
707	A low resistance and stable lithium-garnet electrolyte interface enabled by a multifunctional anode additive for solid-state lithium batteries. <i>Journal of Materials Chemistry A</i> , 2022 , 10, 2519-2527	13	6
706	Superstructures with Atomic-Level Arranged Perovskite and Oxide Layers for Advanced Oxidation with an Enhanced Non-Free Radical Pathway. <i>ACS Sustainable Chemistry and Engineering</i> , 2022 , 10, 1899	- ⁸ 909	8
705	Rational design of ZnO-zeolite imidazole hybrid nanoparticles with reduced charge recombination for enhanced photocatalysis <i>Journal of Colloid and Interface Science</i> , 2022 , 614, 538-546	9.3	3
704	Cobalt nanoparticles encapsulated in iron and nitrogen co-doped urchin-like porous carbons as an efficient bifunctional oxygen reversible catalyst for Zn-air batteries. <i>Chemical Engineering Journal</i> , 2022 , 436, 135191	14.7	1
703	Microscale-decoupled charge-discharge reaction sites for an air electrode with abundant triple-phase boundary and enhanced cycle stability of Zn-Air batteries. <i>Journal of Power Sources</i> , 2022 , 525, 231108	8.9	0
702	SrCo0.4Fe0.4Zr0.1Y0.1O3-∏A new CO2 tolerant cathode for proton-conducting solid oxide fuel cells. <i>Renewable Energy</i> , 2022 , 185, 8-16	8.1	1
701	Towards practically accessible aprotic Li-air batteries: Progress and challenges related to oxygen-permeable membranes and cathodes. <i>Energy Storage Materials</i> , 2022 , 45, 869-902	19.4	8
700	Maximizing acetylene packing density for highly efficient C2H2/CO2 separation through immobilization of amine sites within a prototype MOF. <i>Chemical Engineering Journal</i> , 2022 , 431, 134184	14.7	7
699	Sodium fluoride sacrificing layer concept enables high-efficiency and stable methylammonium lead iodide perovskite solar cells. <i>Journal of Materials Science and Technology</i> , 2022 , 113, 138-146	9.1	4
698	Microwave plasma rapid heating towards robust cathode/electrolyte interface for solid oxide fuel cells. <i>Journal of Colloid and Interface Science</i> , 2022 , 607, 53-60	9.3	1
697	A simple strategy that may effectively tackle the anode-electrolyte interface issues in solid-state lithium metal batteries. <i>Chemical Engineering Journal</i> , 2022 , 427, 131001	14.7	11
696	Intrinsic vacancy suppression and band convergence to enhance thermoelectric performance of (Ge, Bi, Sb)Te crystals. <i>Chemical Engineering Journal</i> , 2022 , 429, 132275	14.7	5
695	Single-atom catalysts for high-efficiency photocatalytic and photoelectrochemical water splitting: distinctive roles, unique fabrication methods and specific design strategies. <i>Journal of Materials Chemistry A</i> , 2022 , 10, 6835-6871	13	6
694	New Undisputed Evidence and Strategy for Enhanced Lattice-Oxygen Participation of Perovskite Electrocatalyst through Cation Deficiency Manipulation <i>Advanced Science</i> , 2022 , e2200530	13.6	15
693	A universal chemical-induced tensile strain tuning strategy to boost oxygen-evolving electrocatalysis on perovskite oxides. <i>Applied Physics Reviews</i> , 2022 , 9, 011422	17.3	6
692	Hydrogen spillover in complex oxide multifunctional sites improves acidic hydrogen evolution electrocatalysis <i>Nature Communications</i> , 2022 , 13, 1189	17.4	12

(2021-2022)

691	Realizing Simultaneous Detrimental Reactions Suppression and Multiple Benefits Generation from Nickel Doping toward Improved Protonic Ceramic Fuel Cell Performance <i>Small</i> , 2022 , e2200450	11	3
690	Ternary BaCaZrTi Perovskite Oxide Piezocatalysts Dancing for Efficient Hydrogen Peroxide Generation. <i>Nano Energy</i> , 2022 , 107251	17.1	1
689	Low thermal-expansion and high proton uptake for protonic ceramic fuel cell cathode. <i>Journal of Power Sources</i> , 2022 , 530, 231321	8.9	2
688	Engineering anion defect in perovskite oxyfluoride cathodes enables proton involved oxygen reduction reaction for protonic ceramic fuel cells. <i>Separation and Purification Technology</i> , 2022 , 290, 120	0 ⁸ 24	1
687	Realizing Interfacial Electron/Hole Redistribution and Superhydrophilic Surface through Building Heterostructural 2[hm Co Se-NiSe Nanograins for Efficient Overall Water Splittings <i>Small Methods</i> , 2022 , e2200459	12.8	2
686	Realizing robust and efficient acidic oxygen evolution by electronic modulation of 0D/2D CeO2 quantum dots decorated SrIrO3 nanosheets. <i>Applied Catalysis B: Environmental</i> , 2022 , 315, 121579	21.8	2
685	A New Durable Surface Nanoparticles-Modified Perovskite Cathode for Protonic Ceramic Fuel Cells from Selective Cation Exsolution under Oxidizing Atmosphere <i>Advanced Materials</i> , 2021 , e2106379	24	13
684	Modulating metalBrganic frameworks for catalyzing acidic oxygen evolution for proton exchange membrane water electrolysis. <i>SusMat</i> , 2021 , 1, 460-481		12
683	Stabilizing Li Anodes in I Steam to Tackle the Shuttling-Induced Depletion of an Iodide/Triiodide Redox Mediator in Li-O Batteries with Suppressed Li Dendrite Growth. <i>ACS Applied Materials & Interfaces</i> , 2021 , 13, 53859-53867	9.5	2
682	Electrochemistry and energy conversion features of protonic ceramic cells with mixed		
002	ionic-electronic electrolytes. Energy and Environmental Science, 2021,	35.4	10
681		35·4 6. ₇	2
	ionic-electronic electrolytes. <i>Energy and Environmental Science</i> , 2021 , Recent progresses and remaining issues on the ultrathin catalyst layer design strategy for high-performance proton exchange membrane fuel cell with further reduced Pt loadings: A review.		
681	ionic-electronic electrolytes. Energy and Environmental Science, 2021, Recent progresses and remaining issues on the ultrathin catalyst layer design strategy for high-performance proton exchange membrane fuel cell with further reduced Pt loadings: A review. International Journal of Hydrogen Energy, 2021, 47, 1529-1529 Enhancing the photocatalytic activity of Ruddlesden-Popper Sr2TiO4 for hydrogen evolution through synergistic silver doping and moderate reducing pretreatment. Materials Today Energy,	6.7	2
681 680	ionic-electronic electrolytes. Energy and Environmental Science, 2021, Recent progresses and remaining issues on the ultrathin catalyst layer design strategy for high-performance proton exchange membrane fuel cell with further reduced Pt loadings: A review. International Journal of Hydrogen Energy, 2021, 47, 1529-1529 Enhancing the photocatalytic activity of Ruddlesden-Popper Sr2TiO4 for hydrogen evolution through synergistic silver doping and moderate reducing pretreatment. Materials Today Energy, 2021, 23, 100899 A Controllable Dual Interface Engineering Concept for Rational Design of Efficient Bifunctional	6. ₇	9
681 680 679	ionic-electronic electrolytes. <i>Energy and Environmental Science</i> , 2021 , Recent progresses and remaining issues on the ultrathin catalyst layer design strategy for high-performance proton exchange membrane fuel cell with further reduced Pt loadings: A review. <i>International Journal of Hydrogen Energy</i> , 2021 , 47, 1529-1529 Enhancing the photocatalytic activity of Ruddlesden-Popper Sr2TiO4 for hydrogen evolution through synergistic silver doping and moderate reducing pretreatment. <i>Materials Today Energy</i> , 2021 , 23, 100899 A Controllable Dual Interface Engineering Concept for Rational Design of Efficient Bifunctional Electrocatalyst for Zinc-Air Batteries. <i>Small</i> , 2021 , e2105604 Non-metal fluorine doping in Ruddlesden-Popper perovskite oxide enables high-efficiency	6.7	2 9 0
681 680 679 678	ionic-electronic electrolytes. Energy and Environmental Science, 2021, Recent progresses and remaining issues on the ultrathin catalyst layer design strategy for high-performance proton exchange membrane fuel cell with further reduced Pt loadings: A review. International Journal of Hydrogen Energy, 2021, 47, 1529-1529 Enhancing the photocatalytic activity of Ruddlesden-Popper Sr2TiO4 for hydrogen evolution through synergistic silver doping and moderate reducing pretreatment. Materials Today Energy, 2021, 23, 100899 A Controllable Dual Interface Engineering Concept for Rational Design of Efficient Bifunctional Electrocatalyst for Zinc-Air Batteries. Small, 2021, e2105604 Non-metal fluorine doping in Ruddlesden-Popper perovskite oxide enables high-efficiency photocatalytic water splitting for hydrogen production. Materials Today Energy, 2021, 100896 Benefitting from Synergistic Effect of Anion and Cation in Antimony Acetate for Stable CH NH PbI	6.7 7 11 7	2 9 0
681 680 679 678	ionic-electronic electrolytes. Energy and Environmental Science, 2021, Recent progresses and remaining issues on the ultrathin catalyst layer design strategy for high-performance proton exchange membrane fuel cell with further reduced Pt loadings: A review. International Journal of Hydrogen Energy, 2021, 47, 1529-1529 Enhancing the photocatalytic activity of Ruddlesden-Popper Sr2TiO4 for hydrogen evolution through synergistic silver doping and moderate reducing pretreatment. Materials Today Energy, 2021, 23, 100899 A Controllable Dual Interface Engineering Concept for Rational Design of Efficient Bifunctional Electrocatalyst for Zinc-Air Batteries. Small, 2021, e2105604 Non-metal fluorine doping in Ruddlesden-Popper perovskite oxide enables high-efficiency photocatalytic water splitting for hydrogen production. Materials Today Energy, 2021, 100896 Benefitting from Synergistic Effect of Anion and Cation in Antimony Acetate for Stable CH NH PbI -Based Perovskite Solar Cell with Efficiency Beyond 21. Small, 2021, 17, e2102186 First investigation of additive engineering for highly efficient Cs2AgBiBr6-based lead-free inorganic	6.7 7 11 7 11 17.3	2 9 0 10

673	Progress on X-ray Absorption Spectroscopy for the Characterization of Perovskite-Type Oxide Electrocatalysts. <i>Energy & Description</i> 2021, 35, 5716-5737	4.1	13
672	A New Pd Doped Proton Conducting Perovskite Oxide with Multiple Functionalities for Efficient and Stable Power Generation from Ammonia at Reduced Temperatures. <i>Advanced Energy Materials</i> , 2021 , 11, 2003916	21.8	25
671	Antiperovskite FeNNi2Co and FeNNi3 nanosheets as a non-enzymatic electrochemical sensor for highly sensitive detection of glucose. <i>Journal of Electroanalytical Chemistry</i> , 2021 , 884, 115072	4.1	О
670	In-situ exsolution of CoNi alloy nanoparticles on LiFe0.8Co0.1Ni0.1O2 parent: New opportunity for boosting oxygen evolution and reduction reaction. <i>Applied Surface Science</i> , 2021 , 543, 148817	6.7	7
669	A Direct -Butane Solid Oxide Fuel Cell Using Ba(ZrCeYYb)NiRuO Perovskite as the Reforming Layer. <i>ACS Applied Materials & Direct - Butane Solid Oxide Fuel Cell Using Ba(ZrCeYYb)NiRuO Perovskite as the Reforming Layer.</i>	9.5	7
668	Porous Structure Engineering of Iridium Oxide Nanoclusters on Atomic Scale for Efficient pH-Universal Overall Water Splitting. <i>Small</i> , 2021 , 17, e2100121	11	14
667	Cu-modified Ni foams as three-dimensional outer anodes for high-performance hybrid direct coal fuel cells. <i>Chemical Engineering Journal</i> , 2021 , 410, 128239	14.7	7
666	SrCo0.8Ti0.1Ta0.1O3-perovskite: A new highly active and durable cathode material for intermediate-temperature solid oxide fuel cells. <i>Composites Part B: Engineering</i> , 2021 , 213, 108726	10	13
665	Recent advances in functional oxides for high energy density sodium-ion batteries. <i>Materials Reports Energy</i> , 2021 , 1, 100022		10
664	Perovskite Oxide Catalysts for Advanced Oxidation Reactions. <i>Advanced Functional Materials</i> , 2021 , 31, 2102089	15.6	29
663	A mini-review of noble-metal-free electrocatalysts for overall water splitting in non-alkaline electrolytes. <i>Materials Reports Energy</i> , 2021 , 1, 100024		8
662	Smart Construction of an Intimate Lithium Garnet Interface for All-Solid-State Batteries by Tuning the Tension of Molten Lithium. <i>Advanced Functional Materials</i> , 2021 , 31, 2101556	15.6	29
661	New TiO -Based Oxide for Catalyzing Alkaline Hydrogen Evolution Reaction with Noble Metal-Like Performance <i>Small Methods</i> , 2021 , 5, e2100246	12.8	6
660	Tailored Brownmillerite Oxide Catalyst with Multiple Electronic Functionalities Enables Ultrafast Water Oxidation. <i>Chemistry of Materials</i> , 2021 , 33, 5233-5241	9.6	19
659	Recent Advances in the Understanding of the Surface Reconstruction of Oxygen Evolution Electrocatalysts and Materials Development. <i>Electrochemical Energy Reviews</i> , 2021 , 4, 566-600	29.3	21
658	High-Performance Perovskite Composite Electrocatalysts Enabled by Controllable Interface Engineering. <i>Small</i> , 2021 , 17, e2101573	11	44
657	Advances in Zeolite Imidazolate Frameworks (ZIFs) Derived Bifunctional Oxygen Electrocatalysts and Their Application in Zinckir Batteries. <i>Advanced Energy Materials</i> , 2021 , 11, 2100514	21.8	24
656	Engineering Charge Redistribution within Perovskite Oxides for Synergistically Enhanced Overall Water Splitting 2021 , 3, 1258-1265		4

(2021-2021)

655	Building Ruddlesden-Popper and Single Perovskite Nanocomposites: A New Strategy to Develop High-Performance Cathode for Protonic Ceramic Fuel Cells. <i>Small</i> , 2021 , 17, e2101872	11	6
654	Chlorine-anion doping induced multi-factor optimization in perovskties for boosting intrinsic oxygen evolution. <i>Journal of Energy Chemistry</i> , 2021 , 52, 115-120	12	34
653	Improving Moisture/Thermal Stability and Efficiency of CH3NH3PbI3-Based Perovskite Solar Cells via Gentle Butyl Acrylate Additive Strategy. <i>Solar Rrl</i> , 2021 , 5, 2000621	7.1	8
652	A Highly Ordered HydrophilicHydrophobic Janus Bi-Functional Layer with Ultralow Pt Loading and Fast Gas/Water Transport for Fuel Cells. <i>Energy and Environmental Materials</i> , 2021 , 4, 126-133	13	19
651	Carbon-based electrocatalysts for sustainable energy applications. <i>Progress in Materials Science</i> , 2021 , 116, 100717	42.2	71
650	Recent advances and perspectives of fluorite and perovskite-based dual-ion conducting solid oxide fuel cells. <i>Journal of Energy Chemistry</i> , 2021 , 57, 406-427	12	22
649	Unlocking the Potential of Mechanochemical Coupling: Boosting the Oxygen Evolution Reaction by Mating Proton Acceptors with Electron Donors. <i>Advanced Functional Materials</i> , 2021 , 31, 2008077	15.6	22
648	Nickel-doped BaCo0.4Fe0.4Zr0.1Y0.1O3-las a new high-performance cathode for both oxygen-ion and proton conducting fuel cells. <i>Chemical Engineering Journal</i> , 2021 , 420, 127717	14.7	26
647	Cadmium sulfide quantum dots/dodecahedral polyoxometalates/oxygen-doped mesoporous graphite carbon nitride with Z-scheme and Type-II as tandem heterojunctions for boosting visible-light-driven photocatalytic performance. <i>Journal of Colloid and Interface Science</i> , 2021 , 582, 752-	9.3 763	21
646	New perovskite membrane with improved sintering and self-reconstructed surface for efficient hydrogen permeation. <i>Journal of Membrane Science</i> , 2021 , 620, 118980	9.6	3
645	Ultrafine ruthenium-iridium alloy nanoparticles well-dispersed on N-rich carbon frameworks as efficient hydrogen-generation electrocatalysts. <i>Chemical Engineering Journal</i> , 2021 , 417, 128105	14.7	9
644	Development of nickel based cermet anode materials in solid oxide fuel cells INow and future. <i>Materials Reports Energy</i> , 2021 , 1, 100003		12
643	Oxide-based precious metal-free electrocatalysts for anion exchange membrane fuel cells: from material design to cell applications. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 3151-3179	13	7
642	Defects-rich porous carbon microspheres as green electrocatalysts for efficient and stable oxygen-reduction reaction over a wide range of pH values. <i>Chemical Engineering Journal</i> , 2021 , 406, 126	5 883 7	31
641	Towards highly stable and efficient planar perovskite solar cells: Materials development, defect control and interfacial engineering. <i>Chemical Engineering Journal</i> , 2021 , 420, 127599	14.7	11
640	An Adsorption atalysis Pathway toward Sustainable Application of Mesoporous Carbon Nanospheres for Efficient Environmental Remediation. <i>ACS ES&T Water</i> , 2021 , 1, 145-156		10
639	Defect engineering of oxide perovskites for catalysis and energy storage: synthesis of chemistry and materials science. <i>Chemical Society Reviews</i> , 2021 , 50, 10116-10211	58.5	31
638	Phase and morphology engineering of porous cobaltEopper sulfide as a bifunctional oxygen electrode for rechargeable ZnEir batteries. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 18329-18337	13	2

637	Self-Supported Nickel Phosphide Electrode for Efficient Alkaline Water-to-Hydrogen Conversion via Urea Electrolysis. <i>Industrial & Engineering Chemistry Research</i> , 2021 , 60, 1185-1193	3.9	16
636	High-Quality Ruddlesden-Popper Perovskite Film Formation for High-Performance Perovskite Solar Cells. <i>Advanced Materials</i> , 2021 , 33, e2002582	24	66
635	Fast operando spectroscopy tracking in situ generation of rich defects in silver nanocrystals for highly selective electrochemical CO reduction. <i>Nature Communications</i> , 2021 , 12, 660	17.4	25
634	Robust Anode-Supported Cells with Fast Oxygen Release Channels for Efficient and Stable CO Electrolysis at Ultrahigh Current Densities. <i>Small</i> , 2021 , 17, e2007211	11	5
633	Interfacial La Diffusion in the CeO/LaFeO Hybrid for Enhanced Oxygen Evolution Activity. <i>ACS Applied Materials & Diffusion in the CeO/LaFeO Hybrid for Enhanced Oxygen Evolution Activity. ACS Applied Materials & Diffusion in the CeO/LaFeO Hybrid for Enhanced Oxygen Evolution Activity. <i>ACS Applied Materials & Diffusion in the CeO/LaFeO Hybrid for Enhanced Oxygen Evolution Activity. ACS Applied Materials & Diffusion in the CeO/LaFeO Hybrid for Enhanced Oxygen Evolution Activity. <i>ACS Applied Materials & Diffusion in the CeO/LaFeO Hybrid for Enhanced Oxygen Evolution Activity. ACS Applied Materials & Diffusion in the CeO/LaFeO Hybrid for Enhanced Oxygen Evolution Activity. ACS Applied Materials & Diffusion in the CeO/LaFeO Hybrid for Enhanced Oxygen Evolution Activity. ACS Applied Materials & Diffusion in the CeO/LaFeO Hybrid for Enhanced Oxygen Evolution Activity. ACS Applied Materials & Diffusion in the CeO/LaFeO Hybrid for Enhanced Oxygen Evolution Activity. ACS Applied Materials & Diffusion in the CeO/LaFeO Hybrid for Enhanced Oxygen Evolution Activities (Ceo/LaFeO) Activities (Ceo/La</i></i></i>	9.5	12
632	Designing High-Valence Metal Sites for Electrochemical Water Splitting. <i>Advanced Functional Materials</i> , 2021 , 31, 2009779	15.6	67
631	Thermal reduction-assisted electronic structure tuning of perovskite oxide as catalyst for efficient advanced oxidation. <i>Composites Part B: Engineering</i> , 2021 , 207, 108577	10	4
630	Protective Effect of Blood Cora Polysaccharides on H9c2 Rat Heart Cells Injury Induced by Oxidative Stress by Activating Nrf2/HO-1 Signal Pathway. <i>Frontiers in Nutrition</i> , 2021 , 8, 632161	6.2	2
629	A molecular-level strategy to boost the mass transport of perovskite electrocatalyst for enhanced oxygen evolution. <i>Applied Physics Reviews</i> , 2021 , 8, 011407	17.3	12
628	Activating Both Basal Plane and Edge Sites of Layered Cobalt Oxides for Boosted Water Oxidation. <i>Advanced Functional Materials</i> , 2021 , 31, 2103569	15.6	9
627	Cation-Deficient Perovskites for Clean Energy Conversion. Accounts of Materials Research, 2021, 2, 477-	488	20
626	Fundamental Understanding and Application of Ba0.5Sr0.5Co0.8Fe0.2O3IPerovskite in Energy Storage and Conversion: Past, Present, and Future. <i>Energy & Energy & Energy</i>	4.1	21
625	Nanocomposites: A New Opportunity for Developing Highly Active and Durable Bifunctional Air Electrodes for Reversible Protonic Ceramic Cells. <i>Advanced Energy Materials</i> , 2021 , 11, 2101899	21.8	14
624	Metal-free carbon based air electrodes for Zn-air batteries: Recent advances and perspective. <i>Materials Research Bulletin</i> , 2021 , 140, 111315	5.1	5
623	Recent Progress on Structurally Ordered Materials for Electrocatalysis. <i>Advanced Energy Materials</i> , 2021 , 11, 2101937	21.8	23
622	Rational Design of Superior Electrocatalysts for Water Oxidation: Crystalline or Amorphous Structure?. <i>Small Science</i> , 2021 , 1, 2100030		22
621	Tailoring charge and mass transport in cation/anion-codoped Ni3N / N-doped CNT integrated electrode toward rapid oxygen evolution for fast-charging zinc-air batteries. <i>Energy Storage Materials</i> , 2021 , 39, 11-20	19.4	19
620	Exceptionally Robust Face-Sharing Motifs Enable Efficient and Durable Water Oxidation. <i>Advanced Materials</i> , 2021 , 33, e2103392	24	8

(2020-2021)

619	Novel monoclinic ABO4 oxide with single-crystal structure as next generation electrocatalyst for oxygen evolution reaction. <i>Chemical Engineering Journal</i> , 2021 , 420, 130492	14.7	3
618	Ultrathin 2D catalysts with N-coordinated single Co atom outside Co cluster for highly efficient Zn-air battery. <i>Chemical Engineering Journal</i> , 2021 , 421, 129719	14.7	6
617	High activity and durability of a Pttuto ternary alloy electrocatalyst and its large-scale preparation for practical proton exchange membrane fuel cells. <i>Composites Part B: Engineering</i> , 2021 , 222, 109082	10	6
616	Synergistic effects in ordered Co oxides for boosting catalytic activity in advanced oxidation processes. <i>Applied Catalysis B: Environmental</i> , 2021 , 297, 120463	21.8	11
615	A bilateral cyano molecule serving as an effective additive enables high-efficiency and stable perovskite solar cells. <i>Journal of Energy Chemistry</i> , 2021 , 62, 243-251	12	14
614	Ni2+/Co2+ doped Au-Fe7S8 nanoplatelets with exceptionally high oxygen evolution reaction activity. <i>Nano Energy</i> , 2021 , 89, 106463	17.1	9
613	Exceptional lattice-oxygen participation on artificially controllable electrochemistry-induced crystalline-amorphous phase to boost oxygen-evolving performance. <i>Applied Catalysis B: Environmental</i> , 2021 , 297, 120484	21.8	8
612	Utilizing the charge-transfer model to design promising electrocatalysts. <i>Current Opinion in Electrochemistry</i> , 2021 , 30, 100805	7.2	2
611	Double perovskite Pr2CoFeO6 thermoelectric oxide: Roles of Sr-doping and Micro/nanostructuring. <i>Chemical Engineering Journal</i> , 2021 , 425, 130668	14.7	9
610	Interface engineered perovskite oxides for enhanced catalytic oxidation: The vital role of lattice oxygen. <i>Chemical Engineering Science</i> , 2021 , 245, 116944	4.4	9
609	Regulating the Interfacial Electron Density of LaSrMnCoO/RuO for Efficient and Low-Cost Bifunctional Oxygen Electrocatalysts and Rechargeable Zn-Air Batteries <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 61098-61106	9.5	1
608	One Pot-Synthesized Ag/Ag-Doped CeO Nanocomposite with Rich and Stable 3D Interfaces and Ce for Efficient Carbon Dioxide Electroreduction. <i>ACS Applied Materials & Dioxide Electroreduction</i> .	9.5	2
607	Single-phase perovskite oxide with super-exchange induced atomic-scale synergistic active centers enables ultrafast hydrogen evolution. <i>Nature Communications</i> , 2020 , 11, 5657	17.4	49
606	Direct growth of ordered N-doped carbon nanotube arrays on carbon fiber cloth as a free-standing and binder-free air electrode for flexible quasi-solid-state rechargeable Zn-Air batteries 2020 , 2, 461-47	1	29
605	A CO2-tolerant SrCo0.8Fe0.15Zr0.05O3l athode for proton-conducting solid oxide fuel cells. Journal of Materials Chemistry A, 2020 , 8, 11292-11301	13	22
604	Monoclinic SrIrO3: An Easily Synthesized Conductive Perovskite Oxide with Outstanding Performance for Overall Water Splitting in Alkaline Solution. <i>Chemistry of Materials</i> , 2020 , 32, 4509-4517	p.6	38
603	High-performance metal-organic framework-perovskite hybrid as an important component of the air-electrode for rechargeable Zn-Air battery. <i>Journal of Power Sources</i> , 2020 , 468, 228377	8.9	32
602	A new highly active and CO2-stable perovskite-type cathode material for solid oxide fuel cells developed from A- and B-site cation synergy. <i>Journal of Power Sources</i> , 2020 , 457, 227995	8.9	15

601	Double-layered yolk-shell microspheres with NiCo2S4-Ni9S8-C hetero-interfaces as advanced battery-type electrode for hybrid supercapacitors. <i>Chemical Engineering Journal</i> , 2020 , 396, 125316	14.7	45
600	Efficient water splitting through solid oxide electrolysis cells with a new hydrogen electrode derived from A-site cation-deficient La0.4Sr0.55Co0.2Fe0.6Nb0.2O3-perovskite. <i>Materials Today Energy</i> , 2020 , 17, 100458	7	16
599	A Porous Nano-Micro-Composite as a High-Performance Bi-Functional Air Electrode with Remarkable Stability for Rechargeable Zinc-Air Batteries. <i>Nano-Micro Letters</i> , 2020 , 12, 130	19.5	31
598	Perovskite-Based Multifunctional Cathode with Simultaneous Supplementation of Substrates and Electrons for Enhanced Microbial Electrosynthesis of Organics. <i>ACS Applied Materials & amp; Interfaces</i> , 2020 , 12, 30449-30456	9.5	9
597	Infiltrated NiCo Alloy Nanoparticle Decorated Perovskite Oxide: A Highly Active, Stable, and Antisintering Anode for Direct-Ammonia Solid Oxide Fuel Cells. <i>Small</i> , 2020 , 16, e2001859	11	30
596	Turning Detrimental Effect into Benefits: Enhanced Oxygen Reduction Reaction Activity of Cobalt-Free Perovskites at Intermediate Temperature CO-Induced Surface Activation. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 16417-16425	9.5	10
595	Boosting oxygen evolution reaction by activation of lattice-oxygen sites in layered Ruddlesden-Popper oxide. <i>EcoMat</i> , 2020 , 2, e12021	9.4	24
594	Activation-free supercapacitor electrode based on surface-modified Sr2CoMo1-xNixO6-I perovskite. <i>Chemical Engineering Journal</i> , 2020 , 390, 124645	14.7	15
593	Improvement of solid oxide fuel cell performance by a core-shell structured catalyst using low concentration coal bed methane fuel. <i>International Journal of Energy Research</i> , 2020 , 44, 5516-5526	4.5	4
592	From scheelite BaMoO4 to perovskite BaMoO3: Enhanced electrocatalysis toward the hydrogen evolution in alkaline media. <i>Composites Part B: Engineering</i> , 2020 , 198, 108214	10	23
591	A Self-Assembled Hetero-Structured Inverse-Spinel and Anti-Perovskite Nanocomposite for Ultrafast Water Oxidation. <i>Small</i> , 2020 , 16, e2002089	11	28
590	Recent Advances in Filler Engineering of Polymer Electrolytes for Solid-State Li-Ion Batteries: A Review. <i>Energy & Dolymer Electrolytes</i> Fuels, 2020 , 34, 9189-9207	4.1	49
589	Fuel cells that operate at 300°L to 500°C. Science, 2020 , 369, 138-139	33.3	22
588	Rich atomic interfaces between sub-1 nm RuOx clusters and porous Co3O4 nanosheets boost oxygen electrocatalysis bifunctionality for advanced Zn-air batteries. <i>Energy Storage Materials</i> , 2020 , 32, 20-29	19.4	46
587	Utilizing ion leaching effects for achieving high oxygen-evolving performance on hybrid nanocomposite with self-optimized behaviors. <i>Nature Communications</i> , 2020 , 11, 3376	17.4	50
586	Advances in Porous Perovskites: Synthesis and Electrocatalytic Performance in Fuel Cells and Metal Batteries. <i>Energy and Environmental Materials</i> , 2020 , 3, 121-145	13	69
585	Self-Recovery Chemistry and Cobalt-Catalyzed Electrochemical Deposition of Cathode for Boosting Performance of Aqueous Zinc-Ion Batteries. <i>IScience</i> , 2020 , 23, 100943	6.1	47
584	Boosting the oxygen evolution catalytic performance of perovskites via optimizing calcination temperature. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 6480-6486	13	19

(2020-2020)

583	Water-proof, electrolyte-nonvolatile, and flexible Li-Air batteries via O2-Permeable silica-aerogel-reinforced polydimethylsiloxane external membranes. <i>Energy Storage Materials</i> , 2020 , 27, 297-306	19.4	45
582	Nonstoichiometric perovskite for enhanced catalytic oxidation through excess A-site cation. <i>Chemical Engineering Science</i> , 2020 , 219, 115596	4.4	11
581	In situ growth of nanoflake and nanoflower-like Ni hydrated hydroxide on the surface of Ni foam as a free-standing electrode for high-performance phosphate detection. <i>Journal of Hazardous Materials</i> , 2020 , 392, 122313	12.8	7
580	Oxygen vacancies-rich Ce0.9Gd0.1O2-Idecorated Pr0.5Ba0.5CoO3-Ibifunctional catalyst for efficient and long-lasting rechargeable Zn-air batteries. <i>Applied Catalysis B: Environmental</i> , 2020 , 266, 118656	21.8	54
579	Enhancing the oxygen reduction activity of PrBaCo2O5+Edouble perovskite cathode by tailoring the calcination temperatures. <i>International Journal of Hydrogen Energy</i> , 2020 , 45, 25996-26004	6.7	8
578	A Cobalt-Free Multi-Phase Nanocomposite as Near-Ideal Cathode of Intermediate-Temperature Solid Oxide Fuel Cells Developed by Smart Self-Assembly. <i>Advanced Materials</i> , 2020 , 32, e1906979	24	59
577	Promoting the Efficiency and Stability of CsPbIBr-Based All-Inorganic Perovskite Solar Cells through a Functional Cu Doping Strategy. <i>ACS Applied Materials & Doping Strategy</i> , 12, 23984-2399	14 ^{9.5}	45
576	Bulk and Surface Properties Regulation of Single/Double Perovskites to Realize Enhanced Oxygen Evolution Reactivity. <i>ChemSusChem</i> , 2020 , 13, 3045-3052	8.3	19
575	Facile synthesis of synergistic Pt/(Co-N)@C composites as alternative oxygen-reduction electrode of PEMFCs with attractive activity and durability. <i>Composites Part B: Engineering</i> , 2020 , 193, 108012	10	13
574	Manipulating cation nonstoichiometry towards developing better electrolyte for self-humidified dual-ion solid oxide fuel cells. <i>Journal of Power Sources</i> , 2020 , 460, 228105	8.9	13
573	Efficient Wastewater Remediation Enabled by Self-Assembled Perovskite Oxide Heterostructures with Multiple Reaction Pathways. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 6033-6042	8.3	24
572	Fast cation exchange of layered sodium transition metal oxides for boosting oxygen evolution activity and enhancing durability. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 8075-8083	13	5
571	A smart lithiophilic polymer filler in gel polymer electrolyte enables stable and dendrite-free Li metal anode. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 9733-9742	13	32
570	Direct evidence of boosted oxygen evolution over perovskite by enhanced lattice oxygen participation. <i>Nature Communications</i> , 2020 , 11, 2002	17.4	166
569	Perovskite Materials in Photovoltaics. <i>Materials Horizons</i> , 2020 , 175-207	0.6	0
568	Perovskite Materials in Electrocatalysis. <i>Materials Horizons</i> , 2020 , 209-250	0.6	2
567	Rational Design of Ag-Based Catalysts for the Electrochemical CO Reduction to CO: A Review. <i>ChemSusChem</i> , 2020 , 13, 39-58	8.3	55
566	Boosting Oxygen Evolution Reaction by Creating Both Metal Ion and Lattice-Oxygen Active Sites in a Complex Oxide. <i>Advanced Materials</i> , 2020 , 32, e1905025	24	122

		WEI	Z нои
565	Postsynthesis Oxygen Nonstoichiometric Regulation: A New Strategy for Performance Enhancement of Perovskites in Advanced Oxidation. <i>Industrial & Engineering Chemistry Research</i> , 2020 , 59, 99-109	3.9	12
564	High-Performance Platinum-Perovskite Composite Bifunctional Oxygen Electrocatalyst for Rechargeable ZnAir Battery. <i>Advanced Energy Materials</i> , 2020 , 10, 1903271	21.8	52
563	Coal pretreatment and Ag-infiltrated anode for high-performance hybrid direct coal fuel cell. <i>Applied Energy</i> , 2020 , 260, 114197	10.7	11
562	Metal-organic frameworks derived porous carbon, metal oxides and metal sulfides-based compounds for supercapacitors application. <i>Energy Storage Materials</i> , 2020 , 26, 1-22	19.4	110
561	NiCo2S4 spheres grown on N,S co-doped rGO with high sulfur vacancies as superior oxygen bifunctional electrocatalysts. <i>Electrochimica Acta</i> , 2020 , 331, 135356	6.7	16
560	Realizing stable high hydrogen permeation flux through BaCo0.4Fe0.4Zr0.1Y0.1O3-Imembrane using a thin Pd film protection strategy. <i>Journal of Membrane Science</i> , 2020 , 596, 117709	9.6	12
559	Direct-methane solid oxide fuel cells with an in situ formed Nife alloy composite catalyst layer over NifeSZ anodes. <i>Renewable Energy</i> , 2020 , 150, 334-341	8.1	21
558	Electrolyte materials for intermediate-temperature solid oxide fuel cells. <i>Progress in Natural Science: Materials International</i> , 2020 , 30, 764-774	3.6	37
557	Anion Etching for Accessing Rapid and Deep Self-Reconstruction of Precatalysts for Water Oxidation. <i>Matter</i> , 2020 , 3, 2124-2137	12.7	86
556	Robust non-Pt noble metal-based nanomaterials for electrocatalytic hydrogen generation. <i>Applied Physics Reviews</i> , 2020 , 7, 041304	17.3	14
555	Efficient Ferrite-Based Perovskite Anode for Solid Oxide Fuel Cells with A-Site and B-Site Co-exsolution. <i>Energy & Documents</i> 2020, 34, 10100-10108	4.1	5
554	Ruddlesden P opper perovskites in electrocatalysis. <i>Materials Horizons</i> , 2020 , 7, 2519-2565	14.4	71
553	Rational design of spinel oxides as bifunctional oxygen electrocatalysts for rechargeable Zn-air batteries. <i>Chemical Physics Reviews</i> , 2020 , 1, 011303	4.4	10
552	Efficient Water Splitting Actualized through an Electrochemistry-Induced Hetero-Structured Antiperovskite/(Oxy)Hydroxide Hybrid. <i>Small</i> , 2020 , 16, e2006800	11	13
551	Facilitating Oxygen Redox on Manganese Oxide Nanosheets by Tuning Active Species and Oxygen Defects for Zinc-Air Batteries. <i>ChemElectroChem</i> , 2020 , 7, 4949-4955	4.3	11
550	Zeolitic Imidazolate Framework-Derived Ordered PtBe Intermetallic Electrocatalysts for High-Performance Zn-Air Batteries. <i>Energy & Dels</i> , 2020, 34, 11527-11535	4.1	15
549	Advances in Ceramic Thin Films Fabricated by Pulsed Laser Deposition for Intermediate-Temperature Solid Oxide Fuel Cells. <i>Energy & Dels</i> , 2020 , 34, 10568-10582	4.1	16
548	SrTiO3-based thermoelectrics: Progress and challenges. <i>Nano Energy</i> , 2020 , 78, 105195	17.1	52

(2020-2020)

547	High-Performance Proton-Conducting Fuel Cell with B-Site-Deficient Perovskites for All Cell Components. <i>Energy & Energy & Energy</i>	4.1	17
546	Emerging Strategies for Developing High-Performance Perovskite-Based Materials for Electrochemical Water Splitting. <i>Energy & Electrochemical Water Splitting</i> .	4.1	27
545	Ruddlesden P opper Perovskite Oxides for Photocatalysis-Based Water Splitting and Wastewater Treatment. <i>Energy & Documents</i> , 2020, 34, 9208-9221	4.1	22
544	Understanding and Engineering of Multiphase Transport Processes in Membrane Electrode Assembly of Proton-Exchange Membrane Fuel Cells with a Focus on the Cathode Catalyst Layer: A Review. <i>Energy & Description</i> , 2020, 34, 9175-9188	4.1	19
543	Toward Reducing the Operation Temperature of Solid Oxide Fuel Cells: Our Past 15 Years of Efforts in Cathode Development. <i>Energy & Description</i> 2020, 34, 15169-15194	4.1	63
542	Stabilizing Atomically Dispersed Catalytic Sites on Tellurium Nanosheets with Strong Metal-Support Interaction Boosts Photocatalysis. <i>Small</i> , 2020 , 16, e2002356	11	22
541	Recent Advances in Cs2AgBiBr6-Based Halide Double Perovskites as Lead-Free and Inorganic Light Absorbers for Perovskite Solar Cells. <i>Energy & Energy & Ener</i>	4.1	48
540	Tuning Nitrogen in Graphitic Carbon Nitride Enabling Enhanced Performance for Polysulfide Confinement in Liß Batteries. <i>Energy & Double South</i> 2020, 34, 11557-11564	4.1	11
539	Enabling efficient hydrogen-evolution reaction over perovskite oxide electrocatalysts through phosphorus promotion. <i>International Journal of Hydrogen Energy</i> , 2020 , 45, 24859-24869	6.7	10
538	Exsolved Alloy Nanoparticles Decorated Ruddlesden Popper Perovskite as Sulfur-Tolerant Anodes for Solid Oxide Fuel Cells. <i>Energy & amp; Fuels</i> , 2020 , 34, 11449-11457	4.1	15
537	Organic Photochemistry-Assisted Nanoparticle Segregation on Perovskites. <i>Cell Reports Physical Science</i> , 2020 , 1, 100243	6.1	6
536	A Function-Separated Design of Electrode for Realizing High-Performance Hybrid Zinc Battery. <i>Advanced Energy Materials</i> , 2020 , 10, 2002992	21.8	36
535	Non-precious-metal catalysts for alkaline water electrolysis: operando characterizations, theoretical calculations, and recent advances. <i>Chemical Society Reviews</i> , 2020 , 49, 9154-9196	58.5	147
534	Achieving Safe and Dendrite-Suppressed Solid-State Li Batteries via a Novel Self-Extinguished Trimethyl Phosphate-Based Wetting Agent. <i>Energy & Energy & En</i>	4.1	11
533	Tuning the A-Site Cation Deficiency of La0.8Sr0.2FeO3IPerovskite Oxides for High-Efficiency Triiodide Reduction Reaction in Dye-Sensitized Solar Cells. <i>Energy & Energy & Ene</i>	4.1	7
532	Metal oxide-based materials as an emerging family of hydrogen evolution electrocatalysts. <i>Energy and Environmental Science</i> , 2020 , 13, 3361-3392	35.4	151
531	Perowskitoxid-Elektroden zur leistungsstarken photoelektrochemischen Wasserspaltung. <i>Angewandte Chemie</i> , 2020 , 132, 140-158	3.6	5
530	Perovskite Oxide Based Electrodes for High-Performance Photoelectrochemical Water Splitting. Angewandte Chemie - International Edition, 2020, 59, 136-152	16.4	135

529	Utilization of low-concentration coal-bed gas to generate power using a core-shell catalyst-modified solid oxide fuel cell. <i>Renewable Energy</i> , 2020 , 147, 602-609	8.1	13
528	Scandium and phosphorus co-doped perovskite oxides as high-performance electrocatalysts for the oxygen reduction reaction in an alkaline solution. <i>Journal of Materials Science and Technology</i> , 2020 , 39, 22-27	9.1	10
527	Nanofluidic Behaviors of Water and Ions in Covalent Triazine Framework (CTF) Multilayers. <i>Small</i> , 2020 , 16, e1903879	11	14
526	Simultaneous Power Conversion Efficiency and Stability Enhancement of Cs2AgBiBr6 Lead-Free Inorganic Perovskite Solar Cell through Adopting a Multifunctional Dye Interlayer. <i>Advanced Functional Materials</i> , 2020 , 30, 2001557	15.6	90
525	Self-Assembled Ruddlesden-Popper/Perovskite Hybrid with Lattice-Oxygen Activation as a Superior Oxygen Evolution Electrocatalyst. <i>Small</i> , 2020 , 16, e2001204	11	34
524	Water-stable MOFs-based core-shell nanostructures for advanced oxidation towards environmental remediation. <i>Composites Part B: Engineering</i> , 2020 , 192, 107985	10	22
523	High-Performance GeTe-Based Thermoelectrics: from Materials to Devices. <i>Advanced Energy Materials</i> , 2020 , 10, 2000367	21.8	94
522	Unusual synergistic effect in layered Ruddlesden-Popper oxide enables ultrafast hydrogen evolution. <i>Nature Communications</i> , 2019 , 10, 149	17.4	116
521	Boosting the Activity of BaCo0.4Fe0.4Zr0.1Y0.1O3Perovskite for Oxygen Reduction Reactions at Low-to-Intermediate Temperatures through Tuning B-Site Cation Deficiency. <i>Advanced Energy Materials</i> , 2019 , 9, 1902384	21.8	49
520	Chlorine-Doped Perovskite Oxide: A Platinum-Free Cathode for Dye-Sensitized Solar Cells. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 35641-35652	9.5	11
519	An BlectronegativeIbifunctional coating layer: simultaneous regulation of polysulfide and Li-ion adsorption sites for long-cycling and Bendrite-freeILiB batteries. <i>Journal of Materials Chemistry A</i> , 2019, 7, 22463-22474	13	31
518	A New Sodium-ion-conducting Layered Perovskite Oxide as Highly Active and Sulfur Tolerant Electrocatalyst for Solid Oxide Fuel Cells. <i>Energy Procedia</i> , 2019 , 158, 1660-1665	2.3	3
517	Recent Advances and Prospective in Ruthenium-Based Materials for Electrochemical Water Splitting. <i>ACS Catalysis</i> , 2019 , 9, 9973-10011	13.1	269
516	Advances in three-dimensional graphene-based materials: configurations, preparation and application in secondary metal (Li, Na, K, Mg, Al)-ion batteries. <i>Energy and Environmental Science</i> , 2019 , 12, 2030-2053	35.4	113
515	Electrochemical performance and effect of moisture on Ba0.5Sr0.5Sc0.175Nb0.025Co0.8O3-Doxide as a promising electrode for proton-conducting solid oxide fuel cells. <i>Applied Energy</i> , 2019 , 238, 344-350	10.7	23
5 ¹ 4	Preparation of thin electrolyte film via dry pressing/heating/quenching/calcining for electrolyte-supported SOFCs. <i>Ceramics International</i> , 2019 , 45, 9866-9870	5.1	13
513	Layered Co/Ni-free oxides for sodium-ion battery cathode materials. <i>Current Opinion in Green and Sustainable Chemistry</i> , 2019 , 17, 29-34	7.9	9
512	Perovskites: Realizing Ultrafast Oxygen Evolution by Introducing Proton Acceptor into Perovskites (Adv. Energy Mater. 20/2019). <i>Advanced Energy Materials</i> , 2019 , 9, 1970071	21.8	5

511	Reduced air sensitivity and improved electrochemical stability of P2Na2/3Mn1/2Fe1/4Co1/4O2 through atomic layer deposition-assisted Al2O3 coating. <i>Composites Part B: Engineering</i> , 2019 , 173, 106	59 ¹ 13	16
510	Rationally designed Water-Insertable Layered Oxides with Synergistic Effect of Transition-Metal Elements for High-Performance Oxygen Evolution Reaction. <i>ACS Applied Materials & amp; Interfaces</i> , 2019 , 11, 25227-25235	9.5	16
509	Co -Rich Na CoP O Phosphates as Efficient Bifunctional Catalysts for Oxygen Evolution and Reduction Reactions in Alkaline Solution. <i>Chemistry - A European Journal</i> , 2019 , 25, 11007-11014	4.8	9
508	An Intrinsically Conductive Phosphorus-Doped Perovskite Oxide as a New Cathode for High-Performance Dye-Sensitized Solar Cells by Providing Internal Conducting Pathways. <i>Solar Rrl</i> , 2019 , 3, 1900108	7.1	18
507	Nano-zero-valent iron and MnO selective deposition on BiVO decahedron superstructures for promoted spatial charge separation and exceptional catalytic activity in visible-light-driven photocatalysis-Fenton coupling system. <i>Journal of Hazardous Materials</i> , 2019 , 377, 330-340	12.8	33
506	Double Perovskites in Catalysis, Electrocatalysis, and Photo(electro)catalysis. <i>Trends in Chemistry</i> , 2019 , 1, 410-424	14.8	123
505	New reduced-temperature ceramic fuel cells with dual-ion conducting electrolyte and triple-conducting double perovskite cathode. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 13265-13274	13	60
504	Ultralong Cycle Life Li-O Battery Enabled by a MOF-Derived Ruthenium-Carbon Composite Catalyst with a Durable Regenerative Surface. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 20091-20097	9.5	33
503	An Amorphous Nickel-Iron-Based Electrocatalyst with Unusual Local Structures for Ultrafast Oxygen Evolution Reaction. <i>Advanced Materials</i> , 2019 , 31, e1900883	24	161
502	Cobalt-Free Perovskite Cathodes for Solid Oxide Fuel Cells. <i>ChemElectroChem</i> , 2019 , 6, 3549-3569	4.3	36
501	Pyrite-type ruthenium disulfide with tunable disorder and defects enables ultra-efficient overall water splitting. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 14222-14232	13	32
500	Rational design of strontium antimony co-doped Li7La3Zr2O12 electrolyte membrane for solid-state lithium batteries. <i>Journal of Alloys and Compounds</i> , 2019 , 794, 347-357	5.7	25
499	Recent advances in the interface engineering of solid-state Li-ion batteries with artificial buffer layers: challenges, materials, construction, and characterization. <i>Energy and Environmental Science</i> , 2019 , 12, 1780-1804	35.4	163
498	Core Effect on the Performance of N/P Codoped Carbon Encapsulating Noble-Metal Phosphide Nanostructures for Hydrogen Evolution Reaction. <i>ACS Applied Energy Materials</i> , 2019 , 2, 2645-2653	6.1	17
497	Searching General Sufficient-and-Necessary Conditions for Ultrafast Hydrogen-Evolving Electrocatalysis. <i>Advanced Functional Materials</i> , 2019 , 29, 1900704	15.6	65
496	Boosting the oxygen evolution reaction activity of a perovskite through introducing multi-element synergy and building an ordered structure. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 9924-9932	13	39
495	Model based evaluation of the electrochemical reaction sites in solid oxide fuel cell electrodes. <i>International Journal of Hydrogen Energy</i> , 2019 , 44, 8439-8459	6.7	3
494	Textured SrBcNbCoFeO Thin Film Cathodes for IT-SOFCs. <i>Materials</i> , 2019 , 12,	3.5	2

493	Spontaneous Formation of Heterodimer AufferS8 Nanoplatelets by a Seeded Growth Approach. Journal of Physical Chemistry C, 2019 , 123, 10604-10613	3.8	7
492	Recent advances in anion-doped metal oxides for catalytic applications. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 7280-7300	13	76
491	Realizing Ultrafast Oxygen Evolution by Introducing Proton Acceptor into Perovskites. <i>Advanced Energy Materials</i> , 2019 , 9, 1900429	21.8	53
490	Fast Desalination by Multilayered Covalent Organic Framework (COF) Nanosheets. <i>ACS Applied Materials & ACS Applied Materials & ACS Applied</i>	9.5	73
489	Tunable titanium metal®rganic frameworks with infinite 1D Ti® rods for efficient visible-light-driven photocatalytic H2 evolution. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 11928-11933	13	153
488	A strategy to reduce the impact of tar on a Ni-YSZ anode of solid oxide fuel cells. <i>International Journal of Energy Research</i> , 2019 , 43, 3038-3048	4.5	2
487	Realizing fourfold enhancement in conductivity of perovskite Li0.33La0.557TiO3 electrolyte membrane via a Sr and Ta co-doping strategy. <i>Journal of Membrane Science</i> , 2019 , 582, 194-202	9.6	30
486	A highly sensitive perovskite oxide sensor for detection of p-phenylenediamine in hair dyes. <i>Journal of Hazardous Materials</i> , 2019 , 369, 699-706	12.8	20
485	Fundamental Understanding of Photocurrent Hysteresis in Perovskite Solar Cells. <i>Advanced Energy Materials</i> , 2019 , 9, 1803017	21.8	148
484	Stable Hierarchical Bimetal-Organic Nanostructures as HighPerformance Electrocatalysts for the Oxygen Evolution Reaction. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 4227-4231	16.4	309
483	Enhanced coking resistance of Ni cermet anodes for solid oxide fuel cells based on methane on-cell reforming by a redox-stable double-perovskite Sr2MoFeO6-\(\Pi\)International Journal of Energy Research, 2019 , 43, 2527-2537	4.5	12
482	Evaluation of the CO2 tolerant cathode for solid oxide fuel cells: Praseodymium oxysulfates/Ba0.5Sr0.5Co0.8Fe0.2O3-[] <i>Applied Surface Science</i> , 2019 , 472, 10-15	6.7	7
481	Constructing Conductive Interfaces between Nickel Oxide Nanocrystals and Polymer Carbon Nitride for Efficient Electrocatalytic Oxygen Evolution Reaction. <i>Advanced Functional Materials</i> , 2019 , 29, 1904020	15.6	70
480	Super-Exchange Interaction Induced Overall Optimization in Ferromagnetic Perovskite Oxides Enables Ultrafast Water Oxidation. <i>Small</i> , 2019 , 15, e1903120	11	43
479	Self-Assembled Triple-Conducting Nanocomposite as a Superior Protonic Ceramic Fuel Cell Cathode. <i>Joule</i> , 2019 , 3, 2842-2853	27.8	127
478	Screening highly active perovskites for hydrogen-evolving reaction via unifying ionic electronegativity descriptor. <i>Nature Communications</i> , 2019 , 10, 3755	17.4	75
477	Self-Catalyzed Growth of Co, N-Codoped CNTs on Carbon-Encased CoSx Surface: A Noble-Metal-Free Bifunctional Oxygen Electrocatalyst for Flexible Solid ZnAir Batteries. <i>Advanced Functional Materials</i> , 2019 , 29, 1904481	15.6	144
476	Rational design of NiCo2O4/g-C3N4 composite as practical anode of lithium-ion batteries with outstanding electrochemical performance from multiple aspects. <i>Journal of Alloys and Compounds</i> , 2019 , 805, 522-530	5.7	17

475	Ternary Phase Diagram-Facilitated Rapid Screening of Double Perovskites As Electrocatalysts for the Oxygen Evolution Reaction. <i>Chemistry of Materials</i> , 2019 , 31, 5919-5926	9.6	17
474	A steel slagderived Boudouard reaction catalyst for improved performance of direct carbon solid oxide fuel cells. <i>International Journal of Energy Research</i> , 2019 , 43, 6970	4.5	5
473	The Synergistic Effect Accelerates the Oxygen Reduction/Evolution Reaction in a Zn-Air Battery. <i>Frontiers in Chemistry</i> , 2019 , 7, 524	5	16
472	Morphology, crystal structure and electronic state one-step co-tuning strategy towards developing superior perovskite electrocatalysts for water oxidation. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 1922	8 ⁻ 1923	3 1 7
471	Enhancing the triiodide reduction activity of a perovskite-based electrocatalyst for dye-sensitized solar cells through exsolved silver nanoparticles. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 17489-17497	, 13	24
47°	Enhancing Oxygen Reduction Reaction Activity and CO Tolerance of Cathode for Low-Temperature Solid Oxide Fuel Cells by in Situ Formation of Carbonates. <i>ACS Applied Materials & Discrete Solid</i> 2019, 11, 26909-26919	9.5	19
469	Promoted spatial charge separation of plasmon Ag and co-catalyst Co P decorated mesoporous g-CN nanosheet assembly for unexpected solar-driven photocatalytic performance. Nanotechnology, 2019, 30, 485401	3.4	6
468	Unveiling Lithium Roles in Cobalt-Free Cathodes for Efficient Oxygen Reduction Reaction below 600 °C. ChemElectroChem, 2019 , 6, 5340-5348	4.3	6
467	Advanced perovskite anodes for solid oxide fuel cells: A review. <i>International Journal of Hydrogen Energy</i> , 2019 , 44, 31275-31304	6.7	66
466	Integrated Ultrafine Co Se in Carbon Nanofibers: An Efficient and Robust Bifunctional Catalyst for Oxygen Electrocatalysis. <i>Chemistry - A European Journal</i> , 2019 , 26, 4063	4.8	16
465	Smart Control of Composition for Double Perovskite Electrocatalysts toward Enhanced Oxygen Evolution Reaction. <i>ChemSusChem</i> , 2019 , 12, 5111-5116	8.3	20
464	Stable Hierarchical Bimetal Drganic Nanostructures as HighPerformance Electrocatalysts for the Oxygen Evolution Reaction. <i>Angewandte Chemie</i> , 2019 , 131, 4271-4275	3.6	25
463	A Novel Method to Purposely Modify the Anode/Electrolyte Interface in Solid Oxide Fuel Cells. <i>ChemistrySelect</i> , 2019 , 4, 13835-13840	1.8	
462	Intramolecular electronic coupling in porous iron cobalt (oxy)phosphide nanoboxes enhances the electrocatalytic activity for oxygen evolution. <i>Energy and Environmental Science</i> , 2019 , 12, 3348-3355	35.4	147
461	Boosting performance of lanthanide magnetism perovskite for advanced oxidation through lattice doping with catalytically inert element. <i>Chemical Engineering Journal</i> , 2019 , 355, 721-730	14.7	78
460	Enhancing the cycle life of Li-S batteries by designing a free-standing cathode with excellent flexible, conductive, and catalytic properties. <i>Electrochimica Acta</i> , 2019 , 298, 421-429	6.7	18
459	Enhanced coking resistance of a Ni cermet anode by a chromates protective layer. <i>Journal of Energy Chemistry</i> , 2019 , 37, 117-125	12	8
458	CrIn Redox Battery with NiFe2O4 as Catalyst for Enhanced Degradation of Cr(VI) Pollution. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 111-116	8.3	17

457	Multi-active sites derived from a single/double perovskite hybrid for highly efficient water oxidation. <i>Electrochimica Acta</i> , 2019 , 299, 926-932	6.7	29
456	Recent Advances in Metal-Organic Framework Derivatives as Oxygen Catalysts for Zinc-Air Batteries. <i>Batteries and Supercaps</i> , 2019 , 2, 272-289	5.6	87
455	A cobalt and nickel co-modified layered P2-Na2/3Mn1/2Fe1/2O2 with excellent cycle stability for high-energy density sodium-ion batteries. <i>Journal of Alloys and Compounds</i> , 2019 , 775, 383-392	5.7	25
454	Enabling High and Stable Electrocatalytic Activity of Iron-Based Perovskite Oxides for Water Splitting by Combined Bulk Doping and Morphology Designing. <i>Advanced Materials Interfaces</i> , 2019 , 6, 1801317	4.6	48
453	Recent Advances in the Development of Anode Materials for Solid Oxide Fuel Cells Utilizing Liquid Oxygenated Hydrocarbon Fuels: A Mini Review. <i>Energy Technology</i> , 2019 , 7, 33-44	3.5	43
452	Purified high-sulfur coal as a fuel for direct carbon solid oxide fuel cells. <i>International Journal of Energy Research</i> , 2019 , 43, 2501-2513	4.5	9
451	B-Site Cation-Ordered Double-Perovskite Oxide as an Outstanding Electrode Material for Supercapacitive Energy Storage Based on the Anion Intercalation Mechanism. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 9415-9423	9.5	47
450	Earth-Abundant Silicon for Facilitating Water Oxidation over Iron-Based Perovskite Electrocatalyst. <i>Advanced Materials Interfaces</i> , 2018 , 5, 1701693	4.6	40
449	Significantly Improving the Durability of Single-Chamber Solid Oxide Fuel Cells: A Highly Active CO2-Resistant Perovskite Cathode. <i>ACS Applied Energy Materials</i> , 2018 , 1, 1337-1343	6.1	21
448	Two facile routes to an AB&Cu-MOF composite with improved hydrogen evolution reaction. <i>Journal of Alloys and Compounds</i> , 2018 , 753, 228-233	5.7	35
447	Co O Nanosheets as Active Material for Hybrid Zn Batteries. <i>Small</i> , 2018 , 14, e1800225	11	103
446	Optimization of SnO2 Nanoparticles Confined in a Carbon Matrix towards Applications as High-Capacity Anodes in Sodium-Ion Batteries. <i>ChemistrySelect</i> , 2018 , 3, 4015-4022	1.8	9
445	Highly Active and Stable Cobalt-Free Hafnium-doped SrFe0.9Hf0.1O3Perovskite Cathode for Solid Oxide Fuel Cells. <i>ACS Applied Energy Materials</i> , 2018 , 1, 2134-2142	6.1	25
444	Synergistically enhanced hydrogen evolution electrocatalysis by in situ exsolution of metallic nanoparticles on perovskites. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 13582-13587	13	56
443	Direct Power Generation from Low Concentration Coal-Bed Gas by a Catalyst-Modified Solid Oxide Fuel Cell. <i>ChemElectroChem</i> , 2018 , 5, 1459-1466	4.3	11
442	Anchoring perovskite LaMnO3 nanoparticles on biomass erived N, P colloped porous carbon for efficient oxygen reduction. <i>Electrochimica Acta</i> , 2018 , 274, 40-48	6.7	36
441	Nanostructured Co-Mn containing perovskites for degradation of pollutants: Insight into the activity and stability. <i>Journal of Hazardous Materials</i> , 2018 , 349, 177-185	12.8	66
440	New Phosphorus-Doped Perovskite Oxide as an Oxygen Reduction Reaction Electrocatalyst in an Alkaline Solution. <i>Chemistry - A European Journal</i> , 2018 , 24, 6950-6957	4.8	18

439	Dodecylamine-Induced Synthesis of a Nitrogen-Doped Carbon Comb for Advanced LithiumBulfur Battery Cathodes. <i>Advanced Materials Interfaces</i> , 2018 , 5, 1701659	4.6	20
438	Dynamic traction of lattice-confined platinum atoms into mesoporous carbon matrix for hydrogen evolution reaction. <i>Science Advances</i> , 2018 , 4, eaao6657	14.3	344
437	Optimal synthesis and new understanding of P2-type Na2/3Mn1/2Fe1/4Co1/4O2 as an advanced cathode material in sodium-ion batteries with improved cycle stability. <i>Ceramics International</i> , 2018 , 44, 5184-5192	5.1	25
436	Highly Defective Layered Double Perovskite Oxide for Efficient Energy Storage via Reversible Pseudocapacitive Oxygen-Anion Intercalation. <i>Advanced Energy Materials</i> , 2018 , 8, 1702604	21.8	76
435	Highly Oxygen Non-Stoichiometric BaSc0.25Co0.75O3-las a High-Performance Cathode for Intermediate-Temperature Solid Oxide Fuel Cells. <i>ChemElectroChem</i> , 2018 , 5, 785-792	4.3	10
434	Facile Synthesis of Co9S8 Hollow Spheres as a High-Performance Electrocatalyst for the Oxygen Evolution Reaction. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 1863-1871	8.3	56
433	Inherently Catalyzed Boudouard Reaction of Bamboo Biochar for Solid Oxide Fuel Cells with Improved Performance. <i>Energy & Damp; Fuels</i> , 2018 , 32, 4559-4568	4.1	8
432	Direct Operation of Solid Oxide Fuel Cells on Low-Concentration Oxygen-Bearing Coal-Bed Methane with High Stability. <i>Energy & Discounty of Stability and St</i>	4.1	7
431	In situ formation of a 3D core-shell and triple-conducting oxygen reduction reaction electrode for proton-conducting SOFCs. <i>Journal of Power Sources</i> , 2018 , 385, 76-83	8.9	38
430	Systematic Study of Oxygen Evolution Activity and Stability on LaSr FeO Perovskite Electrocatalysts in Alkaline Media. <i>ACS Applied Materials & District Media</i> , 10, 11715-11721	9.5	107
429	Nanodiamonds in sp2/sp3 configuration for radical to nonradical oxidation: Core-shell layer dependence. <i>Applied Catalysis B: Environmental</i> , 2018 , 222, 176-181	21.8	157
428	Insights into perovskite-catalyzed peroxymonosulfate activation: Maneuverable cobalt sites for promoted evolution of sulfate radicals. <i>Applied Catalysis B: Environmental</i> , 2018 , 220, 626-634	21.8	274
427	Nitrogen-doped simple and complex oxides for photocatalysis: A review. <i>Progress in Materials Science</i> , 2018 , 92, 33-63	42.2	189
426	Coking-resistant Ce0.8Ni0.2O2-linternal reforming layer for direct methane solid oxide fuel cells. <i>Electrochimica Acta</i> , 2018 , 282, 402-408	6.7	11
425	Constructing self-standing and non-precious metal heterogeneous nanowire arrays as high-performance oxygen evolution electrocatalysts: Beyond the electronegativity effect of the substrate. <i>Journal of Power Sources</i> , 2018 , 396, 421-428	8.9	12
424	Perovskite oxide/carbon nanotube hybrid bifunctional electrocatalysts for overall water splitting. <i>Electrochimica Acta</i> , 2018 , 286, 47-54	6.7	32
423	Flexible, Flame-Resistant, and Dendrite-Impermeable Gel-Polymer Electrolyte for Li-O /Air Batteries Workable Under Hurdle Conditions. <i>Small</i> , 2018 , 14, e1801798	11	83
422	Rational Design of Superior, Coking-Resistant, Nickel-Based Anodes through Tailoring Interfacial Reactions for Solid Oxide Fuel Cells Operated on Methane Fuel. <i>ChemSusChem</i> , 2018 , 11, 3112-3119	8.3	10

3D ordered macroporous SmCoO3 perovskite for highly active and selective hydrogen peroxide

Nonradical reactions in environmental remediation processes: Uncertainty and challenges. Applied

detection. Electrochimica Acta, 2018, 260, 372-383

Catalysis B: Environmental, 2018, 224, 973-982

6.7

21.8

31

397

405

403	Rationally Designed Hierarchically Structured Tungsten Nitride and Nitrogen-Rich Graphene-Like Carbon Nanocomposite as Efficient Hydrogen Evolution Electrocatalyst. <i>Advanced Science</i> , 2018 , 5, 1700	9696	95
402	Electroless deposition of Co(Mn)/Pd-decorator into Y2O3-stabilized ZrO2 scaffold as cathodes for solid oxide fuel cells. <i>International Journal of Hydrogen Energy</i> , 2018 , 43, 53-63	6.7	3
401	Evaluation of SrSc0.175Nb0.025Co0.8O3-[perovskite as a cathode for proton-conducting solid oxide fuel cells: The possibility of in situ creating protonic conductivity and electrochemical performance. <i>Electrochimica Acta</i> , 2018 , 259, 559-565	6.7	36
400	Postsynthesis Growth of CoOOH Nanostructure on SrCo0.6Ti0.4O3IPerovskite Surface for Enhanced Degradation of Aqueous Organic Contaminants. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 15737-15748	8.3	43
399	Fine-Tuning Surface Properties of Perovskites via Nanocompositing with Inert Oxide toward Developing Superior Catalysts for Advanced Oxidation. <i>Advanced Functional Materials</i> , 2018 , 28, 180465	5 4 5.6	44
398	Open hollow Co P t clusters embedded in carbon nanoflake arrays for highly efficient alkaline water splitting. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 20214-20223	13	29
397	Rational Design of Perovskite-Based Anode with Decent Activity for Hydrogen Electro-Oxidation and Beneficial Effect of Sulfur for Promoting Power Generation in Solid Oxide Fuel Cells. <i>ACS Applied Materials & Distriction and Section 2018</i> , 10, 41257-41267	9.5	7
396	Gas Humidification Impact on the Properties and Performance of Perovskite-Type Functional Materials in Proton-Conducting Solid Oxide Cells. <i>Advanced Functional Materials</i> , 2018 , 28, 1802592	15.6	46
395	A high performance composite cathode with enhanced CO2 resistance for low and intermediate-temperature solid oxide fuel cells. <i>Journal of Power Sources</i> , 2018 , 405, 124-131	8.9	21
394	Nitrogen-Doped Graphic Carbon Protected Cu/Co/CoO Nanoparticles for Ultrasensitive and Stable Non-Enzymatic Determination of Glucose and Fructose in Wine. <i>Journal of the Electrochemical Society</i> , 2018 , 165, B543-B550	3.9	8
393	Recent advances in nanostructured metal nitrides for water splitting. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 19912-19933	13	243
392	Materials design for ceramic oxygen permeation membranes: Single perovskite vs. single/double perovskite composite, a case study of tungsten-doped barium strontium cobalt ferrite. <i>Journal of Membrane Science</i> , 2018 , 566, 278-287	9.6	16
391	Spherical Ruthenium Disulfide-Sulfur-Doped Graphene Composite as an Efficient Hydrogen Evolution Electrocatalyst. <i>ACS Applied Materials & Examp; Interfaces</i> , 2018 , 10, 34098-34107	9.5	41
390	A Universal Strategy to Design Superior Water-Splitting Electrocatalysts Based on Fast In Situ Reconstruction of Amorphous Nanofilm Precursors. <i>Advanced Materials</i> , 2018 , 30, e1804333	24	86
389	Recent progress in metalorganic frameworks for lithiumBulfur batteries. <i>Polyhedron</i> , 2018 , 155, 464-484	12.7	48
388	Interfacial polymerization of covalent organic frameworks (COFs) on polymeric substrates for molecular separations. <i>Journal of Membrane Science</i> , 2018 , 566, 197-204	9.6	145
387	Alkaline metal doped strontium cobalt ferrite perovskites as cathodes for intermediate-temperature solid oxide fuel cells. <i>International Journal of Hydrogen Energy</i> , 2018 , 43, 134	20 ⁷ 13	4 2 9
386	Silver-doped strontium niobium cobaltite as a new perovskite-type ceramic membrane for oxygen separation. <i>Journal of Membrane Science</i> , 2018 , 563, 617-624	9.6	21

Anion Doping: A New Strategy for Developing High-Performance Perovskite-Type Cathode

A Green Route to a NaFePOF-Based Cathode for Sodium Ion Batteries of High Rate and Long

Materials of Solid Oxide Fuel Cells. Advanced Energy Materials, 2017, 7, 1700242

Cycling Life. ACS Applied Materials & Samp; Interfaces, 2017, 9, 16280-16287

21.8

9.5

132

369

367	Mixed Conducting Perovskite Materials as Superior Catalysts for Fast Aqueous-Phase Advanced Oxidation: A Mechanistic Study. <i>ACS Catalysis</i> , 2017 , 7, 388-397	13.1	186
366	NaCoFeO Layered Oxide As Highly Efficient Water Oxidation Electrocatalyst in Alkaline Media. <i>ACS Applied Materials & Discrete Samp; Interfaces</i> , 2017 , 9, 21587-21592	9.5	15
365	Recent Progress on Advanced Materials for Solid-Oxide Fuel Cells Operating Below 500 LC. <i>Advanced Materials</i> , 2017 , 29, 1700132	24	167
364	Nickel-Iron Alloy Nanoparticle-Decorated K2NiF4-Type Oxide as an Efficient and Sulfur-Tolerant Anode for Solid Oxide Fuel Cells. <i>ChemElectroChem</i> , 2017 , 4, 2378-2384	4.3	29
363	Synthesis of Highly Porous Metal-Free Oxygen Reduction Electrocatalysts in a Self-Sacrificial Bacterial Cellulose Microreactor. <i>Advanced Sustainable Systems</i> , 2017 , 1, 1700045	5.9	8
362	Rational Design of LaNiO3/Carbon Composites as Outstanding Platinum-Free Photocathodes in Dye-Sensitized Solar Cells With Enhanced Catalysis for the Triiodide Reduction Reaction. <i>Solar Rrl</i> , 2017 , 1, 1700074	7.1	20
361	Two-Step Fabrication of Li4Ti5O12-Coated Carbon Nanofibers as a Flexible Film Electrode for High-Power Lithium-Ion Batteries. <i>ChemElectroChem</i> , 2017 , 4, 2286-2292	4.3	10
360	Perovskite oxides applications in high temperature oxygen separation, solid oxide fuel cell and membrane reactor: A review. <i>Progress in Energy and Combustion Science</i> , 2017 , 61, 57-77	33.6	202
359	SrCoTiO perovskites as excellent catalysts for fast degradation of water contaminants in neutral and alkaline solutions. <i>Scientific Reports</i> , 2017 , 7, 44215	4.9	51
358	Co-generation of electricity and syngas on proton-conducting solid oxide fuel cell with a perovskite layer as a precursor of a highly efficient reforming catalyst. <i>Journal of Power Sources</i> , 2017 , 348, 9-15	8.9	30
357	Hierarchical Porous YolkBhell Carbon Nanosphere for High-Performance LithiumBulfur Batteries. <i>Particle and Particle Systems Characterization</i> , 2017 , 34, 1600281	3.1	31
356	A niobium and tantalum co-doped perovskite cathode for solid oxide fuel cells operating below 500 LC. <i>Nature Communications</i> , 2017 , 8, 13990	17.4	144
355	Improved performance of a symmetrical solid oxide fuel cell by swapping the roles of doped ceria and La0.6Sr1.4MnO4+lin the electrode. <i>Journal of Power Sources</i> , 2017 , 342, 644-651	8.9	24
354	Electrochemical performance and stability of nano-structured Co/PdO-co-impregnated Y2O3 stabilized ZrO2 cathode for intermediate temperature solid oxide fuel cells. <i>International Journal of Hydrogen Energy</i> , 2017 , 42, 6978-6987	6.7	5
353	A Perovskite Nanorod as Bifunctional Electrocatalyst for Overall Water Splitting. <i>Advanced Energy Materials</i> , 2017 , 7, 1602122	21.8	262
352	Amorphous Ni0.75Fe0.25(OH)2-Decorated Layered Double Perovskite Pr0.5Ba0.5CoO3-Ifor Highly Efficient and Stable Water Oxidation. <i>ChemElectroChem</i> , 2017 , 4, 550-556	4.3	10
351	Rational Design of a Water-Storable Hierarchical Architecture Decorated with Amorphous Barium Oxide and Nickel Nanoparticles as a Solid Oxide Fuel Cell Anode with Excellent Sulfur Tolerance. <i>Advanced Science</i> , 2017 , 4, 1700337	13.6	59
350	Proton-Conducting La-Doped Ceria-Based Internal Reforming Layer for Direct Methane Solid Oxide Fuel Cells. <i>ACS Applied Materials & Diverge Selection</i> , 9, 33758-33765	9.5	22

349	Flexible Znland Lilir batteries: recent advances, challenges, and future perspectives. <i>Energy and Environmental Science</i> , 2017 , 10, 2056-2080	35.4	353
348	Fructose-Derived Hollow Carbon Nanospheres with Ultrathin and Ordered Mesoporous Shells as Cathodes in LithiumBulfur Batteries for Fast Energy Storage. <i>Advanced Sustainable Systems</i> , 2017 , 1, 1700081	5.9	24
347	Surfactant-Assisted Phase-Selective Synthesis of New Cobalt MOFs and Their Efficient Electrocatalytic Hydrogen Evolution Reaction. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 130	0 ¹⁶ 130	0 03 75
346	Surfactant-Assisted Phase-Selective Synthesis of New Cobalt MOFs and Their Efficient Electrocatalytic Hydrogen Evolution Reaction. <i>Angewandte Chemie</i> , 2017 , 129, 13181-13185	3.6	47
345	YolkBhell-Structured Cu/Fe@Fe2O3 Nanoparticles Loaded Graphitic Porous Carbon for the Oxygen Reduction Reaction. <i>Particle and Particle Systems Characterization</i> , 2017 , 34, 1700158	3.1	10
344	A strongly coupled CoS2/ reduced graphene oxide nanostructure as an anode material for efficient sodium-ion batteries. <i>Journal of Alloys and Compounds</i> , 2017 , 726, 394-402	5.7	37
343	A single-/double-perovskite composite with an overwhelming single-perovskite phase for the oxygen reduction reaction at intermediate temperatures. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 248	4 ¹²³ 248	349 ⁸
342	An extremely active and durable Mo2C/graphene-like carbon based electrocatalyst for hydrogen evolution reaction. <i>Materials Today Energy</i> , 2017 , 6, 230-237	7	11
341	Two orders of magnitude enhancement in oxygen evolution reactivity on amorphous BaSrCoFeO nanofilms with tunable oxidation state. <i>Science Advances</i> , 2017 , 3, e1603206	14.3	134
340	Synthesis of Hierarchical TiO2©3N4 Hybrid Microspheres with Enhanced Photocatalytic and Photovoltaic Activities by Maximizing the Synergistic Effect. <i>ChemPhotoChem</i> , 2017 , 1, 35-45	3.3	32
339	Facile synthesis of nitrogen-doped carbon nanotubes encapsulating nickel cobalt alloys 3D networks for oxygen evolution reaction in an alkaline solution. <i>Journal of Power Sources</i> , 2017 , 338, 26-	3 ⁸ .9	89
338	MnO-Co composite modified Ni-SDC anode for intermediate temperature solid oxide fuel cells. <i>Fuel Processing Technology</i> , 2017 , 161, 241-247	7.2	8
337	LiNi0.29Co0.33Mn0.38O2 polyhedrons with reduced cation mixing as a high-performance cathode material for Li-ion batteries synthesized via a combined co-precipitation and molten salt heating technique. <i>Journal of Alloys and Compounds</i> , 2017 , 691, 206-214	5.7	24
336	Solid-Oxide Fuel Cells: Recent Progress on Advanced Materials for Solid-Oxide Fuel Cells Operating Below 500 LC (Adv. Mater. 48/2017). <i>Advanced Materials</i> , 2017 , 29, 1770345	24	48
335	Pine-Leaf-Shaped \oplus -Fe2O3 Micro/Nanostructures with a Preferred Orientation along the (110) Plane for Efficient Reversible Lithium Storage. <i>ChemElectroChem</i> , 2017 , 4, 2278-2285	4.3	3
334	Highly Active Carbon/⊞-MnO2 Hybrid Oxygen Reduction Reaction Electrocatalysts. <i>ChemElectroChem</i> , 2016 , 3, 1760-1767	4.3	37
333	n-type boron phosphide as a highly stable, metal-free, visible-light-active photocatalyst for hydrogen evolution. <i>Nano Energy</i> , 2016 , 28, 158-163	17.1	70
332	Design of Perovskite Oxides as Anion-Intercalation-Type Electrodes for Supercapacitors: Cation Leaching Effect. <i>ACS Applied Materials & District Science</i> , 2016 , 8, 23774-83	9.5	75

(2016-2016)

331	In situ fabrication of (Sr,La)FeO4 with CoFe alloy nanoparticles as an independent catalyst layer for direct methane-based solid oxide fuel cells with a nickel cermet anode. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 13997-14007	13	50
330	Electrolyte Materials for IT-SOFCs. <i>Green Chemistry and Sustainable Technology</i> , 2016 , 15-57	1.1	
329	Intermediate-Temperature Solid Oxide Fuel Cells. <i>Green Chemistry and Sustainable Technology</i> , 2016 ,	1.1	12
328	Anodes for IT-SOFCs. <i>Green Chemistry and Sustainable Technology</i> , 2016 , 127-175	1.1	1
327	Controlled deposition and utilization of carbon on Ni-YSZ anodes of SOFCs operating on dry methane. <i>Energy</i> , 2016 , 113, 432-443	7.9	28
326	Perovskite SrCo0.9 Nb0.1 O3-las an Anion-Intercalated Electrode Material for Supercapacitors with Ultrahigh Volumetric Energy Density. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 9576-9	16.4	68
325	An efficient electrocatalyst as cathode material for solid oxide fuel cells: BaFe0D5Sn0D5O3D Journal of Power Sources, 2016 , 326, 459-465	8.9	54
324	Cobalt Oxide and Cobalt-Graphitic Carbon Core-Shell Based Catalysts with Remarkably High Oxygen Reduction Reaction Activity. <i>Advanced Science</i> , 2016 , 3, 1600060	13.6	92
323	H2S poisoning effect and ways to improve sulfur tolerance of nickel cermet anodes operating on carbonaceous fuels. <i>Applied Energy</i> , 2016 , 179, 765-777	10.7	38
322	Understanding the doping effect toward the design of CO2-tolerant perovskite membranes with enhanced oxygen permeability. <i>Journal of Membrane Science</i> , 2016 , 519, 11-21	9.6	34
321	Surfactant-free self-assembly of reduced graphite oxide-MoO2 nanobelt composites used as electrode for lithium-ion batteries. <i>Electrochimica Acta</i> , 2016 , 211, 972-981	6.7	47
320	Facile Synthesis of a 3D Nanoarchitectured Li4Ti5O12 Electrode for Ultrafast Energy Storage. <i>Advanced Energy Materials</i> , 2016 , 6, 1500924	21.8	74
319	Perovskite materials in energy storage and conversion. <i>Asia-Pacific Journal of Chemical Engineering</i> , 2016 , 11, 338-369	1.3	59
318	Rational confinement of molybdenum based nanodots in porous carbon for highly reversible lithium storage. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 10403-10408	13	15
317	A hierarchical Zn2Mo3O8 nanodots-porous carbon composite as a superior anode for lithium-ion batteries. <i>Chemical Communications</i> , 2016 , 52, 9402-5	5.8	26
316	Tuning layer-structured La0.6Sr1.4MnO4+Into a promising electrode for intermediate-temperature symmetrical solid oxide fuel cells through surface modification. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 10641-10649	13	45
315	Scalable synthesis of self-standing sulfur-doped flexible graphene films as recyclable anode materials for low-cost sodium-ion batteries. <i>Carbon</i> , 2016 , 107, 67-73	10.4	89
314	Three Strongly Coupled Allotropes in a Functionalized Porous All-Carbon Nanocomposite as a Superior Anode for Lithium-Ion Batteries. <i>ChemElectroChem</i> , 2016 , 3, 698-703	4.3	18

		WEI	Z нои
313	Evaluation of the CO2 Poisoning Effect on a Highly Active Cathode SrSc(0.175)Nb(0.025)Co(0.8)O(3-) in the Oxygen Reduction Reaction. <i>ACS Applied Materials & Active Cathode</i> Interfaces, 2016 , 8, 3003-11	9.5	71
312	Facile synthesis of a MoO2Mo2CI composite and its application as favorable anode material for lithium-ion batteries. <i>Journal of Power Sources</i> , 2016 , 307, 552-560	8.9	82
311	Impregnated LaCo0.3Fe0.67Pd0.03O3-[as a promising electrocatalyst for Elymmetrical[] intermediate-temperature solid oxide fuel cells. <i>Journal of Power Sources</i> , 2016 , 306, 92-99	8.9	44
310	Process Investigation of a Solid Carbon-Fueled Solid Oxide Fuel Cell Integrated with a CO2-Permeating Membrane and a Sintering-Resistant Reverse Boudouard Reaction Catalyst. <i>Energy & Documents</i> , 2016, 30, 1841-1848	4.1	12
309	Promotion of Oxygen Reduction by Exsolved Silver Nanoparticles on a Perovskite Scaffold for Low-Temperature Solid Oxide Fuel Cells. <i>Nano Letters</i> , 2016 , 16, 512-8	11.5	164
308	Pt/CliCoO2 composites with ultralow Pt loadings as synergistic bifunctional electrocatalysts for oxygen reduction and evolution reactions. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 4516-4524	13	47
307	Enhancing Electrocatalytic Activity of Perovskite Oxides by Tuning Cation Deficiency for Oxygen Reduction and Evolution Reactions. <i>Chemistry of Materials</i> , 2016 , 28, 1691-1697	9.6	443
306	Hierarchical carbon-coated acanthosphere-like Li4Ti5O12 microspheres for high-power lithium-ion batteries. <i>Journal of Power Sources</i> , 2016 , 314, 18-27	8.9	48
305	Graphene decorated with multiple nanosized active species as dual function electrocatalysts for lithium-oxygen batteries. <i>Electrochimica Acta</i> , 2016 , 188, 718-726	6.7	10
304	Stable direct-methane solid oxide fuel cells with calcium-oxide-modified nickel-based anodes operating at reduced temperatures. <i>Applied Energy</i> , 2016 , 164, 563-571	10.7	68
303	Multi scale and physics models for intermediate and low temperatures H+-solid oxide fuel cells with H+/eI/O2[mixed conducting properties: Part A, generalized percolation theory for LSCF-SDC-BZCY 3-component cathodes. <i>Journal of Power Sources</i> , 2016 , 303, 305-316	8.9	26
302	An Aurivillius Oxide Based Cathode with Excellent CO2 Tolerance for Intermediate-Temperature Solid Oxide Fuel Cells. <i>Angewandte Chemie</i> , 2016 , 128, 9134-9139	3.6	10
301	An Aurivillius Oxide Based Cathode with Excellent CO2 Tolerance for Intermediate-Temperature Solid Oxide Fuel Cells. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 8988-93	16.4	48
300	Recent development on perovskite-type cathode materials based on SrCoO3 Iparent oxide for intermediate-temperature solid oxide fuel cells. <i>Asia-Pacific Journal of Chemical Engineering</i> , 2016 , 11, 370-381	1.3	21
299	High performance porous iron oxide-carbon nanotube nanocomposite as an anode material for lithium-ion batteries. <i>Electrochimica Acta</i> , 2016 , 212, 179-186	6.7	23
298	Activity and Stability of Ruddlesden-Popper-Type La(n+1) Ni(n) O(3n+1) (n=1, 2, 3, and DELECTION Electrocatalysts for Oxygen Reduction and Evolution Reactions in Alkaline Media. <i>Chemistry - AEuropean Journal</i> , 2016 , 22, 2719-27	4.8	80
297	A Perovskite Electrocatalyst for Efficient Hydrogen Evolution Reaction. <i>Advanced Materials</i> , 2016 , 28, 6442-8	24	315
296	Phosphorus-Doped Perovskite Oxide as Highly Efficient Water Oxidation Electrocatalyst in Alkaline Solution. <i>Advanced Functional Materials</i> , 2016 , 26, 5862-5872	15.6	199

295	Anodes for Carbon-Fueled Solid Oxide Fuel Cells. ChemElectroChem, 2016, 3, 193-203	4.3	30
294	Enhancing Electrode Performance by Exsolved Nanoparticles: A Superior Cobalt-Free Perovskite Electrocatalyst for Solid Oxide Fuel Cells. <i>ACS Applied Materials & Samp; Interfaces</i> , 2016 , 8, 35308-35314	9.5	76
293	One-pot combustion synthesis of Li3VO4-Li4Ti5O12 nanocomposite as anode material of lithium-ion batteries with improved performance. <i>Electrochimica Acta</i> , 2016 , 222, 587-595	6.7	8
292	Trapping sulfur in hierarchically porous, hollow indented carbon spheres: a high-performance cathode for lithiumBulfur batteries. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 9526-9535	13	87
291	Nitrogen-doped TiO2 microspheres with hierarchical micro/nanostructures and rich dual-phase junctions for enhanced photocatalytic activity. <i>RSC Advances</i> , 2016 , 6, 40923-40931	3.7	33
290	Surface controlled generation of reactive radicals from persulfate by carbocatalysis on nanodiamonds. <i>Applied Catalysis B: Environmental</i> , 2016 , 194, 7-15	21.8	277
289	Optimal hydrothermal synthesis of hierarchical porous ZnMn 2 O 4 microspheres with more porous core for improved lithium storage performance. <i>Electrochimica Acta</i> , 2016 , 207, 58-65	6.7	20
288	Advances in non-enzymatic glucose sensors based on metal oxides. <i>Journal of Materials Chemistry B</i> , 2016 , 4, 7333-7349	7.3	252
287	Mesoporous and Nanostructured TiO layer with Ultra-High Loading on Nitrogen-Doped Carbon Foams as Flexible and Free-Standing Electrodes for Lithium-Ion Batteries. <i>Small</i> , 2016 , 12, 6724-6734	11	72
286	Cathodes for IT-SOFCs. <i>Green Chemistry and Sustainable Technology</i> , 2016 , 59-126	1.1	2
285	Toward Enhanced Oxygen Evolution on Perovskite Oxides Synthesized from Different Approaches: A Case Study of Ba0.5Sr0.5Co0.8Fe0.2O3\(\text{I}\)Electrochimica Acta, 2016 , 219, 553-559	6.7	57
284	Perovskite SrCo0.9Nb0.1O3las an Anion-Intercalated Electrode Material for Supercapacitors with Ultrahigh Volumetric Energy Density. <i>Angewandte Chemie</i> , 2016 , 128, 9728-9731	3.6	38
283	Co-doping Strategy for Developing Perovskite Oxides as Highly Efficient Electrocatalysts for Oxygen Evolution Reaction. <i>Advanced Science</i> , 2016 , 3, 1500187	13.6	196
282	Boosting oxygen reduction/evolution reaction activities with layered perovskite catalysts. <i>Chemical Communications</i> , 2016 , 52, 10739-42	5.8	64
281	SrCo(0.9)Ti(0.1)O(3-¶As a New Electrocatalyst for the Oxygen Evolution Reaction in Alkaline Electrolyte with Stable Performance. <i>ACS Applied Materials & District Stable Performance</i> (17663-70)	9.5	97
280	Modified template synthesis and electrochemical performance of a Co3O4/mesoporous cathode for lithiumBxygen batteries. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 16132-16141	13	28
279	High activity and durability of novel perovskite electrocatalysts for water oxidation. <i>Materials Horizons</i> , 2015 , 2, 495-501	14.4	119
278	Multifunctional Iron Oxide Nanoflake/Graphene Composites Derived from Mechanochemical Synthesis for Enhanced Lithium Storage and Electrocatalysis. <i>ACS Applied Materials & Description of the Interfaces</i> , 2015 , 7, 14446-55	9.5	62

Cobalt-free Ba0.5Sr0.5Fe0.8Cu0.1Ti0.1O3las a bi-functional electrode material for solid oxide

for Low-Temperature Electrochemical Devices. Chemical Reviews, 2015, 115, 9869-921

Cobalt-free SrNbxFe1 203 x = 0.05, 0.1 and 0.2) perovskite cathodes for intermediate

temperature solid oxide fuel cells. Journal of Power Sources, 2015, 298, 209-216

Nonstoichiometric Oxides as Low-Cost and Highly-Efficient Oxygen Reduction/Evolution Catalysts

fuel cells. Journal of Power Sources, 2015, 298, 184-192

8.9

68.1

8.9

38

631

61

262

261

259	Oriented PrBaCo2O5+Ethin films for solid oxide fuel cells. <i>Journal of Power Sources</i> , 2015 , 278, 623-629	8.9	22
258	Enhanced electrochemical performance, water storage capability and coking resistance of a Ni+BaZr 0.1 Ce 0.7 Y 0.1 Yb 0.1 O 3\(\text{Density} \) node for solid oxide fuel cells operating on ethanol. Chemical Engineering Science, 2015 , 126, 22-31	4.4	35
257	Highly defective CeO2 as a promoter for efficient and stable water oxidation. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 634-640	13	169
256	A top-down strategy for the synthesis of mesoporous Ba0.5Sr0.5Co0.8Fe0.2O3las a cathode precursor for buffer layer-free deposition on stabilized zirconia electrolyte with a superior electrochemical performance. <i>Journal of Power Sources</i> , 2015 , 274, 1024-1033	8.9	36
255	In Situ Tetraethoxysilane-Templated Porous Ba0.5Sr0.5Co0.8Fe0.2O3lPerovskite for the Oxygen Evolution Reaction. <i>ChemElectroChem</i> , 2015 , 2, 200-203	4.3	32
254	High activity electrocatalysts from metalBrganic framework-carbon nanotube templates for the oxygen reduction reaction. <i>Carbon</i> , 2015 , 82, 417-424	10.4	121
253	Green fabrication of composite cathode with attractive performance for solid oxide fuel cells through facile inkjet printing. <i>Journal of Power Sources</i> , 2015 , 273, 465-471	8.9	28
252	SrNb0.1Co0.7Fe0.2O3IPerovskite as a Next-Generation Electrocatalyst for Oxygen Evolution in Alkaline Solution. <i>Angewandte Chemie</i> , 2015 , 127, 3969-3973	3.6	64
251	Low-Temperature Synthesis of Hierarchical Amorphous Basic Nickel Carbonate Particles for Water Oxidation Catalysis. <i>ChemSusChem</i> , 2015 , 8, 2193-7	8.3	8
250	Progress and Prospects in Symmetrical Solid Oxide Fuel Cells with Two Identical Electrodes. <i>Advanced Energy Materials</i> , 2015 , 5, 1500188	21.8	96
249	A High-Performance Electrocatalyst for Oxygen Evolution Reaction: LiCo0.8 Fe0.2 O2. <i>Advanced Materials</i> , 2015 , 27, 7150-5	24	205
248	Advances in Cathode Materials for Solid Oxide Fuel Cells: Complex Oxides without Alkaline Earth Metal Elements. <i>Advanced Energy Materials</i> , 2015 , 5, 1500537	21.8	169
247	A CarbonAir Battery for High Power Generation. <i>Angewandte Chemie</i> , 2015 , 127, 3793-3796	3.6	7
246	Comparative Studies of SrCo1NTaxO3Nx=0.05D.4) Oxides as Cathodes for Low-Temperature Solid-Oxide Fuel Cells. <i>ChemElectroChem</i> , 2015 , 2, 1331-1338	4.3	40
245	Molten salt synthesis of nitrogen-doped carbon with hierarchical pore structures for use as high-performance electrodes in supercapacitors. <i>Carbon</i> , 2015 , 93, 48-58	10.4	240
244	Ethylene glycol as a new sustainable fuel for solid oxide fuel cells with conventional nickel-based anodes. <i>Applied Energy</i> , 2015 , 148, 1-9	10.7	23
243	A comprehensive review of Li 4 Ti 5 O 12 -based electrodes for lithium-ion batteries: The latest advancements and future perspectives. <i>Materials Science and Engineering Reports</i> , 2015 , 98, 1-71	30.9	389
242	A comparative study of SrCo0.8Nb0.2O3Iand SrCo0.8Ta0.2O3Ias low-temperature solid oxide fuel cell cathodes: effect of non-geometry factors on the oxygen reduction reaction. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 24064-24070	13	43

		WEI	Zнои
241	Insight into an unusual lanthanum effect on the oxygen reduction reaction activity of Ruddlesden-Popper-type cation-nonstoichiometric La2\(\mathbb{N}\) NiO4+\(\mathbb{I}\)(x = 0\(\mathbb{D}\).1) oxides. Journal of Materials Chemistry A, 2015 , 3, 6501-6508	13	21
240	Calcium-doped lanthanum nickelate layered perovskite and nickel oxide nano-hybrid for highly efficient water oxidation. <i>Nano Energy</i> , 2015 , 12, 115-122	17.1	120
239	SrNb(0.1)Co(0.7)Fe(0.2)O(3-Iperovskite as a next-generation electrocatalyst for oxygen evolution in alkaline solution. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 3897-901	16.4	345
238	Probing CO2 reaction mechanisms and effects on the SrNb0.1Co0.9\(\mathbb{B}\)FexO3\(\mathbb{L}\)athodes for solid oxide fuel cells. <i>Applied Catalysis B: Environmental</i> , 2015 , 172-173, 52-57	21.8	61
237	Facile conversion of commercial coarse-type LiCoO2 to nanocomposite-separated nanolayer architectures as a way for electrode performance enhancement. <i>ACS Applied Materials & ACS Applied Materials & Interfaces</i> , 2015 , 7, 1787-94	9.5	15
236	A carbon-air battery for high power generation. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 3722-5	16.4	32
235	In situ catalyzed Boudouard reaction of coal char for solid oxide-based carbon fuel cells with improved performance. <i>Applied Energy</i> , 2015 , 141, 200-208	10.7	68
234	Cobalt-free niobium-doped barium ferrite as potential materials of dense ceramic membranes for oxygen separation. <i>Journal of Membrane Science</i> , 2014 , 455, 75-82	9.6	34
233	Fabrication and operation of flow-through tubular SOFCs for electric power and synthesis gas cogeneration from methane. <i>AICHE Journal</i> , 2014 , 60, 1036-1044	3.6	10
232	Tin-doped perovskite mixed conducting membrane for efficient air separation. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 9666-9674	13	43
231	Single-chamber solid oxide fuel cells with nanocatalyst-modified anodes capable of in situ activation. <i>Journal of Power Sources</i> , 2014 , 264, 220-228	8.9	10
230	Cobalt-free polycrystalline Ba0.95La0.05FeO3Ithin films as cathodes for intermediate-temperature solid oxide fuel cells. <i>Journal of Power Sources</i> , 2014 , 250, 188-195	8.9	55
229	Non-aqueous hybrid supercapacitors fabricated with mesoporous TiO2 microspheres and activated carbon electrodes with superior performance. <i>Journal of Power Sources</i> , 2014 , 253, 80-89	8.9	68
228	Nano La0.6Ca0.4Fe0.8Ni0.2O3Edecorated porous doped ceria as a novel cobalt-free electrode for BymmetricalEsolid oxide fuel cells. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 19526-19535	13	67
227	Influence of crystal structure on the electrochemical performance of A-site-deficient Sr1BNb0.1Co0.9O3Derovskite cathodes. <i>RSC Advances</i> , 2014 , 4, 40865-40872	3.7	33
226	Computational and experimental analysis of Ba0.95La0.05FeO3las a cathode material for solid oxide fuel cells. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 14154-14163	13	49
225	3D coreBhell architecture from infiltration and beneficial reactive sintering as highly efficient and thermally stable oxygen reduction electrode. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 1284-1293	13	40
224	Stability of YSZ and SDC in molten carbonate eutectics for hybrid direct carbon fuel cells. <i>RSC Advances</i> , 2014 , 4, 2398-2403	3.7	11

223	A CO2-tolerant nanostructured layer for oxygen transport membranes. RSC Advances, 2014 , 4, 25924	3.7	19
222	High-performance SrNb0.1Co0.9\(\mathbb{B}\)FexO3\(\mathbb{D}\)erovskite cathodes for low-temperature solid oxide fuel cells. Journal of Materials Chemistry A, 2014 , 2, 15454-15462	13	58
221	Facile mechanochemical synthesis of nano SnO2/graphene composite from coarse metallic Sn and graphite oxide: an outstanding anode material for lithium-ion batteries. <i>Chemistry - A European Journal</i> , 2014 , 20, 4055-63	4.8	90
220	Structural and oxygen-transport studies of double perovskites PrBa1 $\mbox{\ensuremath{\mathbb{N}}}$ Co2O5+ $\mbox{\ensuremath{\mathbb{Q}}}$ x = 0.00, 0.05, and 0.10) toward their application as superior oxygen reduction electrodes. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 20520-20529	13	73
219	A Highly Stable and Active Hybrid Cathode for Low-Temperature Solid Oxide Fuel Cells. <i>ChemElectroChem</i> , 2014 , 1, 1627-1631	4.3	25
218	Influence of sealing materials on the oxygen permeation fluxes of some typical oxygen ion conducting ceramic membranes. <i>Journal of Membrane Science</i> , 2014 , 470, 102-111	9.6	12
217	BaCo0.6Fe0.3Sn0.1O3perovskite as a new superior oxygen reduction electrode for intermediate-to-low temperature solid oxide fuel cells. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 15078	13	44
216	Enhanced sulfur tolerance of nickel-based anodes for oxygen-ion conducting solid oxide fuel cells by incorporating a secondary water storing phase. <i>Environmental Science & amp; Technology</i> , 2014 , 48, 12427-34	10.3	21
215	Aluminum oxide as a dual-functional modifier of Ni-based anodes of solid oxide fuel cells for operation on simulated biogas. <i>Journal of Power Sources</i> , 2014 , 268, 787-793	8.9	38
214	Surprisingly high activity for oxygen reduction reaction of selected oxides lacking long oxygen-ion diffusion paths at intermediate temperatures: a case study of cobalt-free BaFeO(3-] ACS Applied Materials & Damp; Interfaces, 2014, 6, 11180-9	9.5	75
213	Facile synthesis of porous MgOtaOBnOx nanocubes implanted firmly on in situ formed carbon paper and their lithium storage properties. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 9126	13	23
212	Flower-like perovskite LaCr0.9Ni0.1O3NiO nanostructures: a new candidate for CO2 reforming of methane. <i>RSC Advances</i> , 2014 , 4, 21306	3.7	11
211	Facile fabrication and improved carbon dioxide tolerance of a novel bilayer-structured ceramic oxygen permeating membrane. <i>Journal of Membrane Science</i> , 2014 , 472, 10-18	9.6	16
210	Advanced Symmetric Solid Oxide Fuel Cell with an Infiltrated K2NiF4-Type La2NiO4 Electrode. <i>Energy & Discourt Supply Senergy & Discourt Senergy & Discou</i>	4.1	73
209	A NiFeCu alloy anode catalyst for direct-methane solid oxide fuel cells. <i>Journal of Power Sources</i> , 2014 , 258, 134-141	8.9	53
208	Mixed fuel strategy for carbon deposition mitigation in solid oxide fuel cells at intermediate temperatures. <i>Environmental Science & Environmental Sc</i>	10.3	11
207	A universal and facile way for the development of superior bifunctional electrocatalysts for oxygen reduction and evolution reactions utilizing the synergistic effect. <i>Chemistry - A European Journal</i> , 2014 , 20, 15533-42	4.8	76
206	Nickel-based anode with water storage capability to mitigate carbon deposition for direct ethanol solid oxide fuel cells. <i>ChemSusChem</i> , 2014 , 7, 1719-28	8.3	51

		WEI	Zнои
205	A new approach to nanoporous graphene sheets via rapid microwave-induced plasma for energy applications. <i>Nanotechnology</i> , 2014 , 25, 495604	3.4	18
204	The influence of impurity ions on the permeation and oxygen reduction properties of Ba0.5Sr0.5Co0.8Fe0.2O3[perovskite. <i>Journal of Membrane Science</i> , 2014 , 449, 86-96	9.6	33
203	Design and investigation of dual-layer electrodes for proton exchange membrane fuel cells. <i>Solid State Ionics</i> , 2014 , 262, 313-318	3.3	9
202	Coking suppression in solid oxide fuel cells operating on ethanol by applying pyridine as fuel additive. <i>Journal of Power Sources</i> , 2014 , 265, 20-29	8.9	24
201	Progress in solid oxide fuel cells with nickel-based anodes operating on methane and related fuels. <i>Chemical Reviews</i> , 2013 , 113, 8104-51	68.1	342
200	The significant effect of the phase composition on the oxygen reduction reaction activity of a layered oxide cathode. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 11026	13	7
199	Nanoscaled Sm-doped CeO2 buffer layers for intermediate-temperature solid oxide fuel cells. <i>Electrochemistry Communications</i> , 2013 , 35, 131-134	5.1	38
198	Microwave-plasma induced reconstruction of silver catalysts for highly efficient oxygen reduction. Journal of Materials Chemistry A, 2013 , 1, 13746	13	12
197	A new nickelderia composite for direct-methane solid oxide fuel cells. <i>International Journal of Hydrogen Energy</i> , 2013 , 38, 3741-3749	6.7	32
196	Solid lithium electrolyte-Li4Ti5O12 composites as anodes of lithium-ion batteries showing high-rate performance. <i>Journal of Power Sources</i> , 2013 , 231, 177-185	8.9	26
195	Porous TiO2(B)/anatase microspheres with hierarchical nano and microstructures for high-performance lithium-ion batteries. <i>Electrochimica Acta</i> , 2013 , 97, 386-392	6.7	70
194	Renewable acetic acid in combination with solid oxide fuel cells for sustainable clean electric power generation. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 5620	13	31
193	Amorphous V-O-C composite nanofibers electrospun from solution precursors as binder- and conductive additive-free electrodes for supercapacitors with outstanding performance. <i>Nanoscale</i> , 2013 , 5, 12589-97	7.7	50
192	BaNb0.05Fe0.95O3las a new oxygen reduction electrocatalyst for intermediate temperature solid oxide fuel cells. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 9781	13	93
191	SrCo0.85Fe0.1P0.05O3[perovskite as a cathode for intermediate-temperature solid oxide fuel cells. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 13632	13	41
190	Samaria-Doped Ceria Electrolyte Supported Direct Carbon Fuel Cell with Molten Antimony as the Anode. <i>Industrial & Direct Carbon Fuel Cell with Molten Antimony as the Anode. Industrial & Direct Carbon Fuel Cell with Molten Antimony as the Anode. Industrial & Direct Carbon Fuel Cell with Molten Antimony as the Anode. Industrial & Direct Carbon Fuel Cell with Molten Antimony as the Anode. Industrial & Direct Carbon Fuel Cell with Molten Antimony as the Anode. Industrial & Direct Carbon Fuel Cell with Molten Antimony as the Anode. Industrial & Direct Carbon Fuel Cell with Molten Antimony as the Anode. Industrial & Direct Carbon Fuel Cell with Molten Antimony as the Anode. Industrial & Direct Carbon Fuel Cell with Molten Antimony as the Anode. Industrial & Direct Carbon Fuel Cell with Molten Antimony as the Anode. Industrial & Direct Carbon Fuel Cell with Molten Antimony as the Anode. Industrial & Direct Carbon Fuel Cell & Direct </i>	3.9	11
189	A highly active perovskite electrode for the oxygen reduction reaction below 600 °C. Angewandte Chemie - International Edition, 2013 , 52, 14036-40	16.4	123
188	A comparative study of different carbon fuels in an electrolyte-supported hybrid direct carbon fuel cell. <i>Applied Energy</i> , 2013 , 108, 402-409	10.7	51

(2012-2013)

187	Composition and microstructure optimization and operation stability of barium deficient Ba1\(\text{B}C00.7\)Fe0.2Nb0.1O3\(\text{p}erovskite oxide electrodes. \) Electrochimica Acta, 2013, 103, 23-31	6.7	29
186	Optimization of a direct carbon fuel cell for operation below[700][C. International Journal of Hydrogen Energy, 2013, 38, 5367-5374	6.7	32
185	A novel approach for substantially improving the sinterability of BaZr0.4Ce0.4Y0.2O3lelectrolyte for fuel cells by impregnating the green membrane with zinc nitrate as a sintering aid. <i>Journal of Membrane Science</i> , 2013 , 437, 189-195	9.6	36
184	The use of nitrogen-doped graphene supporting Pt nanoparticles as a catalyst for methanol electrocatalytic oxidation. <i>Carbon</i> , 2013 , 52, 181-192	10.4	242
183	Mixed matrix membranes incorporated with size-reduced Cu-BTC for improved gas separation. Journal of Materials Chemistry A, 2013 , 1, 6350	13	122
182	Advanced Cathodes for Solid Oxide Fuel Cells 2013 , 49-95		3
181	CO2 and water vapor-tolerant yttria stabilized bismuth oxide (YSB) membranes with external short circuit for oxygen separation with CO2 capture at intermediate temperatures. <i>Journal of Membrane Science</i> , 2013 , 427, 168-175	9.6	11
180	Robust ion-transporting ceramic membrane with an internal short circuit for oxygen production. Journal of Materials Chemistry A, 2013 , 1, 9150	13	27
179	Enhancing Bi-functional Electrocatalytic Activity of Perovskite by Temperature Shock: A Case Study of LaNiO3\(\textit{J}\) Journal of Physical Chemistry Letters, 2013 , 4, 2982-2988	6.4	142
178	An A-site-deficient perovskite offers high activity and stability for low-temperature solid-oxide fuel cells. <i>ChemSusChem</i> , 2013 , 6, 2249-54	8.3	77
177	A Highly Active Perovskite Electrode for the Oxygen Reduction Reaction Below 600 LC. <i>Angewandte Chemie</i> , 2013 , 125, 14286-14290	3.6	13
176	Nickel zirconia cerate cermet for catalytic partial oxidation of ethanol in a solid oxide fuel cell system. <i>International Journal of Hydrogen Energy</i> , 2012 , 37, 8603-8612	6.7	20
175	Effect of fabrication method on properties and performance of bimetallic Ni0.75Fe0.25 anode catalyst for solid oxide fuel cells. <i>International Journal of Hydrogen Energy</i> , 2012 , 37, 9287-9297	6.7	12
174	A new way to increase performance of oxide electrode for oxygen reduction using grain growth inhibitor. <i>Electrochemistry Communications</i> , 2012 , 14, 36-38	5.1	13
173	A new symmetric solid oxide fuel cell with a samaria-doped ceria framework and a silver-infiltrated electrocatalyst. <i>Journal of Power Sources</i> , 2012 , 197, 57-64	8.9	29
172	Role of silver current collector on the operational stability of selected cobalt-containing oxide electrodes for oxygen reduction reaction. <i>Journal of Power Sources</i> , 2012 , 210, 146-153	8.9	42
171	Advanced synthesis of materials for intermediate-temperature solid oxide fuel cells. <i>Progress in Materials Science</i> , 2012 , 57, 804-874	42.2	306
170	Morphology and Catalytic Performance of Flake-Shaped NiO-Yttria-Stabilized Zirconia (YSZ) Particles with Nanocrystalline YSZ Grains. <i>Industrial & Engineering Chemistry Research</i> , 2012 , 51, 6387-6394	3.9	6

Further performance enhancement of a DME-fueled solid oxide fuel cell by applying anode

functional catalyst. International Journal of Hydrogen Energy, 2012, 37, 6844-6852

151	Hierarchical CO(2)-protective shell for highly efficient oxygen reduction reaction. <i>Scientific Reports</i> , 2012 , 2, 327	4.9	57
150	Novel B-site ordered double perovskite Ba2Bi0.1Sc0.2Co1.7O6\(\mathbb{R}\) for highly efficient oxygen reduction reaction. <i>Energy and Environmental Science</i> , 2011 , 4, 872-875	35.4	108
149	Research progress and materials selection guidelines on mixed conducting perovskite-type ceramic membranes for oxygen production. <i>RSC Advances</i> , 2011 , 1, 1661	3.7	123
148	Heterostructured electrode with concentration gradient shell for highly efficient oxygen reduction at low temperature. <i>Scientific Reports</i> , 2011 , 1, 155	4.9	26
147	Synthesis of Flake-Shaped NiOMSZ Particles for High-Porosity Anode of Solid Oxide Fuel Cell. Journal of the American Ceramic Society, 2011 , 94, 3666-3670	3.8	2
146	Sintering and oxygen permeation studies of La0.6Sr0.4Co0.2Fe0.8O3Leramic membranes with improved purity. <i>Journal of the European Ceramic Society</i> , 2011 , 31, 2931-2938	6	15
145	Study on proton-conducting solid oxide fuel cells with a conventional nickel cermet anode operating on dimethyl ether. <i>Journal of Power Sources</i> , 2011 , 196, 9246-9253	8.9	11
144	Effect of foreign oxides on the phase structure, sintering and transport properties of Ba0.5Sr0.5Co0.8Fe0.2O3ta ceramic membranes for oxygen separation. <i>Separation and Purification Technology</i> , 2011 , 81, 384-391	8.3	13
143	A single-step synthesized cobalt-free barium ferrites-based composite cathode for intermediate temperature solid oxide fuel cells. <i>Electrochemistry Communications</i> , 2011 , 13, 1340-1343	5.1	19
142	Effect of nickel content and preparation method on the performance of Ni-Al2O3 towards the applications in solid oxide fuel cells. <i>International Journal of Hydrogen Energy</i> , 2011 , 36, 10958-10967	6.7	26
141	Coke formation and performance of an intermediate-temperature solid oxide fuel cell operating on dimethyl ether fuel. <i>Journal of Power Sources</i> , 2011 , 196, 1967-1974	8.9	33
140	Pd-YSZ composite cathodes for oxygen reduction reaction of intermediate-temperature solid oxide fuel cells. <i>International Journal of Hydrogen Energy</i> , 2011 , 36, 7670-7676	6.7	32
139	Preparation and re-examination of Li4Ti4.85Al0.15O12 as anode material of lithium-ion battery. <i>International Journal of Energy Research</i> , 2011 , 35, 68-77	4.5	28
138	A three-dimensional highly interconnected composite oxygen reduction reaction electrocatalyst prepared from a core-shell precursor. <i>ChemSusChem</i> , 2011 , 4, 1582-6	8.3	15
137	Electric Power and Synthesis Gas Co-generation From Methane with Zero Waste Gas Emission. <i>Angewandte Chemie</i> , 2011 , 123, 1832-1837	3.6	18
136	Electric power and synthesis gas co-generation from methane with zero waste gas emission. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 1792-7	16.4	63
135	The instability of solid oxide fuel cells in an intermediate temperature region. <i>Asia-Pacific Journal of Chemical Engineering</i> , 2011 , 6, 199-203	1.3	7
134	Electrospinning based fabrication and performance improvement of film electrodes for lithium-ion batteries composed of TiO2 hollow fibers Journal of Materials Chemistry, 2011, 21, 15041		64

133	A new cathode for solid oxide fuel cells capable of in situ electrochemical regeneration. <i>Journal of Materials Chemistry</i> , 2011 , 21, 15343		71
132	A Comparative Study of Oxygen Reduction Reaction on Bi- and La-Doped SrFeO[sub 3] Perovskite Cathodes. <i>Journal of the Electrochemical Society</i> , 2011 , 158, B132	3.9	83
131	Amorphous Iron Oxide Decorated 3D Heterostructured Electrode for Highly Efficient Oxygen Reduction. <i>Chemistry of Materials</i> , 2011 , 23, 4193-4198	9.6	72
130	Deactivation and Regeneration of Oxygen Reduction Reactivity on Double Perovskite Ba2Bi0.1Sc0.2Co1.7O6\(\mathbb{R}\) Cathode for Intermediate-Temperature Solid Oxide Fuel Cells. <i>Chemistry of Materials</i> , 2011 , 23, 1618-1624	9.6	46
129	A comparison study of catalytic oxidation and acid oxidation to prepare carbon nanotubes for filling with Ru nanoparticles. <i>Carbon</i> , 2011 , 49, 2022-2032	10.4	36
128	New Ba0.5Sr0.5Co0.8Fe0.2O3I Co3O4 composite electrode for IT-SOFCs with improved electrical conductivity and catalytic activity. <i>Electrochemistry Communications</i> , 2011 , 13, 197-199	5.1	49
127	Effect of Sm3+ content on the properties and electrochemical performance of SmxSr1\(\mathbb{Q}\)CoO3\(\mathbb{Q}\) (0.2\(\mathbb{D}\)D.8) as an oxygen reduction electrodes on doped ceria electrolytes. <i>Electrochimica Acta</i> , 2011 , 56, 2870-2876	6.7	24
126	Combustion-synthesized RuAl2O3 composites as anode catalyst layer of a solid oxide fuel cell operating on methane. <i>International Journal of Hydrogen Energy</i> , 2011 , 36, 755-764	6.7	34
125	A novel way to improve performance of proton-conducting solid-oxide fuel cells through enhanced chemical interaction of anode components. <i>International Journal of Hydrogen Energy</i> , 2011 , 36, 1683-16	i9 ⁶ 1.7	24
124	Evaluation and optimization of Bi1\subseteq Strategy Stra	6.7	64
123	Physically mixed LiLaNiAl2O3 and copper as conductive anode catalysts in a solid oxide fuel cell for methane internal reforming and partial oxidation. <i>International Journal of Hydrogen Energy</i> , 2011 , 36, 5632-5643	6.7	31
122	Surface exchange and bulk diffusion properties of Ba0.5Sr0.5Co0.8Fe0.2O3Imixed conductor. <i>International Journal of Hydrogen Energy</i> , 2011 , 36, 6948-6956	6.7	124
121	Effect of Ba nonstoichiometry on the phase structure, sintering, electrical conductivity and phase stability of Ba1⊞xCe0.4Zr0.4Y0.2O3[[0№]0.20] proton conductors. <i>International Journal of Hydrogen Energy</i> , 2011 , 36, 8450-8460	6.7	40
120	Electrophoretic deposition of YSZ thin-film electrolyte for SOFCs utilizing electrostatic-steric stabilized suspensions obtained via high energy ball milling. <i>International Journal of Hydrogen Energy</i> , 2011 , 36, 9195-9204	6.7	25
119	Influence of high-energy ball milling of the starting powder on the sintering; microstructure and oxygen permeability of Ba0.5Sr0.5Co0.5Fe0.5O3Imembranes. <i>Journal of Membrane Science</i> , 2011 , 366, 203-211	9.6	18
118	Lithium and lanthanum promoted Ni-Al2O3 as an active and highly coking resistant catalyst layer for solid-oxide fuel cells operating on methane. <i>Journal of Power Sources</i> , 2011 , 196, 90-97	8.9	42
117	A new Gd-promoted nickel catalyst for methane conversion to syngas and as an anode functional layer in a solid oxide fuel cell. <i>Journal of Power Sources</i> , 2011 , 196, 3855-3862	8.9	53
116	Significant impact of the current collection material and method on the performance of Ba0.5Sr0.5Co0.8Fe0.2O3lelectrodes in solid oxide fuel cells. <i>Journal of Power Sources</i> , 2011 , 196, 5511-	5§19	23

115	Development of a Nite0.8Zr0.2O2 catalyst for solid oxide fuel cells operating on ethanol through internal reforming. <i>Journal of Power Sources</i> , 2011 , 196, 6177-6185	8.9	42
114	Reducing the operation temperature of a solid oxide fuel cell using a conventional nickel-based cermet anode on dimethyl ether fuel through internal partial oxidation. <i>Journal of Power Sources</i> , 2011 , 196, 7601-7608	8.9	10
113	A Comparative Structure and Performance Study of La[sub 1월]Sr[sub x]CoO[sub 3년] and La[sub 1월]Sr[sub x]Co[sub 0.9]Nb[sub 0.1]O[sub 3년] (x=0.5, 0.7, 0.9, and 1.0) Oxygen Permeable Mixed Conductors. <i>Journal of the Electrochemical Society</i> , 2011 , 158, H299	3.9	2
112	High performance cobalt-free perovskite cathode for intermediate temperature solid oxide fuel cells. <i>Journal of Materials Chemistry</i> , 2010 , 20, 9619		123
111	Well-crystallized mesoporous samaria-doped ceria from EDTA-citrate complexing process with in situ created NiO as recyclable template. <i>Journal of Alloys and Compounds</i> , 2010 , 491, 271-277	5.7	11
110	Layered perovskite Y1\(\mathbb{R}\)CaxBaCo4O7+\(\mathbb{R}\)as ceramic membranes for oxygen separation. <i>Journal of Alloys and Compounds</i> , 2010 , 492, 552-558	5.7	23
109	A mechanism study of synthesis of Li4Ti5O12 from TiO2 anatase. <i>Journal of Alloys and Compounds</i> , 2010 , 505, 367-373	5.7	47
108	Performance of PrBaCo2O(5+delta) as a proton-conducting solid-oxide fuel cell cathode. <i>Journal of Physical Chemistry A</i> , 2010 , 114, 3764-72	2.8	68
107	A No Chamber Fuel Cell Using Ethanol as Flame. Ceramic Engineering and Science Proceedings, 2010, 53-	-62.1	
106	Effects of niobium doping site and concentration on the phase structure and oxygen permeability of Nb-substituted SrCoOx oxides. <i>Ceramics International</i> , 2010 , 36, 635-641	5.1	6
105	A comprehensive evaluation of a NiAl2O3 catalyst as a functional layer of solid-oxide fuel cell anode. <i>Journal of Power Sources</i> , 2010 , 195, 402-411	8.9	41
104	Comparative study of doped ceria thin-film electrolytes prepared by wet powder spraying with powder synthesized via two techniques. <i>Journal of Power Sources</i> , 2010 , 195, 393-401	8.9	26
103	Cobalt-site cerium doped SmxSr1\(\mathbb{L}\)CoO3\(\mathbb{D}\)xides as potential cathode materials for solid-oxide fuel cells. <i>Journal of Power Sources</i> , 2010 , 195, 3386-3393	8.9	28
102	Evaluation of Ba0.6Sr0.4Co0.9Nb0.1O3Imixed conductor as a cathode for intermediate-temperature oxygen-ionic solid-oxide fuel cells. <i>Journal of Power Sources</i> , 2010 , 195, 517	6-8-984	. 49
101	Synthesis of nano-particle and highly porous conducting perovskites from simple in situ sol-gel derived carbon templating process. <i>Bulletin of Materials Science</i> , 2010 , 33, 371-376	1.7	14
100	Assessment of nickel cermets and La0.8Sr0.2Sc0.2Mn0.8O3 as solid-oxide fuel cell anodes operating on carbon monoxide fuel. <i>Journal of Power Sources</i> , 2010 , 195, 1333-1343	8.9	39
99	Effect of firing temperature on the microstructure and performance of PrBaCo2O5+Leathodes on Sm0.2Ce0.8O1.9 electrolytes fabricated by spray deposition-firing processes. <i>Journal of Power Sources</i> , 2010 , 195, 4667-4675	8.9	30
98	Alternative perovskite materials as a cathode component for intermediate temperature single-chamber solid oxide fuel cell. <i>Journal of Power Sources</i> , 2010 , 195, 4758-4764	8.9	8

97	A novel Ba0.6Sr0.4Co0.9Nb0.1O3Eathode for protonic solid-oxide fuel cells. <i>Journal of Power Sources</i> , 2010 , 195, 4700-4703	8.9	22
96	Assessment of PrBaCo2O5+\(\text{HSm0.2Ce0.8O1.9} \) composites prepared by physical mixing as electrodes of solid oxide fuel cells. <i>Journal of Power Sources</i> , 2010 , 195, 7187-7195	8.9	69
95	Proton-conducting fuel cells operating on hydrogen, ammonia and hydrazine at intermediate temperatures. <i>International Journal of Hydrogen Energy</i> , 2010 , 35, 2637-2642	6.7	77
94	Fabrication and evolution of catalyst-coated membranes by direct spray deposition of catalyst ink onto Nafion membrane at high temperature. <i>International Journal of Hydrogen Energy</i> , 2010 , 35, 2921-2	927	29
93	Structural, electrical and electrochemical characterizations of SrNb0.1Co0.9O3las a cathode of solid oxide fuel cells operating below 600 °C. International Journal of Hydrogen Energy, 2010 , 35, 1356-1	367	65
92	Silver-modified Ba0.5Sr0.5Co0.8Fe0.2O3Ias cathodes for a proton conducting solid-oxide fuel cell. <i>International Journal of Hydrogen Energy</i> , 2010 , 35, 8281-8288	6.7	55
91	Improving single-chamber performance of an anode-supported SOFC by impregnating anode with active nickel catalyst. <i>International Journal of Hydrogen Energy</i> , 2010 , 35, 8171-8176	6.7	25
90	A composite oxygen-reduction electrode composed of SrSc0.2Co0.8O3lperovskite and Sm0.2Ce0.8O1.9 for an intermediate-temperature solid-oxide fuel cell. <i>International Journal of Hydrogen Energy</i> , 2010 , 35, 5601-5610	6.7	22
89	A double-layer composite electrode based on SrSc0.2Co0.8O3Derovskite with improved performance in intermediate temperature solid oxide fuel cells. <i>International Journal of Hydrogen Energy</i> , 2010 , 35, 7608-7617	6.7	1
88	Coking-free direct-methanol-flame fuel cell with traditional nickeldermet anode. <i>International Journal of Hydrogen Energy</i> , 2010 , 35, 7971-7981	6.7	40
87	Hydrazine as efficient fuel for low-temperature SOFC through ex-situ catalytic decomposition with high selectivity toward hydrogen. <i>International Journal of Hydrogen Energy</i> , 2010 , 35, 7919-7924	6.7	26
86	Fabrication and performance of a carbon dioxide-tolerant proton-conducting solid oxide fuel cells with a dual-layer electrolyte. <i>International Journal of Hydrogen Energy</i> , 2010 , 35, 10513-10521	6.7	19
85	Evaluation of mixed-conducting lanthanum-strontium-cobaltite ceramic membrane for oxygen separation. <i>AICHE Journal</i> , 2009 , 55, 2603-2613	3.6	24
84	Influence of M cations on structural, thermal and electrical properties of new oxygen selective membranes based on SrCo0.95M0.05O3lperovskite. <i>Separation and Purification Technology</i> , 2009 , 67, 304-311	8.3	54
83	Low-temperature synthesis of La0.6Sr0.4Co0.2Fe0.8O3[perovskite powder via asymmetric solgel process and catalytic auto-combustion. <i>Ceramics International</i> , 2009 , 35, 2809-2815	5.1	12
82	Effects of preparation methods on the oxygen nonstoichiometry, B-site cation valences and catalytic efficiency of perovskite La0.6Sr0.4Co0.2Fe0.8O3\(\text{D}\)Ceramics International, 2009 , 35, 3201-3206	5.1	18
81	Zirconium doping effect on the performance of proton-conducting BaZryCe0.8¶Y0.2O3Ң0.0 Ҧ D.8) for fuel cell applications. <i>Journal of Power Sources</i> , 2009 , 193, 400-407	8.9	202
80	Facile auto-combustion synthesis for oxygen separation membrane application. <i>Journal of Membrane Science</i> , 2009 , 329, 219-227	9.6	13

(2009-2009)

79	In situ templating synthesis of conic Ba0\overline{B}Sr0\overline{B}Co0\overline{B}Fe0\overline{D}O3\overline{D}erovskite at elevated temperature. <i>Bulletin of Materials Science</i> , 2009 , 32, 407-412	1.7	3
78	Cr doping effect in B-site of La0.75Sr0.25MnO3 on its phase stability and performance as an SOFC anode. <i>Rare Metals</i> , 2009 , 28, 361-366	5.5	13
77	A High Electrochemical Performance Proton Conductor Electrolyte with CO2 Tolerance. <i>Chinese Journal of Catalysis</i> , 2009 , 30, 479-481	11.3	23
76	Methane-fueled SOFC with traditional nickel-based anode by applying Ni/Al2O3 as a dual-functional layer. <i>Electrochemistry Communications</i> , 2009 , 11, 194-197	5.1	49
75	Biogas reforming for hydrogen production over nickel and cobalt bimetallic catalysts. <i>International Journal of Hydrogen Energy</i> , 2009 , 34, 6646-6654	6.7	218
74	Performance of SrSc0.2Co0.8O3D Sm0.5Sr0.5CoO3D inixed-conducting composite electrodes for oxygen reduction at intermediate temperatures. <i>International Journal of Hydrogen Energy</i> , 2009 , 34, 9496-9504	6.7	43
73	Effect of a reducing agent for silver on the electrochemical activity of an Ag/Ba0.5Sr0.5Co0.8Fe0.2O3Delectrode prepared by electroless deposition technique. <i>Journal of Power Sources</i> , 2009 , 186, 244-251	8.9	27
72	Intermediate-temperature electrochemical performance of a polycrystalline PrBaCo2O5+Eathode on samarium-doped ceria electrolyte. <i>Journal of Power Sources</i> , 2009 , 188, 96-105	8.9	282
71	A comparative study of La0.8Sr0.2MnO3 and La0.8Sr0.2Sc0.1Mn0.9O3 as cathode materials of single-chamber SOFCs operating on a methanelir mixture. <i>Journal of Power Sources</i> , 2009 , 191, 225-23	2 ^{8.9}	24
70	Progress in understanding and development of Ba0.5Sr0.5Co0.8Fe0.2O3Ebased cathodes for intermediate-temperature solid-oxide fuel cells: A review. <i>Journal of Power Sources</i> , 2009 , 192, 231-246	5 ^{8.9}	367
69	Combustion synthesis of high-performance Li4Ti5O12 for secondary Li-ion battery. <i>Ceramics International</i> , 2009 , 35, 1757-1768	5.1	121
68	Further performance improvement of Ba0.5Sr0.5Co0.8Fe0.2O3 perovskite membranes for air separation. <i>Ceramics International</i> , 2009 , 35, 2455-2461	5.1	40
67	A new carbon fuel cell with high power output by integrating with in situ catalytic reverse Boudouard reaction. <i>Electrochemistry Communications</i> , 2009 , 11, 1265-1268	5.1	112
66	Activation of a single-chamber solid oxide fuel cell by a simple catalyst-assisted in-situ process. <i>Electrochemistry Communications</i> , 2009 , 11, 1563-1566	5.1	16
65	Development of high-performance cathodes for IT-SOFCs through beneficial interfacial reactions. <i>Electrochemistry Communications</i> , 2009 , 11, 2216-2219	5.1	10
64	A new symmetric solid-oxide fuel cell with La0.8Sr0.2Sc0.2Mn0.8O3-Eperovskite oxide as both the anode and cathode. <i>Acta Materialia</i> , 2009 , 57, 1165-1175	8.4	140
63	Double-site yttria-doped Sr1NYxCo1NYyO3Iperovskite oxides as oxygen semi-permeable membranes. <i>Journal of Alloys and Compounds</i> , 2009 , 474, 477-483	5.7	23
62	Cellulose-assisted combustion synthesis of Li4Ti5O12 adopting anatase TiO2 solid as raw material with high electrochemical performance. <i>Journal of Alloys and Compounds</i> , 2009 , 477, 665-672	5.7	73

		WEI	Z нои
61	Electrochemical Performance of SrSc[sub 0.2]Co[sub 0.8]O[sub 3][Cathode on Sm[sub 0.2]Ce[sub 0.8]O[sub 1.9] Electrolyte for Low Temperature SOFCs. <i>Journal of the Electrochemical Society</i> , 2009 , 156, B884	3.9	23
60	Functional nano-composite oxides synthesized by environmental-friendly auto-combustion within a micro-bioreactor. <i>Materials Research Bulletin</i> , 2008 , 43, 2248-2259	5.1	17
59	Nickel catalyst prepared via glycine nitrate process for partial oxidation of methane to syngas. <i>Catalysis Communications</i> , 2008 , 9, 1418-1425	3.2	43
58	Facile autocombustion synthesis of La0.6Sr0.4Co0.2Fe0.8O3I(LSCF) perovskite via a modified complexing soligel process with NH4NO3 as combustion aid. <i>Journal of Alloys and Compounds</i> , 2008 , 450, 338-347	5.7	34
57	Efficient stabilization of cubic perovskite SrCoO3Iby B-site low concentration scandium doping combined with solgel synthesis. <i>Journal of Alloys and Compounds</i> , 2008 , 455, 465-470	5.7	114
56	A novel efficient oxide electrode for electrocatalytic oxygen reduction at 400-600 degrees C. <i>Chemical Communications</i> , 2008 , 5791-3	5.8	115
55	Activation and Deactivation Kinetics of Oxygen Reduction over a La0.8Sr0.2Sc0.1Mn0.9O3 Cathode. Journal of Physical Chemistry C, 2008 , 112, 18690-18700	3.8	15
54	Ethanol Steam Reforming over Pt Catalysts Supported on CexZr1NO2 Prepared via a Glycine Nitrate Process. <i>Energy & Documents</i> 2008, 22, 1873-1879	4.1	34
53	Solid-oxide fuel cell operated on in situ catalytic decomposition products of liquid hydrazine. <i>Journal of Power Sources</i> , 2008 , 177, 323-329	8.9	25
52	Properties and performance of Ba0.5Sr0.5Co0.8Fe0.2O3\(\textit{HSm0.2Ce0.8O1.9}\) composite cathode. Journal of Power Sources, 2008 , 179, 60-68	8.9	78
51	Initialization of a methane-fueled single-chamber solid-oxide fuel cell with NiO+SDC anode and BSCF+SDC cathode. <i>Journal of Power Sources</i> , 2008 , 179, 640-648	8.9	32
50	Evaluation of A-site cation-deficient (Ba0.5Sr0.5)1⊠Co0.8Fe0.2O3ቪx>0) perovskite as a solid-oxide fuel cell cathode. <i>Journal of Power Sources</i> , 2008 , 182, 24-31	8.9	186
49	Synthesis and assessment of La0.8Sr0.2ScyMn1IJO3Ias cathodes for solid-oxide fuel cells on scandium-stabilized zirconia electrolyte. <i>Journal of Power Sources</i> , 2008 , 183, 471-478	8.9	41
48	Effects of sintering atmospheres on sintering behavior, electrical conductivity and oxygen permeability of mixed-conducting membranes. <i>Journal of Membrane Science</i> , 2008 , 316, 128-136	9.6	11
47	Oxygen selective membranes based on B-site cation-deficient (Ba0.5Sr0.5)(Co0.8Fe0.2)yO3D perovskite with improved operational stability. <i>Journal of Membrane Science</i> , 2008 , 318, 182-190	9.6	44
46	Systematic investigation on new SrCo1 NbyO3 Leramic membranes with high oxygen semi-permeability. <i>Journal of Membrane Science</i> , 2008 , 323, 436-443	9.6	103
45	A high-performance no-chamber fuel cell operated on ethanol flame. <i>Journal of Power Sources</i> , 2008 , 177, 33-39	8.9	41
44	Evaluation of Ba0.5Sr0.5Co0.8Fe0.2O3las a potential cathode for an anode-supported proton-conducting solid-oxide fuel cell. <i>Journal of Power Sources</i> , 2008 , 180, 15-22	8.9	138

(2007-2008)

43	Fabrication of an anode-supported yttria-stabilized zirconia thin film for solid-oxide fuel cells via wet powder spraying. <i>Journal of Power Sources</i> , 2008 , 184, 229-237	8.9	29
42	Characterization and optimization of La0.8Sr0.2Sc0.1Mn0.9O3Ebased composite electrodes for intermediate-temperature solid-oxide fuel cells. <i>Journal of Power Sources</i> , 2008 , 185, 641-648	8.9	10
41	Barium- and strontium-enriched (Ba0.5Sr0.5)1+xCo0.8Fe0.2O3lbxides as high-performance cathodes for intermediate-temperature solid-oxide fuel cells. <i>Acta Materialia</i> , 2008 , 56, 2687-2698	8.4	101
40	Synthesis, characterization and evaluation of cation-ordered LnBaCo2O5+has materials of oxygen permeation membranes and cathodes of SOFCs. <i>Acta Materialia</i> , 2008 , 56, 4876-4889	8.4	391
39	Influence of high-energy ball milling of precursor on the morphology and electrochemical performance of Li4Ti5O12Ball-milling time. <i>Solid State Ionics</i> , 2008 , 179, 946-950	3.3	41
38	Novel SrSc0.2Co0.8O3hs a cathode material for low temperature solid-oxide fuel cell. <i>Electrochemistry Communications</i> , 2008 , 10, 1647-1651	5.1	97
37	Electrodeposition and characterization of polypyrrole films on aluminium alloy 6061-T6. <i>Electrochimica Acta</i> , 2008 , 53, 4754-4763	6.7	70
36	LSCF Nanopowder from Cellulose © lycine-Nitrate Process and its Application in Intermediate-Temperature Solid-Oxide Fuel Cells. <i>Journal of the American Ceramic Society</i> , 2008 , 91, 1155-1162	3.8	64
35	Hydrogen storage in a prototypical zeolitic imidazolate framework-8. <i>Journal of the American Chemical Society</i> , 2007 , 129, 5314-5	16.4	357
34	Novel mixed conducting SrSc0.05Co0.95O3-Eceramic membrane for oxygen separation. <i>AICHE Journal</i> , 2007 , 53, 3116-3124	3.6	64
33	Assessment of Ba0.5Sr0.5Co1 FeyO3 (y=0.01).0) for prospective application as cathode for IT-SOFCs or oxygen permeating membrane. <i>Electrochimica Acta</i> , 2007 , 52, 7343-7351	6.7	160
32	A dense oxygen separation membrane with a layered morphologic structure. <i>Journal of Membrane Science</i> , 2007 , 300, 182-190	9.6	30
31	Anode-supported ScSZ-electrolyte SOFC with whole cell materials from combined EDTAditrate complexing synthesis process. <i>Journal of Power Sources</i> , 2007 , 172, 704-712	8.9	74
30	Significant impact of nitric acid treatment on the cathode performance of Ba0.5Sr0.5Co0.8Fe0.2O3perovskite oxide via combined EDTABitric complexing process. <i>Journal of Power Sources</i> , 2007 , 174, 237-245	8.9	44
29	High performance electrode for electrochemical oxygen generator cell based on solid electrolyte ion transport membrane. <i>Electrochimica Acta</i> , 2007 , 52, 6297-6303	6.7	28
28	Ba0.5Sr0.5Co0.8Fe0.2O3 III LaCoO3 composite cathode for Sm0.2Ce0.8O1.9-electrolyte based intermediate-temperature solid-oxide fuel cells. <i>Journal of Power Sources</i> , 2007 , 168, 330-337	8.9	75
27	Methane-fueled IT-SOFCs with facile in situ inorganic templating synthesized mesoporous Sm0.2Ce0.8O1.9 as catalytic layer. <i>Journal of Power Sources</i> , 2007 , 170, 251-258	8.9	28
26	Re-evaluation of Ba0.5Sr0.5Co0.8Fe0.2O3[perovskite as oxygen semi-permeable membrane. Journal of Membrane Science, 2007 , 291, 148-156	9.6	202

		Wei ?	Z нои
25	Properties and performance of A-site deficient (Ba0.5Sr0.5)1\(\text{LCo0.8Fe0.2O3E} for oxygen permeating membrane. \(\text{Journal of Membrane Science}, \text{2007}, 306, 318-328 \)	9.6	96
24	High power-density single-chamber fuel cells operated on methane. <i>Journal of Power Sources</i> , 2006 , 162, 589-596	8.9	80
23	Effect of pH on synthesis and properties of perovskite oxide via a citrate process. <i>AICHE Journal</i> , 2006 , 52, 769-776	3.6	18
22	Synthesis of nanocrystalline conducting composite oxides based on a non-ion selective combined complexing process for functional applications. <i>Journal of Alloys and Compounds</i> , 2006 , 426, 368-374	5.7	109
21	Recent advances in single-chamber fuel-cells: Experiment and modeling. <i>Solid State Ionics</i> , 2006 , 177, 2013-2021	3.3	48
20	A thermally self-sustained micro solid-oxide fuel-cell stack with high power density. <i>Nature</i> , 2005 , 435, 795-8	50.4	517
19	A high-performance cathode for the next generation of solid-oxide fuel cells. <i>Nature</i> , 2004 , 431, 170-3	50.4	2425
18	Modified cellulose adsorption method for the synthesis of conducting perovskite powders for membrane application. <i>Powder Technology</i> , 2002 , 122, 26-33	5.2	18
17	Performance of a mixed-conducting ceramic membrane reactor with high oxygen permeability for methane conversion. <i>Journal of Membrane Science</i> , 2001 , 183, 181-192	9.6	209
16	Ba effect in doped Sr(Co0.8Fe0.2)O3-lon the phase structure and oxygen permeation properties of the dense ceramic membranes. <i>Separation and Purification Technology</i> , 2001 , 25, 419-429	8.3	238
15	Synthesis, oxygen permeation study and membrane performance of a Ba0.5Sr0.5Co0.8Fe0.2O3D oxygen-permeable dense ceramic reactor for partial oxidation of methane to syngas. <i>Separation and Purification Technology</i> , 2001 , 25, 97-116	8.3	141
14	Investigation of the permeation behavior and stability of a Ba0.5Sr0.5Co0.8Fe0.2O3Dxygen membrane. <i>Journal of Membrane Science</i> , 2000 , 172, 177-188	9.6	862
13	Synthesis and oxygen permeation study of novel perovskite-type BaBixCo0.2Fe0.8MO3Reramic membranes. <i>Journal of Membrane Science</i> , 2000 , 164, 167-176	9.6	85
12	Low temperature synthesis of perovskite oxide using the adsorption properties of cellulose. <i>Journal of Materials Science</i> , 2000 , 35, 5639-5644	4.3	22
11	CHAPTER 2:Electrolyte Materials for Solid Oxide Fuel Cells (SOFCs). <i>RSC Energy and Environment Series</i> ,26-55	0.6	1
10	BaCe0.16Y0.04Fe0.8O3-hanocomposite: A new high-performance cobalt-free triple-conducting cathode for protonic ceramic fuel cells operating at reduced temperatures. <i>Journal of Materials Chemistry A</i> ,	13	3
9	Self-catalyzed formation of strongly interconnected multiphase molybdenum-based composites for efficient hydrogen evolution		6

Roadmap on Sustainable Mixed Ionic-Electronic Conducting Membranes. *Advanced Functional*

15.6 7

Materials,2105702

LIST OF PUBLICATIONS

7	Perovskite Oxides in Catalytic Combustion of Volatile Organic Compounds: Recent Advances and Future Prospects. <i>Energy and Environmental Materials</i> ,	13	3
6	Perovskites for protonic ceramic fuel cells: a review. Energy and Environmental Science,	35.4	4
5	Tailoring structural properties of carbon via implanting optimal co nanoparticles in n-rich carbon cages toward high-efficiency oxygen electrocatalysis for rechargeable zn-air batteries		5
4	Bridging the Charge Accumulation and High Reaction Order for High-Rate Oxygen Evolution and Long Stable Zn-Air Batteries. <i>Advanced Functional Materials</i> ,2111989	15.6	7
3	Realizing High and Stable Electrocatalytic Oxygen Evolution for Iron-Based Perovskites by Co-Doping-Induced Structural and Electronic Modulation. <i>Advanced Functional Materials</i> ,2111091	15.6	4
2	High Configuration Entropy Activated Lattice Oxygen for O 2 Formation on Perovskite Electrocatalyst. <i>Advanced Functional Materials</i> ,2112157	15.6	14
1	Protonic ceramic materials for clean and sustainable energy: advantages and challenges. International Materials Reviews, 1-29	16.1	2