Wei Zhou

List of Publications by Citations

Source: https://exaly.com/author-pdf/7334878/wei-zhou-publications-by-citations.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

169 708 41,523 100 g-index h-index citations papers 8.23 10.7 49,994 734 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
708	A high-performance cathode for the next generation of solid-oxide fuel cells. <i>Nature</i> , 2004 , 431, 170-3	50.4	2425
707	Investigation of the permeation behavior and stability of a Ba0.5Sr0.5Co0.8Fe0.2O3Dxygen membrane. <i>Journal of Membrane Science</i> , 2000 , 172, 177-188	9.6	862
706	Nonstoichiometric Oxides as Low-Cost and Highly-Efficient Oxygen Reduction/Evolution Catalysts for Low-Temperature Electrochemical Devices. <i>Chemical Reviews</i> , 2015 , 115, 9869-921	68.1	631
705	Research progress of perovskite materials in photocatalysis- and photovoltaics-related energy conversion and environmental treatment. <i>Chemical Society Reviews</i> , 2015 , 44, 5371-408	58.5	580
704	A thermally self-sustained micro solid-oxide fuel-cell stack with high power density. <i>Nature</i> , 2005 , 435, 795-8	50.4	517
703	Enhancing Electrocatalytic Activity of Perovskite Oxides by Tuning Cation Deficiency for Oxygen Reduction and Evolution Reactions. <i>Chemistry of Materials</i> , 2016 , 28, 1691-1697	9.6	443
702	Recent Progress in Metal-Organic Frameworks for Applications in Electrocatalytic and Photocatalytic Water Splitting. <i>Advanced Science</i> , 2017 , 4, 1600371	13.6	440
701	Nonradical reactions in environmental remediation processes: Uncertainty and challenges. <i>Applied Catalysis B: Environmental</i> , 2018 , 224, 973-982	21.8	397
700	Synthesis, characterization and evaluation of cation-ordered LnBaCo2O5+⊞s materials of oxygen permeation membranes and cathodes of SOFCs. <i>Acta Materialia</i> , 2008 , 56, 4876-4889	8.4	391
699	A comprehensive review of Li 4 Ti 5 O 12 -based electrodes for lithium-ion batteries: The latest advancements and future perspectives. <i>Materials Science and Engineering Reports</i> , 2015 , 98, 1-71	30.9	389
698	Progress in understanding and development of Ba0.5Sr0.5Co0.8Fe0.2O3Ebased cathodes for intermediate-temperature solid-oxide fuel cells: A review. <i>Journal of Power Sources</i> , 2009 , 192, 231-246	8.9	367
697	Hydrogen storage in a prototypical zeolitic imidazolate framework-8. <i>Journal of the American Chemical Society</i> , 2007 , 129, 5314-5	16.4	357
696	Flexible Znြand LiBir batteries: recent advances, challenges, and future perspectives. <i>Energy and Environmental Science</i> , 2017 , 10, 2056-2080	35.4	353
695	SrNb(0.1)Co(0.7)Fe(0.2)O(3-Iperovskite as a next-generation electrocatalyst for oxygen evolution in alkaline solution. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 3897-901	16.4	345
694	Dynamic traction of lattice-confined platinum atoms into mesoporous carbon matrix for hydrogen evolution reaction. <i>Science Advances</i> , 2018 , 4, eaao6657	14.3	344
693	Progress in solid oxide fuel cells with nickel-based anodes operating on methane and related fuels. <i>Chemical Reviews</i> , 2013 , 113, 8104-51	68.1	342
692	A Perovskite Electrocatalyst for Efficient Hydrogen Evolution Reaction. <i>Advanced Materials</i> , 2016 , 28, 6442-8	24	315

(2015-2019)

691	Stable Hierarchical Bimetal-Organic Nanostructures as HighPerformance Electrocatalysts for the Oxygen Evolution Reaction. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 4227-4231	16.4	309	
690	Advanced synthesis of materials for intermediate-temperature solid oxide fuel cells. <i>Progress in Materials Science</i> , 2012 , 57, 804-874	42.2	306	
689	Intermediate-temperature electrochemical performance of a polycrystalline PrBaCo2O5+& athode on samarium-doped ceria electrolyte. <i>Journal of Power Sources</i> , 2009 , 188, 96-105	8.9	282	
688	Surface controlled generation of reactive radicals from persulfate by carbocatalysis on nanodiamonds. <i>Applied Catalysis B: Environmental</i> , 2016 , 194, 7-15	21.8	277	
687	Surfactant-Assisted Phase-Selective Synthesis of New Cobalt MOFs and Their Efficient Electrocatalytic Hydrogen Evolution Reaction. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 13	00 ¹⁶ 130	o 3 75	
686	Insights into perovskite-catalyzed peroxymonosulfate activation: Maneuverable cobalt sites for promoted evolution of sulfate radicals. <i>Applied Catalysis B: Environmental</i> , 2018 , 220, 626-634	21.8	274	
685	Recent Advances and Prospective in Ruthenium-Based Materials for Electrochemical Water Splitting. <i>ACS Catalysis</i> , 2019 , 9, 9973-10011	13.1	269	
684	A Perovskite Nanorod as Bifunctional Electrocatalyst for Overall Water Splitting. <i>Advanced Energy Materials</i> , 2017 , 7, 1602122	21.8	262	
683	Advances in non-enzymatic glucose sensors based on metal oxides. <i>Journal of Materials Chemistry B</i> , 2016 , 4, 7333-7349	7.3	252	
682	Recent advances in nanostructured metal nitrides for water splitting. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 19912-19933	13	243	
681	The use of nitrogen-doped graphene supporting Pt nanoparticles as a catalyst for methanol electrocatalytic oxidation. <i>Carbon</i> , 2013 , 52, 181-192	10.4	242	
680	Molten salt synthesis of nitrogen-doped carbon with hierarchical pore structures for use as high-performance electrodes in supercapacitors. <i>Carbon</i> , 2015 , 93, 48-58	10.4	240	
679	Ba effect in doped Sr(Co0.8Fe0.2)O3-lbn the phase structure and oxygen permeation properties of the dense ceramic membranes. <i>Separation and Purification Technology</i> , 2001 , 25, 419-429	8.3	238	
678	Enhancing Electrocatalytic Activity for Hydrogen Evolution by Strongly Coupled Molybdenum [email[protected] Carbon Porous Nano-Octahedrons. <i>ACS Catalysis</i> , 2017 , 7, 3540-3547	13.1	235	
677	Oxygen Reduction Reaction Activity of La-Based Perovskite Oxides in Alkaline Medium: A Thin-Film Rotating Ring-Disk Electrode Study. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 5827-5834	3.8	228	
676	Biogas reforming for hydrogen production over nickel and cobalt bimetallic catalysts. <i>International Journal of Hydrogen Energy</i> , 2009 , 34, 6646-6654	6.7	218	
675	Performance of a mixed-conducting ceramic membrane reactor with high oxygen permeability for methane conversion. <i>Journal of Membrane Science</i> , 2001 , 183, 181-192	9.6	209	
674	A High-Performance Electrocatalyst for Oxygen Evolution Reaction: LiCo0.8 Fe0.2 O2. <i>Advanced Materials</i> , 2015 , 27, 7150-5	24	205	

layers: challenges, materials, construction, and characterization. Energy and Environmental Science,

An Amorphous Nickel-Iron-Based Electrocatalyst with Unusual Local Structures for Ultrafast

Oxygen Evolution Reaction. Advanced Materials, 2019, 31, e1900883

163

161

35.4

24

2019, 12, 1780-1804

657

656

(2020-2007)

655	Assessment of Ba0.5Sr0.5Co1以FeyO3Ly=0.0L0) for prospective application as cathode for IT-SOFCs or oxygen permeating membrane. <i>Electrochimica Acta</i> , 2007 , 52, 7343-7351	6.7	160
654	Nanodiamonds in sp2/sp3 configuration for radical to nonradical oxidation: Core-shell layer dependence. <i>Applied Catalysis B: Environmental</i> , 2018 , 222, 176-181	21.8	157
653	La-doped BaFeO3lperovskite as a cobalt-free oxygen reduction electrode for solid oxide fuel cells with oxygen-ion conducting electrolyte. <i>Journal of Materials Chemistry</i> , 2012 , 22, 15071		156
652	Tunable titanium metalBrganic frameworks with infinite 1D TiD rods for efficient visible-light-driven photocatalytic H2 evolution. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 11928-11933	13	153
651	Metal oxide-based materials as an emerging family of hydrogen evolution electrocatalysts. <i>Energy and Environmental Science</i> , 2020 , 13, 3361-3392	35.4	151
650	Fundamental Understanding of Photocurrent Hysteresis in Perovskite Solar Cells. <i>Advanced Energy Materials</i> , 2019 , 9, 1803017	21.8	148
649	Non-precious-metal catalysts for alkaline water electrolysis: operando characterizations, theoretical calculations, and recent advances. <i>Chemical Society Reviews</i> , 2020 , 49, 9154-9196	58.5	147
648	Intramolecular electronic coupling in porous iron cobalt (oxy)phosphide nanoboxes enhances the electrocatalytic activity for oxygen evolution. <i>Energy and Environmental Science</i> , 2019 , 12, 3348-3355	35.4	147
647	Interfacial polymerization of covalent organic frameworks (COFs) on polymeric substrates for molecular separations. <i>Journal of Membrane Science</i> , 2018 , 566, 197-204	9.6	145
646	A niobium and tantalum co-doped perovskite cathode for solid oxide fuel cells operating below 500 LC. <i>Nature Communications</i> , 2017 , 8, 13990	17.4	144
645	Self-Catalyzed Growth of Co, N-Codoped CNTs on Carbon-Encased CoSx Surface: A Noble-Metal-Free Bifunctional Oxygen Electrocatalyst for Flexible Solid ZnAir Batteries. <i>Advanced Functional Materials</i> , 2019 , 29, 1904481	15.6	144
644	Developing a "Water-Defendable" and "Dendrite-Free" Lithium-Metal Anode Using a Simple and Promising GeCl Pretreatment Method. <i>Advanced Materials</i> , 2018 , 30, e1705711	24	142
643	Enhancing Bi-functional Electrocatalytic Activity of Perovskite by Temperature Shock: A Case Study of LaNiO3[] <i>Journal of Physical Chemistry Letters</i> , 2013 , 4, 2982-2988	6.4	142
642	Synthesis, oxygen permeation study and membrane performance of a Ba0.5Sr0.5Co0.8Fe0.2O3D oxygen-permeable dense ceramic reactor for partial oxidation of methane to syngas. <i>Separation and Purification Technology</i> , 2001 , 25, 97-116	8.3	141
641	A new symmetric solid-oxide fuel cell with La0.8Sr0.2Sc0.2Mn0.8O3-perovskite oxide as both the anode and cathode. <i>Acta Materialia</i> , 2009 , 57, 1165-1175	8.4	140
640	Bigger is Surprisingly Better: Agglomerates of Larger RuP Nanoparticles Outperform Benchmark Pt Nanocatalysts for the Hydrogen Evolution Reaction. <i>Advanced Materials</i> , 2018 , 30, e1800047	24	139
639	Evaluation of Ba0.5Sr0.5Co0.8Fe0.2O3 a potential cathode for an anode-supported proton-conducting solid-oxide fuel cell. <i>Journal of Power Sources</i> , 2008 , 180, 15-22	8.9	138
638	Perovskite Oxide Based Electrodes for High-Performance Photoelectrochemical Water Splitting. Angewandte Chemie - International Edition, 2020, 59, 136-152	16.4	135

combined with solgel synthesis. Journal of Alloys and Compounds, 2008, 455, 465-470

(2018-2019)

619	application in secondary metal (Li, Na, K, Mg, Al)-ion batteries. <i>Energy and Environmental Science</i> , 2019 , 12, 2030-2053	35.4	113
618	A new carbon fuel cell with high power output by integrating with in situ catalytic reverse Boudouard reaction. <i>Electrochemistry Communications</i> , 2009 , 11, 1265-1268	5.1	112
617	Metal-organic frameworks derived porous carbon, metal oxides and metal sulfides-based compounds for supercapacitors application. <i>Energy Storage Materials</i> , 2020 , 26, 1-22	19.4	110
616	Synthesis of nanocrystalline conducting composite oxides based on a non-ion selective combined complexing process for functional applications. <i>Journal of Alloys and Compounds</i> , 2006 , 426, 368-374	5.7	109
615	Novel B-site ordered double perovskite Ba2Bi0.1Sc0.2Co1.7O6⊠ for highly efficient oxygen reduction reaction. <i>Energy and Environmental Science</i> , 2011 , 4, 872-875	35.4	108
614	Systematic Study of Oxygen Evolution Activity and Stability on LaSr FeO Perovskite Electrocatalysts in Alkaline Media. <i>ACS Applied Materials & Electrocatalysts</i> 10, 11715-11721	9.5	107
613	Co O Nanosheets as Active Material for Hybrid Zn Batteries. <i>Small</i> , 2018 , 14, e1800225	11	103
612	Systematic investigation on new SrCo1 NbyO3 Peramic membranes with high oxygen semi-permeability. <i>Journal of Membrane Science</i> , 2008 , 323, 436-443	9.6	103
611	Recent Advances in Perovskite Oxides as Electrode Materials for Nonaqueous Lithium Dxygen Batteries. <i>Advanced Energy Materials</i> , 2017 , 7, 1602674	21.8	102
610	Boosting Oxygen Reduction Reaction Activity of Palladium by Stabilizing Its Unusual Oxidation States in Perovskite. <i>Chemistry of Materials</i> , 2015 , 27, 3048-3054	9.6	102
609	Barium- and strontium-enriched (Ba0.5Sr0.5)1+xCo0.8Fe0.2O3Dxides as high-performance cathodes for intermediate-temperature solid-oxide fuel cells. <i>Acta Materialia</i> , 2008 , 56, 2687-2698	8.4	101
608	Homologous NiO//NiP nanoarrays grown on nickel foams: a well matched electrode pair with high stability in overall water splitting. <i>Nanoscale</i> , 2017 , 9, 4409-4418	7.7	100
607	SrCo(0.9)Ti(0.1)O(3-)As a New Electrocatalyst for the Oxygen Evolution Reaction in Alkaline Electrolyte with Stable Performance. <i>ACS Applied Materials & amp; Interfaces</i> , 2015 , 7, 17663-70	9.5	97
606	Novel SrSc0.2Co0.8O3las a cathode material for low temperature solid-oxide fuel cell. <i>Electrochemistry Communications</i> , 2008 , 10, 1647-1651	5.1	97
605	Thermal-expansion offset for high-performance fuel cell cathodes. <i>Nature</i> , 2021 , 591, 246-251	50.4	97
604	Progress and Prospects in Symmetrical Solid Oxide Fuel Cells with Two Identical Electrodes. <i>Advanced Energy Materials</i> , 2015 , 5, 1500188	21.8	96
603	Properties and performance of A-site deficient (Ba0.5Sr0.5)1½Co0.8Fe0.2O3æfor oxygen permeating membrane. <i>Journal of Membrane Science</i> , 2007 , 306, 318-328	9.6	96
602	Rationally Designed Hierarchically Structured Tungsten Nitride and Nitrogen-Rich Graphene-Like Carbon Nanocomposite as Efficient Hydrogen Evolution Electrocatalyst. <i>Advanced Science</i> , 2018 , 5, 1700	5630	95

601	High-Performance GeTe-Based Thermoelectrics: from Materials to Devices. <i>Advanced Energy Materials</i> , 2020 , 10, 2000367	21.8	94
600	BaNb0.05Fe0.95O3las a new oxygen reduction electrocatalyst for intermediate temperature solid oxide fuel cells. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 9781	13	93
599	Cobalt Oxide and Cobalt-Graphitic Carbon Core-Shell Based Catalysts with Remarkably High Oxygen Reduction Reaction Activity. <i>Advanced Science</i> , 2016 , 3, 1600060	13.6	92
598	Facile mechanochemical synthesis of nano SnO2/graphene composite from coarse metallic Sn and graphite oxide: an outstanding anode material for lithium-ion batteries. <i>Chemistry - A European Journal</i> , 2014 , 20, 4055-63	4.8	90
597	Simultaneous Power Conversion Efficiency and Stability Enhancement of Cs2AgBiBr6 Lead-Free Inorganic Perovskite Solar Cell through Adopting a Multifunctional Dye Interlayer. <i>Advanced Functional Materials</i> , 2020 , 30, 2001557	15.6	90
596	Scalable synthesis of self-standing sulfur-doped flexible graphene films as recyclable anode materials for low-cost sodium-ion batteries. <i>Carbon</i> , 2016 , 107, 67-73	10.4	89
595	Facile synthesis of nitrogen-doped carbon nanotubes encapsulating nickel cobalt alloys 3D networks for oxygen evolution reaction in an alkaline solution. <i>Journal of Power Sources</i> , 2017 , 338, 26-	3 ^{8.9}	89
594	Trapping sulfur in hierarchically porous, hollow indented carbon spheres: a high-performance cathode for lithiumBulfur batteries. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 9526-9535	13	87
593	Recent Advances in Metal-Organic Framework Derivatives as Oxygen Catalysts for Zinc-Air Batteries. <i>Batteries and Supercaps</i> , 2019 , 2, 272-289	5.6	87
592	Anion Etching for Accessing Rapid and Deep Self-Reconstruction of Precatalysts for Water Oxidation. <i>Matter</i> , 2020 , 3, 2124-2137	12.7	86
591	A Universal Strategy to Design Superior Water-Splitting Electrocatalysts Based on Fast In Situ Reconstruction of Amorphous Nanofilm Precursors. <i>Advanced Materials</i> , 2018 , 30, e1804333	24	86
590	Synthesis and oxygen permeation study of novel perovskite-type BaBixCo0.2Fe0.8NO3Leramic membranes. <i>Journal of Membrane Science</i> , 2000 , 164, 167-176	9.6	85
589	Flexible, Flame-Resistant, and Dendrite-Impermeable Gel-Polymer Electrolyte for Li-O /Air Batteries Workable Under Hurdle Conditions. <i>Small</i> , 2018 , 14, e1801798	11	83
588	A Comparative Study of Oxygen Reduction Reaction on Bi- and La-Doped SrFeO[sub 3]] Perovskite Cathodes. <i>Journal of the Electrochemical Society</i> , 2011 , 158, B132	3.9	83
587	Facile synthesis of a MoO2Mo2CL composite and its application as favorable anode material for lithium-ion batteries. <i>Journal of Power Sources</i> , 2016 , 307, 552-560	8.9	82
586	Systematic evaluation of Co-free LnBaFe2O5+[[Ln=Lanthanides or Y] oxides towards the application as cathodes for intermediate-temperature solid oxide fuel cells. <i>Electrochimica Acta</i> , 2012 , 78, 466-474	6.7	80
585	High power-density single-chamber fuel cells operated on methane. <i>Journal of Power Sources</i> , 2006 , 162, 589-596	8.9	80
584	Activity and Stability of Ruddlesden-Popper-Type La(n+1) Ni(n) O(3n+1) (n=1, 2, 3, and DELECTION Electrocatalysts for Oxygen Reduction and Evolution Reactions in Alkaline Media. <i>Chemistry - AEuropean Journal</i> , 2016 , 22, 2719-27	4.8	80

58	Highly flexible self-standing film electrode composed of mesoporous rutile TiO2/C nanofibers for lithium-ion batteries. <i>Electrochimica Acta</i> , 2012 , 85, 636-643	6.7	78	
58:	Properties and performance of Ba0.5Sr0.5Co0.8Fe0.2O3\textit{BSm0.2Ce0.8O1.9 composite cathode.} Journal of Power Sources, 2008 , 179, 60-68	8.9	78	
58:	Boosting performance of lanthanide magnetism perovskite for advanced oxidation through lattice doping with catalytically inert element. <i>Chemical Engineering Journal</i> , 2019 , 355, 721-730	14.7	78	
58	An A-site-deficient perovskite offers high activity and stability for low-temperature solid-oxide fuel cells. <i>ChemSusChem</i> , 2013 , 6, 2249-54	8.3	77	
579	Proton-conducting fuel cells operating on hydrogen, ammonia and hydrazine at intermediate temperatures. <i>International Journal of Hydrogen Energy</i> , 2010 , 35, 2637-2642	6.7	77	
<i>57</i> ⁸	Recent advances in anion-doped metal oxides for catalytic applications. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 7280-7300	13	76	
57	Highly Defective Layered Double Perovskite Oxide for Efficient Energy Storage via Reversible Pseudocapacitive Oxygen-Anion Intercalation. <i>Advanced Energy Materials</i> , 2018 , 8, 1702604	21.8	76	
57	A universal and facile way for the development of superior bifunctional electrocatalysts for oxygen reduction and evolution reactions utilizing the synergistic effect. <i>Chemistry - A European Journal</i> , 2014 , 20, 15533-42	4.8	76	
57.	Enhancing Electrode Performance by Exsolved Nanoparticles: A Superior Cobalt-Free Perovskite Electrocatalyst for Solid Oxide Fuel Cells. <i>ACS Applied Materials & District Materi</i>	9.5	76	
57 <i>-</i>	Design of Perovskite Oxides as Anion-Intercalation-Type Electrodes for Supercapacitors: Cation Leaching Effect. <i>ACS Applied Materials & Design of Perovskite Oxides as Anion-Intercalation-Type Electrodes for Supercapacitors: Cation Leaching Effect. ACS Applied Materials & Design of Perovskite Oxides as Anion-Intercalation-Type Electrodes for Supercapacitors: Cation Leaching Effect. ACS Applied Materials & Design of Perovskite Oxides as Anion-Intercalation-Type Electrodes for Supercapacitors: Cation Leaching Effect. ACS Applied Materials & Design of Perovskite Oxides as Anion-Intercalation-Type Electrodes for Supercapacitors: Cation Leaching Effect. ACS Applied Materials & Design of Perovskite Oxides as Anion-Intercalation-Type Electrodes for Supercapacitors: Cation Leaching Effect. ACS Applied Materials & Design of Perovskite Oxides as Anion-Intercalation-Type Electrodes for Supercapacitors: Cation Design of Perovskite Oxides as Anion-Intercalation-Type Electrodes for Supercapacitors: Cation Design of Perovskite Oxides as Anion-Intercalation Design of Perovskite Oxides Design of Perovskite Oxides as Anion-Intercalation Design of Perovskite Oxides Design of Perovsk</i>	9.5	75	
573	Screening highly active perovskites for hydrogen-evolving reaction via unifying ionic electronegativity descriptor. <i>Nature Communications</i> , 2019 , 10, 3755	17.4	75	
57:	Surprisingly high activity for oxygen reduction reaction of selected oxides lacking long oxygen-ion diffusion paths at intermediate temperatures: a case study of cobalt-free BaFeO(3-]. ACS Applied Materials & amp; Interfaces, 2014, 6, 11180-9	9.5	75	
57	Porous Polyethersulfone-Supported Zeolitic Imidazolate Framework Membranes for Hydrogen Separation. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 13264-13270	3.8	75	
579	Ba0.5Sr0.5Co0.8Fe0.2O3 III LaCoO3 composite cathode for Sm0.2Ce0.8O1.9-electrolyte based intermediate-temperature solid-oxide fuel cells. <i>Journal of Power Sources</i> , 2007 , 168, 330-337	8.9	75	
56 ₉	Facile Synthesis of a 3D Nanoarchitectured Li4Ti5O12 Electrode for Ultrafast Energy Storage. Advanced Energy Materials, 2016 , 6, 1500924	21.8	74	
56	One-Pot Synthesis of NiCoS Hollow Spheres via Sequential Ion-Exchange as an Enhanced Oxygen Bifunctional Electrocatalyst in Alkaline Solution. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> 10, 2952	1 ⁹ 2 ⁵ 953	31 ⁷⁴	
56	Anode-supported ScSZ-electrolyte SOFC with whole cell materials from combined EDTABitrate complexing synthesis process. <i>Journal of Power Sources</i> , 2007 , 172, 704-712	8.9	74	
56	Fast Desalination by Multilayered Covalent Organic Framework (COF) Nanosheets. <i>ACS Applied Materials & ACS Applied</i>	9.5	73	

(2016-2016)

547	Stable direct-methane solid oxide fuel cells with calcium-oxide-modified nickel-based anodes operating at reduced temperatures. <i>Applied Energy</i> , 2016 , 164, 563-571	10.7	68
546	Non-aqueous hybrid supercapacitors fabricated with mesoporous TiO2 microspheres and activated carbon electrodes with superior performance. <i>Journal of Power Sources</i> , 2014 , 253, 80-89	8.9	68
545	In situ catalyzed Boudouard reaction of coal char for solid oxide-based carbon fuel cells with improved performance. <i>Applied Energy</i> , 2015 , 141, 200-208	10.7	68
544	Performance of PrBaCo2O(5+delta) as a proton-conducting solid-oxide fuel cell cathode. <i>Journal of Physical Chemistry A</i> , 2010 , 114, 3764-72	2.8	68
543	Nano La0.6Ca0.4Fe0.8Ni0.2O3ldecorated porous doped ceria as a novel cobalt-free electrode for symmetricals olid oxide fuel cells. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 19526-19535	13	67
542	Designing High-Valence Metal Sites for Electrochemical Water Splitting. <i>Advanced Functional Materials</i> , 2021 , 31, 2009779	15.6	67
541	Nanostructured Co-Mn containing perovskites for degradation of pollutants: Insight into the activity and stability. <i>Journal of Hazardous Materials</i> , 2018 , 349, 177-185	12.8	66
540	Advanced perovskite anodes for solid oxide fuel cells: A review. <i>International Journal of Hydrogen Energy</i> , 2019 , 44, 31275-31304	6.7	66
539	A comparative study of Sm0.5Sr0.5MO3[(MI±ICo and Mn) as oxygen reduction electrodes for solid oxide fuel cells. <i>International Journal of Hydrogen Energy</i> , 2012 , 37, 4377-4387	6.7	66
538	High-Quality Ruddlesden-Popper Perovskite Film Formation for High-Performance Perovskite Solar Cells. <i>Advanced Materials</i> , 2021 , 33, e2002582	24	66
537	Searching General Sufficient-and-Necessary Conditions for Ultrafast Hydrogen-Evolving Electrocatalysis. <i>Advanced Functional Materials</i> , 2019 , 29, 1900704	15.6	65
536	Structural, electrical and electrochemical characterizations of SrNb0.1Co0.9O3las a cathode of solid oxide fuel cells operating below 600 LC. <i>International Journal of Hydrogen Energy</i> , 2010 , 35, 1356-1	36 7	65
535	SrNb0.1Co0.7Fe0.2O3IPerovskite as a Next-Generation Electrocatalyst for Oxygen Evolution in Alkaline Solution. <i>Angewandte Chemie</i> , 2015 , 127, 3969-3973	3.6	64
534	Electrospinning based fabrication and performance improvement of film electrodes for lithium-ion batteries composed of TiO2 hollow fibers <i>Journal of Materials Chemistry</i> , 2011 , 21, 15041		64
533	Evaluation and optimization of Bi1\subseteq Siperovskites as cathodes of solid oxide fuel cells. <i>International Journal of Hydrogen Energy</i> , 2011 , 36, 3179-3186	6.7	64
532	Novel mixed conducting SrSc0.05Co0.95O3-Eeramic membrane for oxygen separation. <i>AICHE Journal</i> , 2007 , 53, 3116-3124	3.6	64
531	LSCF Nanopowder from Cellulose L lycine-Nitrate Process and its Application in Intermediate-Temperature Solid-Oxide Fuel Cells. <i>Journal of the American Ceramic Society</i> , 2008 , 91, 1155-1162	3.8	64
530	Boosting oxygen reduction/evolution reaction activities with layered perovskite catalysts. <i>Chemical Communications</i> , 2016 , 52, 10739-42	5.8	64

529	Electric power and synthesis gas co-generation from methane with zero waste gas emission. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 1792-7	16.4	63
528	Toward Reducing the Operation Temperature of Solid Oxide Fuel Cells: Our Past 15 Years of Efforts in Cathode Development. <i>Energy & Description</i> 2020, 34, 15169-15194	4.1	63
527	Multifunctional Iron Oxide Nanoflake/Graphene Composites Derived from Mechanochemical Synthesis for Enhanced Lithium Storage and Electrocatalysis. <i>ACS Applied Materials & amp; Interfaces</i> , 2015 , 7, 14446-55	9.5	62
526	Cobalt-free SrNbxFe1NO3I(x = 0.05, 0.1 and 0.2) perovskite cathodes for intermediate temperature solid oxide fuel cells. <i>Journal of Power Sources</i> , 2015 , 298, 209-216	8.9	61
525	Probing CO2 reaction mechanisms and effects on the SrNb0.1Co0.9\(\mathbb{B}\)FexO3\(\mathbb{L}\)athodes for solid oxide fuel cells. <i>Applied Catalysis B: Environmental</i> , 2015 , 172-173, 52-57	21.8	61
524	High-performance non-enzymatic perovskite sensor for hydrogen peroxide and glucose electrochemical detection. <i>Sensors and Actuators B: Chemical</i> , 2017 , 244, 482-491	8.5	60
523	New reduced-temperature ceramic fuel cells with dual-ion conducting electrolyte and triple-conducting double perovskite cathode. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 13265-13274	13	60
522	Ultrahigh-performance tungsten-doped perovskites for the oxygen evolution reaction. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 9854-9859	13	60
521	Rational Design of a Water-Storable Hierarchical Architecture Decorated with Amorphous Barium Oxide and Nickel Nanoparticles as a Solid Oxide Fuel Cell Anode with Excellent Sulfur Tolerance. <i>Advanced Science</i> , 2017 , 4, 1700337	13.6	59
520	A Cobalt-Free Multi-Phase Nanocomposite as Near-Ideal Cathode of Intermediate-Temperature Solid Oxide Fuel Cells Developed by Smart Self-Assembly. <i>Advanced Materials</i> , 2020 , 32, e1906979	24	59
519	Perovskite materials in energy storage and conversion. <i>Asia-Pacific Journal of Chemical Engineering</i> , 2016 , 11, 338-369	1.3	59
518	Alsurface-modified antiperovskite aslan electrocatalyst for water oxidation. <i>Nature Communications</i> , 2018 , 9, 2326	17.4	59
517	High-performance SrNb0.1Co0.9\(\text{MFexO3}\) FexO3\(\text{Derovskite cathodes for low-temperature solid oxide fuel cells. \(Journal of Materials Chemistry A, \text{2014}, 2, 15454-15462\)	13	58
516	Hierarchical CO(2)-protective shell for highly efficient oxygen reduction reaction. <i>Scientific Reports</i> , 2012 , 2, 327	4.9	57
515	Toward Enhanced Oxygen Evolution on Perovskite Oxides Synthesized from Different Approaches: A Case Study of Ba0.5Sr0.5Co0.8Fe0.2O3[] <i>Electrochimica Acta</i> , 2016 , 219, 553-559	6.7	57
514	Synergistically enhanced hydrogen evolution electrocatalysis by in situ exsolution of metallic nanoparticles on perovskites. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 13582-13587	13	56
513	Facile Synthesis of Co9S8 Hollow Spheres as a High-Performance Electrocatalyst for the Oxygen Evolution Reaction. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 1863-1871	8.3	56
512	Cobalt-free polycrystalline Ba0.95La0.05FeO3Ethin films as cathodes for intermediate-temperature solid oxide fuel cells. <i>Journal of Power Sources</i> , 2014 , 250, 188-195	8.9	55

(2013-2010)

Silver-modified Ba0.5Sr0.5Co0.8Fe0.2O3las cathodes for a proton conducting solid-oxide fuel cell. <i>International Journal of Hydrogen Energy</i> , 2010 , 35, 8281-8288	6.7	55
Rational Design of Ag-Based Catalysts for the Electrochemical CO Reduction to CO: A Review. <i>ChemSusChem</i> , 2020 , 13, 39-58	8.3	55
Compositional engineering of perovskite oxides for highly efficient oxygen reduction reactions. <i>ACS Applied Materials & Distriction (Materials & Distriction (Materials & Distriction) (Materials & Dis</i>	9.5	54
High performance of Mn-Co-Ni-O spinel nanofilms sputtered from acetate precursors. <i>Scientific Reports</i> , 2015 , 5, 10899	4.9	54
Oxygen vacancies-rich Ce0.9Gd0.1O2-decorated Pr0.5Ba0.5CoO3-bifunctional catalyst for efficient and long-lasting rechargeable Zn-air batteries. <i>Applied Catalysis B: Environmental</i> , 2020 , 266, 118656	21.8	54
An efficient electrocatalyst as cathode material for solid oxide fuel cells: BaFe0D5Sn0D5O3D Journal of Power Sources, 2016 , 326, 459-465	8.9	54
Perovskite-based proton conducting membranes for hydrogen separation: A review. <i>International Journal of Hydrogen Energy</i> , 2018 , 43, 15281-15305	6.7	54
Sm0.5Sr0.5CoO3Enfiltrated cathodes for solid oxide fuel cells with improved oxygen reduction activity and stability. <i>Journal of Power Sources</i> , 2012 , 216, 208-215	8.9	54
Influence of M cations on structural, thermal and electrical properties of new oxygen selective membranes based on SrCo0.95M0.05O3[perovskite. <i>Separation and Purification Technology</i> , 2009 , 67, 304-311	8.3	54
Realizing Ultrafast Oxygen Evolution by Introducing Proton Acceptor into Perovskites. <i>Advanced Energy Materials</i> , 2019 , 9, 1900429	21.8	53
A NiFeCu alloy anode catalyst for direct-methane solid oxide fuel cells. <i>Journal of Power Sources</i> , 2014 , 258, 134-141	8.9	53
A new Gd-promoted nickel catalyst for methane conversion to syngas and as an anode functional layer in a solid oxide fuel cell. <i>Journal of Power Sources</i> , 2011 , 196, 3855-3862	8.9	53
A Green Route to a NaFePOF-Based Cathode for Sodium Ion Batteries of High Rate and Long Cycling Life. <i>ACS Applied Materials & Acs Applied & Acs</i>	9.5	52
Single-Layered Two-Dimensional Metal-Organic Framework Nanosheets as an in Situ Visual Test Paper for Solvents. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 28860-28867	9.5	52
High-Performance Platinum-Perovskite Composite Bifunctional Oxygen Electrocatalyst for Rechargeable ZnAir Battery. <i>Advanced Energy Materials</i> , 2020 , 10, 1903271	21.8	52
SrTiO3-based thermoelectrics: Progress and challenges. <i>Nano Energy</i> , 2020 , 78, 105195	17.1	52
SrCoTiO perovskites as excellent catalysts for fast degradation of water contaminants in neutral and alkaline solutions. <i>Scientific Reports</i> , 2017 , 7, 44215	4.9	51
A comparative study of different carbon fuels in an electrolyte-supported hybrid direct carbon fuel cell. <i>Applied Energy</i> , 2013 , 108, 402-409	10.7	51
	Rational Design of Ag-Based Catalysts for the Electrochemical CO Reduction to CO: A Review. ChemSusChem, 2020, 13, 39-58 Compositional engineering of perovskite oxides for highly efficient oxygen reduction reactions. ACS Applied Materials & Design in Interfaces, 2015, 7, 8562-71 High performance of Mn-Co-Ni-O spinel nanofilms sputtered from acetate precursors. Scientific Reports, 2015, 5, 10899 Oxygen vacancies-rich Ce0.9Gd0.102-Elecorated Pr0.5Ba0.5CoO3-Ebifunctional catalyst for efficient and long-lasting rechargeable Zn-air batteries. Applied Catalysis B: Environmental, 2020, 266, 118656 An efficient electrocatalyst as cathode material for solid oxide fuel cells: BaFe0B55n0D5O3B Journal of Power Sources, 2016, 326, 459-465 Perovskite-based proton conducting membranes for hydrogen separation: A review. International Journal of Power Sources, 2018, 43, 15281-15305 Sm0.5Sr0.5CoO3Bnfiltrated cathodes for solid oxide fuel cells with improved oxygen reduction activity and stability. Journal of Power Sources, 2012, 216, 208-215 Influence of M cations on structural, thermal and electrical properties of new oxygen selective membranes based on SrCoO.95M0.05O3Eperovskite. Separation and Purification Technology, 2009, 67, 304-311 Realizing Ultrafast Oxygen Evolution by Introducing Proton Acceptor into Perovskites. Advanced Energy Materials, 2019, 9, 1900429 A NiFeCu alloy anode catalyst for direct-methane solid oxide fuel cells. Journal of Power Sources, 2014, 258, 134-141 A new Gd-promoted nickel catalyst for methane conversion to syngas and as an anode functional layer in a solid oxide fuel cell. Journal of Power Sources, 2011, 196, 3855-3862 A Green Route to a NaFePOF-Based Cathode for Sodium lon Batteries of High Rate and Long Cycling Life. ACS Applied Materials & Amp; Interfaces, 2011, 196, 3855-3862 A Green Route to a NaFePOF-Based Cathode for Sodium lon Batteries of High Rate and Long Cycling Life. ACS Applied Materials & Amp; Interfaces, 2011, 196, 3855-3862 A Green Route to a NaFePOF-Based Cathode	Rational Design of Ag-Based Catalysts for the Electrochemical CO Reduction to CO: A Review. Chembus Chem, 2020, 13, 39-58 Compositional engineering of perovskite oxides for highly efficient oxygen reduction reactions. ACS Applied Materials & Bamp; Interfaces, 2015, 7, 8562-71 High performance of Mn-Co-Ni-O Spinel nanofilms sputtered from acetate precursors. Scientific Reports, 2015, 5, 10899 Oxygen vacancies-rich Ceo.9Cd0.102-libecorated Pr0.5Ba0.5CoO3-libfunctional catalyst for efficient and long-lasting rechargeable Zn-air batteries. Applied Catalysis B: Environmental, 2020, 21.8 266, 118656 An efficient electrocatalyst as cathode material for solid oxide fuel cells: BaFe0195Sn0105O31 Journal of Power Sources, 2016, 326, 459-465 Perovskite-based proton conducting membranes for hydrogen separation: A review. International Journal of Hydrogen Energy, 2018, 43, 15281-15305 Sm0.5Sr0.5CoO3Bnfiltrated cathodes for solid oxide fuel cells with improved oxygen reduction activity and stability. Journal of Power Sources, 2012, 216, 208-215 Influence of M cations on structural, thermal and electrical propriets of new oxygen selective membranes based on SrCoO.95M0.05O3bperovskite. Separation and Purification Technology, 2009, 67, 304-311 Realizing Ultrafast Oxygen Evolution by Introducing Proton Acceptor into Perovskites. Advanced Energy Materials, 2019, 9, 1900429 A NiFeCu alloy anode catalyst for direct-methane solid oxide fuel cells. Journal of Power Sources, 2014, 258, 134-141 A new Gd-promoted nickel catalyst for methane conversion to syngas and as an anode functional layer in a solid oxide fuel cell. Journal of Power Sources, 2011, 196, 3855-3862 A Green Route to a NaFePOF-Based Cathode for Sodium Ion Batteries of High Rate and Long Cycling Life. ACS Applied Materials & amp; Interfaces, 2017, 9, 16280-16287 Single-Layered Two-Dimensional Metal-Organic framework Nanosheets as an in Situ Visual Test Paper for Solvents. ACS Applied Materials & amp; Interfaces, 2017, 9, 16280-28867 High-Performance Platin

493	Nickel-based anode with water storage capability to mitigate carbon deposition for direct ethanol solid oxide fuel cells. <i>ChemSusChem</i> , 2014 , 7, 1719-28	8.3	51
492	Characterization and evaluation of BaCo0.7Fe0.2Nb0.1O3las a cathode for proton-conducting solid oxide fuel cells. <i>International Journal of Hydrogen Energy</i> , 2012 , 37, 484-497	6.7	51
491	Utilizing ion leaching effects for achieving high oxygen-evolving performance on hybrid nanocomposite with self-optimized behaviors. <i>Nature Communications</i> , 2020 , 11, 3376	17.4	50
490	In situ fabrication of (Sr,La)FeO4 with CoFe alloy nanoparticles as an independent catalyst layer for direct methane-based solid oxide fuel cells with a nickel cermet anode. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 13997-14007	13	50
489	Amorphous V-O-C composite nanofibers electrospun from solution precursors as binder- and conductive additive-free electrodes for supercapacitors with outstanding performance. <i>Nanoscale</i> , 2013 , 5, 12589-97	7.7	50
488	Boosting the Activity of BaCo0.4Fe0.4Zr0.1Y0.1O3IPerovskite for Oxygen Reduction Reactions at Low-to-Intermediate Temperatures through Tuning B-Site Cation Deficiency. <i>Advanced Energy Materials</i> , 2019 , 9, 1902384	21.8	49
487	Single-phase perovskite oxide with super-exchange induced atomic-scale synergistic active centers enables ultrafast hydrogen evolution. <i>Nature Communications</i> , 2020 , 11, 5657	17.4	49
486	Recent Advances in Filler Engineering of Polymer Electrolytes for Solid-State Li-Ion Batteries: A Review. <i>Energy & Description</i> , 2020, 34, 9189-9207	4.1	49
485	Computational and experimental analysis of Ba0.95La0.05FeO3las a cathode material for solid oxide fuel cells. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 14154-14163	13	49
484	Methane-fueled SOFC with traditional nickel-based anode by applying Ni/Al2O3 as a dual-functional layer. <i>Electrochemistry Communications</i> , 2009 , 11, 194-197	5.1	49
483	New Ba0.5Sr0.5Co0.8Fe0.2O3D Co3O4 composite electrode for IT-SOFCs with improved electrical conductivity and catalytic activity. <i>Electrochemistry Communications</i> , 2011 , 13, 197-199	5.1	49
482	Evaluation of Ba0.6Sr0.4Co0.9Nb0.1O3Imixed conductor as a cathode for intermediate-temperature oxygen-ionic solid-oxide fuel cells. <i>Journal of Power Sources</i> , 2010 , 195, 5176	5-5784	49
481	Hierarchical carbon-coated acanthosphere-like Li4Ti5O12 microspheres for high-power lithium-ion batteries. <i>Journal of Power Sources</i> , 2016 , 314, 18-27	8.9	48
480	Solid-Oxide Fuel Cells: Recent Progress on Advanced Materials for Solid-Oxide Fuel Cells Operating Below 500 LC (Adv. Mater. 48/2017). <i>Advanced Materials</i> , 2017 , 29, 1770345	24	48
479	Recent advances in single-chamber fuel-cells: Experiment and modeling. <i>Solid State Ionics</i> , 2006 , 177, 2013-2021	3.3	48
478	Recent Advances in Cs2AgBiBr6-Based Halide Double Perovskites as Lead-Free and Inorganic Light Absorbers for Perovskite Solar Cells. <i>Energy & Double Perovskites</i> 34, 10513-10528	4.1	48
477	An Aurivillius Oxide Based Cathode with Excellent CO2 Tolerance for Intermediate-Temperature Solid Oxide Fuel Cells. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 8988-93	16.4	48
476	Enabling High and Stable Electrocatalytic Activity of Iron-Based Perovskite Oxides for Water Splitting by Combined Bulk Doping and Morphology Designing. <i>Advanced Materials Interfaces</i> , 2019 , 6, 1801317	4.6	48

475	Recent progress in metalorganic frameworks for lithium Bulfur batteries. <i>Polyhedron</i> , 2018 , 155, 464-484	12.7	48
474	Self-Recovery Chemistry and Cobalt-Catalyzed Electrochemical Deposition of Cathode for Boosting Performance of Aqueous Zinc-Ion Batteries. <i>IScience</i> , 2020 , 23, 100943	6.1	47
473	B-Site Cation-Ordered Double-Perovskite Oxide as an Outstanding Electrode Material for Supercapacitive Energy Storage Based on the Anion Intercalation Mechanism. <i>ACS Applied Materials & Materials</i>	9.5	47
472	Surfactant-free self-assembly of reduced graphite oxide-MoO2 nanobelt composites used as electrode for lithium-ion batteries. <i>Electrochimica Acta</i> , 2016 , 211, 972-981	6.7	47
471	Pt/CliCoO2 composites with ultralow Pt loadings as synergistic bifunctional electrocatalysts for oxygen reduction and evolution reactions. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 4516-4524	13	47
470	Surfactant-Assisted Phase-Selective Synthesis of New Cobalt MOFs and Their Efficient Electrocatalytic Hydrogen Evolution Reaction. <i>Angewandte Chemie</i> , 2017 , 129, 13181-13185	3.6	47
469	A mechanism study of synthesis of Li4Ti5O12 from TiO2 anatase. <i>Journal of Alloys and Compounds</i> , 2010 , 505, 367-373	5.7	47
468	B-Site Cation Ordered Double Perovskites as Efficient and Stable Electrocatalysts for Oxygen Evolution Reaction. <i>Chemistry - A European Journal</i> , 2017 , 23, 5722-5728	4.8	46
467	Rich atomic interfaces between sub-1 nm RuOx clusters and porous Co3O4 nanosheets boost oxygen electrocatalysis bifunctionality for advanced Zn-air batteries. <i>Energy Storage Materials</i> , 2020 , 32, 20-29	19.4	46
466	Deactivation and Regeneration of Oxygen Reduction Reactivity on Double Perovskite Ba2Bi0.1Sc0.2Co1.7O6 Cathode for Intermediate-Temperature Solid Oxide Fuel Cells. <i>Chemistry of Materials</i> , 2011 , 23, 1618-1624	9.6	46
465	Gas Humidification Impact on the Properties and Performance of Perovskite-Type Functional Materials in Proton-Conducting Solid Oxide Cells. <i>Advanced Functional Materials</i> , 2018 , 28, 1802592	15.6	46
464	Double-layered yolk-shell microspheres with NiCo2S4-Ni9S8-C hetero-interfaces as advanced battery-type electrode for hybrid supercapacitors. <i>Chemical Engineering Journal</i> , 2020 , 396, 125316	14.7	45
463	Water-proof, electrolyte-nonvolatile, and flexible Li-Air batteries via O2-Permeable silica-aerogel-reinforced polydimethylsiloxane external membranes. <i>Energy Storage Materials</i> , 2020 , 27, 297-306	19.4	45
462	Promoting the Efficiency and Stability of CsPbIBr-Based All-Inorganic Perovskite Solar Cells through a Functional Cu Doping Strategy. <i>ACS Applied Materials & amp; Interfaces</i> , 2020 , 12, 23984-23994	1 9.5	45
461	Tuning layer-structured La0.6Sr1.4MnO4+Into a promising electrode for intermediate-temperature symmetrical solid oxide fuel cells through surface modification. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 10641-10649	13	45
460	Novel Approach for Developing Dual-Phase Ceramic Membranes for Oxygen Separation through Beneficial Phase Reaction. <i>ACS Applied Materials & Distriction Separation Separation Communication Commu</i>	9.5	44
459	Impregnated LaCo0.3Fe0.67Pd0.03O3-las a promising electrocatalyst for Bymmetrical intermediate-temperature solid oxide fuel cells. <i>Journal of Power Sources</i> , 2016 , 306, 92-99	8.9	44
458	BaCo0.6Fe0.3Sn0.1O3perovskite as a new superior oxygen reduction electrode for intermediate-to-low temperature solid oxide fuel cells. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 15078	13	44

457	Significant impact of nitric acid treatment on the cathode performance of Ba0.5Sr0.5Co0.8Fe0.2O3lperovskite oxide via combined EDTAllitric complexing process. <i>Journal of Power Sources</i> , 2007 , 174, 237-245	8.9	44
456	Oxygen selective membranes based on B-site cation-deficient (Ba0.5Sr0.5)(Co0.8Fe0.2)yO3II perovskite with improved operational stability. <i>Journal of Membrane Science</i> , 2008 , 318, 182-190	9.6	44
455	High-Performance Perovskite Composite Electrocatalysts Enabled by Controllable Interface Engineering. <i>Small</i> , 2021 , 17, e2101573	11	44
454	Fine-Tuning Surface Properties of Perovskites via Nanocompositing with Inert Oxide toward Developing Superior Catalysts for Advanced Oxidation. <i>Advanced Functional Materials</i> , 2018 , 28, 18046	54 ^{5.6}	44
453	Super-Exchange Interaction Induced Overall Optimization in Ferromagnetic Perovskite Oxides Enables Ultrafast Water Oxidation. <i>Small</i> , 2019 , 15, e1903120	11	43
452	Tin-doped perovskite mixed conducting membrane for efficient air separation. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 9666-9674	13	43
451	A comparative study of SrCo0.8Nb0.2O3Iand SrCo0.8Ta0.2O3Ias low-temperature solid oxide fuel cell cathodes: effect of non-geometry factors on the oxygen reduction reaction. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 24064-24070	13	43
450	Phase transition of a cobalt-free perovskite as a high-performance cathode for intermediate-temperature solid oxide fuel cells. <i>ChemSusChem</i> , 2012 , 5, 2023-31	8.3	43
449	Performance of SrSc0.2Co0.8O3D Sm0.5Sr0.5CoO3D inixed-conducting composite electrodes for oxygen reduction at intermediate temperatures. <i>International Journal of Hydrogen Energy</i> , 2009 , 34, 9496-9504	6.7	43
448	Nickel catalyst prepared via glycine nitrate process for partial oxidation of methane to syngas. <i>Catalysis Communications</i> , 2008 , 9, 1418-1425	3.2	43
447	Recent Advances in the Development of Anode Materials for Solid Oxide Fuel Cells Utilizing Liquid Oxygenated Hydrocarbon Fuels: A Mini Review. <i>Energy Technology</i> , 2019 , 7, 33-44	3.5	43
446	Postsynthesis Growth of CoOOH Nanostructure on SrCo0.6Ti0.4O3lPerovskite Surface for Enhanced Degradation of Aqueous Organic Contaminants. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 15737-15748	8.3	43
445	Role of silver current collector on the operational stability of selected cobalt-containing oxide electrodes for oxygen reduction reaction. <i>Journal of Power Sources</i> , 2012 , 210, 146-153	8.9	42
444	Lithium and lanthanum promoted Ni-Al2O3 as an active and highly coking resistant catalyst layer for solid-oxide fuel cells operating on methane. <i>Journal of Power Sources</i> , 2011 , 196, 90-97	8.9	42
443	Development of a Nite0.8Zr0.2O2 catalyst for solid oxide fuel cells operating on ethanol through internal reforming. <i>Journal of Power Sources</i> , 2011 , 196, 6177-6185	8.9	42
442	SrCo0.85Fe0.1P0.05O3Iperovskite as a cathode for intermediate-temperature solid oxide fuel cells. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 13632	13	41
441	A comprehensive evaluation of a NiAl2O3 catalyst as a functional layer of solid-oxide fuel cell anode. <i>Journal of Power Sources</i> , 2010 , 195, 402-411	8.9	41
440	Synthesis and assessment of La0.8Sr0.2ScyMn1DO3Das cathodes for solid-oxide fuel cells on scandium-stabilized zirconia electrolyte. <i>Journal of Power Sources</i> , 2008 , 183, 471-478	8.9	41

439	A high-performance no-chamber fuel cell operated on ethanol flame. <i>Journal of Power Sources</i> , 2008 , 177, 33-39	8.9	41
438	Influence of high-energy ball milling of precursor on the morphology and electrochemical performance of Li4Ti5O12Ball-milling time. <i>Solid State Ionics</i> , 2008 , 179, 946-950	3.3	41
437	Spherical Ruthenium Disulfide-Sulfur-Doped Graphene Composite as an Efficient Hydrogen Evolution Electrocatalyst. <i>ACS Applied Materials & Evolution Electrocatalyst</i> (2018) 10, 34098-34107	9.5	41
436	Cobalt-free SrFe0.9Ti0.1O3las a high-performance electrode material for oxygen reduction reaction on doped ceria electrolyte with favorable CO2 tolerance. <i>Journal of the European Ceramic Society</i> , 2015 , 35, 2531-2539	6	40
435	Earth-Abundant Silicon for Facilitating Water Oxidation over Iron-Based Perovskite Electrocatalyst. <i>Advanced Materials Interfaces</i> , 2018 , 5, 1701693	4.6	40
434	3D coreBhell architecture from infiltration and beneficial reactive sintering as highly efficient and thermally stable oxygen reduction electrode. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 1284-1293	13	40
433	Comparative Studies of SrCo1⊠TaxO3Щx=0.05Ū.4) Oxides as Cathodes for Low-Temperature Solid-Oxide Fuel Cells. <i>ChemElectroChem</i> , 2015 , 2, 1331-1338	4.3	40
432	Further performance improvement of Ba0.5Sr0.5Co0.8Fe0.2O3Derovskite membranes for air separation. <i>Ceramics International</i> , 2009 , 35, 2455-2461	5.1	40
431	Effect of Ba nonstoichiometry on the phase structure, sintering, electrical conductivity and phase stability of Ba1\(\text{H}xCe0.4Zr0.4Y0.2O3\(\text{I}(0\(\text{M}\)\)0.20) proton conductors. <i>International Journal of Hydrogen Energy</i> , 2011 , 36, 8450-8460	6.7	40
430	Coking-free direct-methanol-flame fuel cell with traditional nickellermet anode. <i>International Journal of Hydrogen Energy</i> , 2010 , 35, 7971-7981	6.7	40
429	Boosting the oxygen evolution reaction activity of a perovskite through introducing multi-element synergy and building an ordered structure. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 9924-9932	13	39
428	Assessment of nickel cermets and La0.8Sr0.2Sc0.2Mn0.8O3 as solid-oxide fuel cell anodes operating on carbon monoxide fuel. <i>Journal of Power Sources</i> , 2010 , 195, 1333-1343	8.9	39
427	Cobalt-free Ba0.5Sr0.5Fe0.8Cu0.1Ti0.1O3D a bi-functional electrode material for solid oxide fuel cells. <i>Journal of Power Sources</i> , 2015 , 298, 184-192	8.9	38
426	Monoclinic SrIrO3: An Easily Synthesized Conductive Perovskite Oxide with Outstanding Performance for Overall Water Splitting in Alkaline Solution. <i>Chemistry of Materials</i> , 2020 , 32, 4509-451	1 9.6	38
425	In situ formation of a 3D core-shell and triple-conducting oxygen reduction reaction electrode for proton-conducting SOFCs. <i>Journal of Power Sources</i> , 2018 , 385, 76-83	8.9	38
424	H2S poisoning effect and ways to improve sulfur tolerance of nickel cermet anodes operating on carbonaceous fuels. <i>Applied Energy</i> , 2016 , 179, 765-777	10.7	38
423	Aluminum oxide as a dual-functional modifier of Ni-based anodes of solid oxide fuel cells for operation on simulated biogas. <i>Journal of Power Sources</i> , 2014 , 268, 787-793	8.9	38
422	Nanoscaled Sm-doped CeO2 buffer layers for intermediate-temperature solid oxide fuel cells. <i>Electrochemistry Communications</i> , 2013 , 35, 131-134	5.1	38

Facile autocombustion synthesis of La0.6Sr0.4Co0.2Fe0.8O3[LSCF) perovskite via a modified complexing soldel process with NH4NO3 as combustion aid. *Journal of Alloys and Compounds*,

5.7

34

2008, 450, 338-347

404

(2017-2008)

403	Ethanol Steam Reforming over Pt Catalysts Supported on CexZr1NO2 Prepared via a Glycine Nitrate Process. <i>Energy & Documents</i> , 2008, 22, 1873-1879	4.1	34
402	Self-Assembled Ruddlesden-Popper/Perovskite Hybrid with Lattice-Oxygen Activation as a Superior Oxygen Evolution Electrocatalyst. <i>Small</i> , 2020 , 16, e2001204	11	34
401	Chlorine-anion doping induced multi-factor optimization in perovskties for boosting intrinsic oxygen evolution. <i>Journal of Energy Chemistry</i> , 2021 , 52, 115-120	12	34
400	Nano-zero-valent iron and MnO selective deposition on BiVO decahedron superstructures for promoted spatial charge separation and exceptional catalytic activity in visible-light-driven photocatalysis-Fenton coupling system. <i>Journal of Hazardous Materials</i> , 2019 , 377, 330-340	12.8	33
399	Ultralong Cycle Life Li-O Battery Enabled by a MOF-Derived Ruthenium-Carbon Composite Catalyst with a Durable Regenerative Surface. <i>ACS Applied Materials & Composite Catalyst Materials & Composite Catalyst Materials & Composite Catalyst With a Durable Regenerative Surface. ACS Applied Materials & Composite Catalyst With a Durable Regenerative Surface. ACS Applied Materials & Composite Catalyst With a Durable Regenerative Surface. ACS Applied Materials & Composite Catalyst With a Durable Regenerative Surface. ACS Applied Materials & Composite Catalyst With a Durable Regenerative Surface. ACS Applied Materials & Composite Catalyst With a Durable Regenerative Surface. ACS Applied Materials & Composite Catalyst With a Durable Regenerative Surface. ACS Applied Materials & Composite Catalyst With a Durable Regenerative Surface. ACS Applied Materials & Composite Catalyst With Action Composite Catalyst With </i>	9.5	33
398	Structurally modified coal char as a fuel for solid oxide-based carbon fuel cells with improved performance. <i>Journal of Power Sources</i> , 2015 , 288, 106-114	8.9	33
397	Influence of crystal structure on the electrochemical performance of A-site-deficient Sr1BNb0.1Co0.9O3perovskite cathodes. <i>RSC Advances</i> , 2014 , 4, 40865-40872	3.7	33
396	The influence of impurity ions on the permeation and oxygen reduction properties of Ba0.5Sr0.5Co0.8Fe0.2O3perovskite. <i>Journal of Membrane Science</i> , 2014 , 449, 86-96	9.6	33
395	Coke formation and performance of an intermediate-temperature solid oxide fuel cell operating on dimethyl ether fuel. <i>Journal of Power Sources</i> , 2011 , 196, 1967-1974	8.9	33
394	Nitrogen-doped TiO2 microspheres with hierarchical micro/nanostructures and rich dual-phase junctions for enhanced photocatalytic activity. <i>RSC Advances</i> , 2016 , 6, 40923-40931	3.7	33
393	Pyrite-type ruthenium disulfide with tunable disorder and defects enables ultra-efficient overall water splitting. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 14222-14232	13	32
392	In Situ Tetraethoxysilane-Templated Porous Ba0.5Sr0.5Co0.8Fe0.2O3IPerovskite for the Oxygen Evolution Reaction. <i>ChemElectroChem</i> , 2015 , 2, 200-203	4.3	32
391	High-performance metal-organic framework-perovskite hybrid as an important component of the air-electrode for rechargeable Zn-Air battery. <i>Journal of Power Sources</i> , 2020 , 468, 228377	8.9	32
390	A smart lithiophilic polymer filler in gel polymer electrolyte enables stable and dendrite-free Li metal anode. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 9733-9742	13	32
389	Perovskite oxide/carbon nanotube hybrid bifunctional electrocatalysts for overall water splitting. <i>Electrochimica Acta</i> , 2018 , 286, 47-54	6.7	32
388	A new nickelleria composite for direct-methane solid oxide fuel cells. <i>International Journal of Hydrogen Energy</i> , 2013 , 38, 3741-3749	6.7	32
387	Optimization of a direct carbon fuel cell for operation below 1700 IIC. <i>International Journal of Hydrogen Energy</i> , 2013 , 38, 5367-5374	6.7	32
386	Synthesis of Hierarchical TiO2ta3N4 Hybrid Microspheres with Enhanced Photocatalytic and Photovoltaic Activities by Maximizing the Synergistic Effect. <i>ChemPhotoChem</i> , 2017 , 1, 35-45	3.3	32

385	A carbon-air battery for high power generation. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 3722-5	16.4	32
384	Pd-YSZ composite cathodes for oxygen reduction reaction of intermediate-temperature solid oxide fuel cells. <i>International Journal of Hydrogen Energy</i> , 2011 , 36, 7670-7676	6.7	32
383	Initialization of a methane-fueled single-chamber solid-oxide fuel cell with NiO+SDC anode and BSCF+SDC cathode. <i>Journal of Power Sources</i> , 2008 , 179, 640-648	8.9	32
382	Hierarchical Porous YolkBhell Carbon Nanosphere for High-Performance LithiumBulfur Batteries. <i>Particle and Particle Systems Characterization</i> , 2017 , 34, 1600281	3.1	31
381	An Blectronegative Difunctional coating layer: simultaneous regulation of polysulfide and Li-ion adsorption sites for long-cycling and Bendrite-free LiB batteries. <i>Journal of Materials Chemistry A</i> , 2019, 7, 22463-22474	13	31
380	Ceramic Lithium Ion Conductor to Solve the Anode Coking Problem of Practical Solid Oxide Fuel Cells. <i>ChemSusChem</i> , 2015 , 8, 2978-86	8.3	31
379	Efficient and CO2-tolerant oxygen transport membranes prepared from high-valence B-site substituted cobalt-free SrFeO3\(\text{D}\) Journal of Membrane Science, 2015 , 495, 187-197	9.6	31
378	A Porous Nano-Micro-Composite as a High-Performance Bi-Functional Air Electrode with Remarkable Stability for Rechargeable Zinc-Air Batteries. <i>Nano-Micro Letters</i> , 2020 , 12, 130	19.5	31
377	Renewable acetic acid in combination with solid oxide fuel cells for sustainable clean electric power generation. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 5620	13	31
376	Catalytic decomposition of hydrous hydrazine to hydrogen over oxide catalysts at ambient conditions for PEMFCs. <i>International Journal of Hydrogen Energy</i> , 2012 , 37, 1133-1139	6.7	31
375	Physically mixed LiLaNiAl2O3 and copper as conductive anode catalysts in a solid oxide fuel cell for methane internal reforming and partial oxidation. <i>International Journal of Hydrogen Energy</i> , 2011 , 36, 5632-5643	6.7	31
374	Defects-rich porous carbon microspheres as green electrocatalysts for efficient and stable oxygen-reduction reaction over a wide range of pH values. <i>Chemical Engineering Journal</i> , 2021 , 406, 120	s é83 7	31
373	Defect engineering of oxide perovskites for catalysis and energy storage: synthesis of chemistry and materials science. <i>Chemical Society Reviews</i> , 2021 , 50, 10116-10211	58.5	31
372	3D ordered macroporous SmCoO3 perovskite for highly active and selective hydrogen peroxide detection. <i>Electrochimica Acta</i> , 2018 , 260, 372-383	6.7	31
371	Co-generation of electricity and syngas on proton-conducting solid oxide fuel cell with a perovskite layer as a precursor of a highly efficient reforming catalyst. <i>Journal of Power Sources</i> , 2017 , 348, 9-15	8.9	30
370	Realizing fourfold enhancement in conductivity of perovskite Li0.33La0.557TiO3 electrolyte membrane via a Sr and Ta co-doping strategy. <i>Journal of Membrane Science</i> , 2019 , 582, 194-202	9.6	30
369	Infiltrated NiCo Alloy Nanoparticle Decorated Perovskite Oxide: A Highly Active, Stable, and Antisintering Anode for Direct-Ammonia Solid Oxide Fuel Cells. <i>Small</i> , 2020 , 16, e2001859	11	30
368	Molybdenum and Niobium Codoped B-Site-Ordered Double Perovskite Catalyst for Efficient Oxygen Evolution Reaction. <i>ACS Applied Materials & Damp; Interfaces</i> , 2018 , 10, 16939-16942	9.5	30

(2020-2010)

367	Effect of firing temperature on the microstructure and performance of PrBaCo2O5+Eathodes on Sm0.2Ce0.8O1.9 electrolytes fabricated by spray deposition-firing processes. <i>Journal of Power Sources</i> , 2010 , 195, 4667-4675	8.9	30
366	A dense oxygen separation membrane with a layered morphologic structure. <i>Journal of Membrane Science</i> , 2007 , 300, 182-190	9.6	30
365	Anodes for Carbon-Fueled Solid Oxide Fuel Cells. ChemElectroChem, 2016, 3, 193-203	4.3	30
364	Nickel-Iron Alloy Nanoparticle-Decorated K2NiF4-Type Oxide as an Efficient and Sulfur-Tolerant Anode for Solid Oxide Fuel Cells. <i>ChemElectroChem</i> , 2017 , 4, 2378-2384	4.3	29
363	CoreBhell structured Li0.33La0.56TiO3 perovskite as a highly efficient and sulfur-tolerant anode for solid-oxide fuel cells. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 8545-8551	13	29
362	Direct growth of ordered N-doped carbon nanotube arrays on carbon fiber cloth as a free-standing and binder-free air electrode for flexible quasi-solid-state rechargeable Zn-Air batteries 2020 , 2, 461-47	1	29
361	A new symmetric solid oxide fuel cell with a samaria-doped ceria framework and a silver-infiltrated electrocatalyst. <i>Journal of Power Sources</i> , 2012 , 197, 57-64	8.9	29
360	Composition and microstructure optimization and operation stability of barium deficient Ba1\(\text{B}C00.7Fe0.2Nb0.1O3\(\text{D}erovskite oxide electrodes. \) Electrochimica Acta, 2013, 103, 23-31	6.7	29
359	Wet powder spraying fabrication and performance optimization of IT-SOFCs with thin-film ScSZ electrolyte. <i>International Journal of Hydrogen Energy</i> , 2012 , 37, 1125-1132	6.7	29
358	Fabrication and evolution of catalyst-coated membranes by direct spray deposition of catalyst ink onto Nafion membrane at high temperature. <i>International Journal of Hydrogen Energy</i> , 2010 , 35, 2921-2	923	29
357	Fabrication of an anode-supported yttria-stabilized zirconia thin film for solid-oxide fuel cells via wet powder spraying. <i>Journal of Power Sources</i> , 2008 , 184, 229-237	8.9	29
356	Perovskite Oxide Catalysts for Advanced Oxidation Reactions. <i>Advanced Functional Materials</i> , 2021 , 31, 2102089	15.6	29
355	Smart Construction of an Intimate Lithium Garnet Interface for All-Solid-State Batteries by Tuning the Tension of Molten Lithium. <i>Advanced Functional Materials</i> , 2021 , 31, 2101556	15.6	29
354	Multi-active sites derived from a single/double perovskite hybrid for highly efficient water oxidation. <i>Electrochimica Acta</i> , 2019 , 299, 926-932	6.7	29
353	Open hollow Co P t clusters embedded in carbon nanoflake arrays for highly efficient alkaline water splitting. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 20214-20223	13	29
352	Modified template synthesis and electrochemical performance of a Co3O4/mesoporous cathode for lithiumBxygen batteries. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 16132-16141	13	28
351	Green fabrication of composite cathode with attractive performance for solid oxide fuel cells through facile inkjet printing. <i>Journal of Power Sources</i> , 2015 , 273, 465-471	8.9	28
350	A Self-Assembled Hetero-Structured Inverse-Spinel and Anti-Perovskite Nanocomposite for Ultrafast Water Oxidation. <i>Small</i> , 2020 , 16, e2002089	11	28

349	Controlled deposition and utilization of carbon on Ni-YSZ anodes of SOFCs operating on dry methane. <i>Energy</i> , 2016 , 113, 432-443	7.9	28
348	A single-/double-perovskite composite with an overwhelming single-perovskite phase for the oxygen reduction reaction at intermediate temperatures. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 248	34 ¹³ 24	849 ⁸
347	Preparation and re-examination of Li4Ti4.85Al0.15O12 as anode material of lithium-ion battery. <i>International Journal of Energy Research</i> , 2011 , 35, 68-77	4.5	28
346	Cobalt-site cerium doped SmxSr1\(\mathbb{L}\)CoO3\(\mathbb{L}\)xides as potential cathode materials for solid-oxide fuel cells. \(Journal of Power Sources\), 2010, 195, 3386-3393	8.9	28
345	High performance electrode for electrochemical oxygen generator cell based on solid electrolyte ion transport membrane. <i>Electrochimica Acta</i> , 2007 , 52, 6297-6303	6.7	28
344	Methane-fueled IT-SOFCs with facile in situ inorganic templating synthesized mesoporous Sm0.2Ce0.8O1.9 as catalytic layer. <i>Journal of Power Sources</i> , 2007 , 170, 251-258	8.9	28
343	Robust ion-transporting ceramic membrane with an internal short circuit for oxygen production. Journal of Materials Chemistry A, 2013 , 1, 9150	13	27
342	Effect of a reducing agent for silver on the electrochemical activity of an Ag/Ba0.5Sr0.5Co0.8Fe0.2O3lelectrode prepared by electroless deposition technique. <i>Journal of Power Sources</i> , 2009 , 186, 244-251	8.9	27
341	Emerging Strategies for Developing High-Performance Perovskite-Based Materials for Electrochemical Water Splitting. <i>Energy & Electrochemical Water Splitting</i> .	4.1	27
340	A hierarchical Zn2Mo3O8 nanodots-porous carbon composite as a superior anode for lithium-ion batteries. <i>Chemical Communications</i> , 2016 , 52, 9402-5	5.8	26
339	Multi scale and physics models for intermediate and low temperatures H+-solid oxide fuel cells with H+/e[IO2Imixed conducting properties: Part A, generalized percolation theory for LSCF-SDC-BZCY 3-component cathodes. <i>Journal of Power Sources</i> , 2016 , 303, 305-316	8.9	26
338	Solid lithium electrolyte-Li4Ti5O12 composites as anodes of lithium-ion batteries showing high-rate performance. <i>Journal of Power Sources</i> , 2013 , 231, 177-185	8.9	26
337	Heterostructured electrode with concentration gradient shell for highly efficient oxygen reduction at low temperature. <i>Scientific Reports</i> , 2011 , 1, 155	4.9	26
336	Effect of nickel content and preparation method on the performance of Ni-Al2O3 towards the applications in solid oxide fuel cells. <i>International Journal of Hydrogen Energy</i> , 2011 , 36, 10958-10967	6.7	26
335	Comparative study of doped ceria thin-film electrolytes prepared by wet powder spraying with powder synthesized via two techniques. <i>Journal of Power Sources</i> , 2010 , 195, 393-401	8.9	26
334	Hydrazine as efficient fuel for low-temperature SOFC through ex-situ catalytic decomposition with high selectivity toward hydrogen. <i>International Journal of Hydrogen Energy</i> , 2010 , 35, 7919-7924	6.7	26
333	Nickel-doped BaCo0.4Fe0.4Zr0.1Y0.1O3-las a new high-performance cathode for both oxygen-ion and proton conducting fuel cells. <i>Chemical Engineering Journal</i> , 2021 , 420, 127717	14.7	26
332	Highly CO-Tolerant Cathode for Intermediate-Temperature Solid Oxide Fuel Cells: Samarium-Doped Ceria-Protected SrCoTaO Hybrid. <i>ACS Applied Materials & Discounty (Company)</i> , 9, 232	26 ⁹ 2 ⁵ 33	3 ²⁵

331	Rational design of strontium antimony co-doped Li7La3Zr2O12 electrolyte membrane for solid-state lithium batteries. <i>Journal of Alloys and Compounds</i> , 2019 , 794, 347-357	5.7	25	
330	Highly Active and Stable Cobalt-Free Hafnium-doped SrFe0.9Hf0.1O3Perovskite Cathode for Solid Oxide Fuel Cells. <i>ACS Applied Energy Materials</i> , 2018 , 1, 2134-2142	6.1	25	
329	Optimal synthesis and new understanding of P2-type Na2/3Mn1/2Fe1/4Co1/4O2 as an advanced cathode material in sodium-ion batteries with improved cycle stability. <i>Ceramics International</i> , 2018 , 44, 5184-5192	5.1	25	
328	Resistance of water transport in carbon nanotube membranes. <i>Nanoscale</i> , 2018 , 10, 13242-13249	7.7	25	
327	A Highly Stable and Active Hybrid Cathode for Low-Temperature Solid Oxide Fuel Cells. <i>ChemElectroChem</i> , 2014 , 1, 1627-1631	4.3	25	
326	Electrophoretic deposition of YSZ thin-film electrolyte for SOFCs utilizing electrostatic-steric stabilized suspensions obtained via high energy ball milling. <i>International Journal of Hydrogen Energy</i> , 2011 , 36, 9195-9204	6.7	25	
325	Improving single-chamber performance of an anode-supported SOFC by impregnating anode with active nickel catalyst. <i>International Journal of Hydrogen Energy</i> , 2010 , 35, 8171-8176	6.7	25	
324	Solid-oxide fuel cell operated on in situ catalytic decomposition products of liquid hydrazine. Journal of Power Sources, 2008 , 177, 323-329	8.9	25	
323	A New Pd Doped Proton Conducting Perovskite Oxide with Multiple Functionalities for Efficient and Stable Power Generation from Ammonia at Reduced Temperatures. <i>Advanced Energy Materials</i> , 2021 , 11, 2003916	21.8	25	
322	Stable Hierarchical Bimetal Drganic Nanostructures as HighPerformance Electrocatalysts for the Oxygen Evolution Reaction. <i>Angewandte Chemie</i> , 2019 , 131, 4271-4275	3.6	25	
321	A cobalt and nickel co-modified layered P2-Na2/3Mn1/2Fe1/2O2 with excellent cycle stability for high-energy density sodium-ion batteries. <i>Journal of Alloys and Compounds</i> , 2019 , 775, 383-392	5.7	25	
320	Fast operando spectroscopy tracking in situ generation of rich defects in silver nanocrystals for highly selective electrochemical CO reduction. <i>Nature Communications</i> , 2021 , 12, 660	17.4	25	
319	Improved performance of a symmetrical solid oxide fuel cell by swapping the roles of doped ceria and La0.6Sr1.4MnO4+In the electrode. <i>Journal of Power Sources</i> , 2017 , 342, 644-651	8.9	24	
318	Boosting oxygen evolution reaction by activation of lattice-oxygen sites in layered Ruddlesden-Popper oxide. <i>EcoMat</i> , 2020 , 2, e12021	9.4	24	
317	Efficient Wastewater Remediation Enabled by Self-Assembled Perovskite Oxide Heterostructures with Multiple Reaction Pathways. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 6033-6042	8.3	24	
316	Enhancing the triiodide reduction activity of a perovskite-based electrocatalyst for dye-sensitized solar cells through exsolved silver nanoparticles. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 17489-1749	7 ¹³	24	
315	Fructose-Derived Hollow Carbon Nanospheres with Ultrathin and Ordered Mesoporous Shells as Cathodes in LithiumBulfur Batteries for Fast Energy Storage. <i>Advanced Sustainable Systems</i> , 2017 , 1, 1700081	5.9	24	
314	LiNi0.29Co0.33Mn0.38O2 polyhedrons with reduced cation mixing as a high-performance cathode material for Li-ion batteries synthesized via a combined co-precipitation and molten salt heating technique. <i>Journal of Alloys and Compounds</i> , 2017 , 691, 206-214	5.7	24	

313	Coking suppression in solid oxide fuel cells operating on ethanol by applying pyridine as fuel additive. <i>Journal of Power Sources</i> , 2014 , 265, 20-29	8.9	24
312	Evaluation of mixed-conducting lanthanum-strontium-cobaltite ceramic membrane for oxygen separation. <i>AICHE Journal</i> , 2009 , 55, 2603-2613	3.6	24
311	A comparative study of La0.8Sr0.2MnO3 and La0.8Sr0.2Sc0.1Mn0.9O3 as cathode materials of single-chamber SOFCs operating on a methanellir mixture. <i>Journal of Power Sources</i> , 2009 , 191, 225-232	2 ^{8.9}	24
310	Effect of Sm3+ content on the properties and electrochemical performance of SmxSr1\(\mathbb{U}\)CoO3\(\Omega\) (0.2\(\mathbb{U}\)D.8) as an oxygen reduction electrodes on doped ceria electrolytes. <i>Electrochimica Acta</i> , 2011 , 56, 2870-2876	6.7	24
309	A novel way to improve performance of proton-conducting solid-oxide fuel cells through enhanced chemical interaction of anode components. <i>International Journal of Hydrogen Energy</i> , 2011 , 36, 1683-16	9 1 7	24
308	Advances in Zeolite Imidazolate Frameworks (ZIFs) Derived Bifunctional Oxygen Electrocatalysts and Their Application in ZincAir Batteries. <i>Advanced Energy Materials</i> , 2021 , 11, 2100514	21.8	24
307	Electrochemical performance and effect of moisture on Ba0.5Sr0.5Sc0.175Nb0.025Co0.8O3-I oxide as a promising electrode for proton-conducting solid oxide fuel cells. <i>Applied Energy</i> , 2019 , 238, 344-350	10.7	23
306	From scheelite BaMoO4 to perovskite BaMoO3: Enhanced electrocatalysis toward the hydrogen evolution in alkaline media. <i>Composites Part B: Engineering</i> , 2020 , 198, 108214	10	23
305	Facile synthesis of porous MgOllaOlnOx nanocubes implanted firmly on in situ formed carbon paper and their lithium storage properties. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 9126	13	23
304	Ethylene glycol as a new sustainable fuel for solid oxide fuel cells with conventional nickel-based anodes. <i>Applied Energy</i> , 2015 , 148, 1-9	10.7	23
303	Interlayer-free electrodes for IT-SOFCs by applying Co3O4 as sintering aid. <i>International Journal of Hydrogen Energy</i> , 2012 , 37, 11946-11954	6.7	23
302	Layered perovskite Y1\(\mathbb{Q}\)CaxBaCo4O7+\(\mathbb{Q}\)s ceramic membranes for oxygen separation. <i>Journal of Alloys and Compounds</i> , 2010 , 492, 552-558	5.7	23
301	A High Electrochemical Performance Proton Conductor Electrolyte with CO2 Tolerance. <i>Chinese Journal of Catalysis</i> , 2009 , 30, 479-481	11.3	23
300	Significant impact of the current collection material and method on the performance of Ba0.5Sr0.5Co0.8Fe0.2O3lelectrodes in solid oxide fuel cells. <i>Journal of Power Sources</i> , 2011 , 196, 5511-	5§19	23
299	Double-site yttria-doped Sr1\(\mathbb{R}\)YxCo1\(\mathbb{R}\)YyO3\(\mathbb{D}\)erovskite oxides as oxygen semi-permeable membranes. Journal of Alloys and Compounds, 2009 , 474, 477-483	5.7	23
298	Electrochemical Performance of SrSc[sub 0.2]Co[sub 0.8]O[sub 3¶Cathode on Sm[sub 0.2]Ce[sub 0.8]O[sub 1.9] Electrolyte for Low Temperature SOFCs. <i>Journal of the Electrochemical Society</i> , 2009 , 156, B884	3.9	23
297	High performance porous iron oxide-carbon nanotube nanocomposite as an anode material for lithium-ion batteries. <i>Electrochimica Acta</i> , 2016 , 212, 179-186	6.7	23
296	Rational Design of Metal Oxide B ased Cathodes for Efficient Dye-Sensitized Solar Cells. <i>Advanced Energy Materials</i> , 2018 , 8, 1800172	21.8	23

295	Recent Progress on Structurally Ordered Materials for Electrocatalysis. <i>Advanced Energy Materials</i> , 2021 , 11, 2101937	21.8	23	
294	Tin and iron co-doping strategy for developing active and stable oxygen reduction catalysts from SrCoO3Ifor operating below 800IfC. <i>Journal of Power Sources</i> , 2015 , 294, 339-346	8.9	22	
293	Evaluation of pulsed laser deposited SrNb0.1Co0.9O3Ithin films as promising cathodes for intermediate-temperature solid oxide fuel cells. <i>Journal of Power Sources</i> , 2015 , 295, 117-124	8.9	22	
292	Oriented PrBaCo2O5+Ethin films for solid oxide fuel cells. <i>Journal of Power Sources</i> , 2015 , 278, 623-629	8.9	22	
291	A CO2-tolerant SrCo0.8Fe0.15Zr0.05O3Lathode for proton-conducting solid oxide fuel cells. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 11292-11301	13	22	
290	Fuel cells that operate at 300°L to 500°C. <i>Science</i> , 2020 , 369, 138-139	33.3	22	
289	Proton-Conducting La-Doped Ceria-Based Internal Reforming Layer for Direct Methane Solid Oxide Fuel Cells. <i>ACS Applied Materials & Direct Methane Solid Oxide Puel Cells. ACS Applied Materials & Direct Methane Solid Oxide Puel Cells. ACS Applied Materials & Direct Methane Solid Oxide Puel Cells. ACS Applied Materials & Direct Methane Solid Oxide Puel Cells. ACS Applied Materials & Direct Methane Solid Oxide Puel Cells. ACS Applied Materials & Direct Methane Solid Oxide Puel Cells. ACS Applied Materials & Direct Methane Solid Oxide Puel Cells. ACS Applied Materials & Direct Methane Solid Oxide Puel Cells. ACS Applied Materials & Direct Methane Solid Oxide Puel Cells. ACS Applied Materials & Direct Methane Solid Oxide Puel Cells. ACS Applied Materials & Direct Methane Solid Oxide Puel Cells. ACS Applied Materials & Direct Methane Solid Oxide Puel Cells. ACS Applied Materials & Direct Methane Solid Oxide Puel Cells. ACS Applied Materials & Direct Methane Solid Oxide Puel Cells. ACS Applied Materials & Direct Methane Solid Oxide Puel Cells. ACS Applied Materials & Direct Methane Solid Oxide Puel Cells. ACS Applied Materials & Direct Methane Solid Oxide Puel Cells & Direct Methane Solid Oxide</i>	9.5	22	
288	A novel Ba0.6Sr0.4Co0.9Nb0.1O3Eathode for protonic solid-oxide fuel cells. <i>Journal of Power Sources</i> , 2010 , 195, 4700-4703	8.9	22	
287	A composite oxygen-reduction electrode composed of SrSc0.2Co0.8O3[perovskite and Sm0.2Ce0.8O1.9 for an intermediate-temperature solid-oxide fuel cell. <i>International Journal of Hydrogen Energy</i> , 2010 , 35, 5601-5610	6.7	22	
286	Low temperature synthesis of perovskite oxide using the adsorption properties of cellulose. <i>Journal of Materials Science</i> , 2000 , 35, 5639-5644	4.3	22	
285	Ruddlesden P opper Perovskite Oxides for Photocatalysis-Based Water Splitting and Wastewater Treatment. <i>Energy & Documents</i> , 2020, 34, 9208-9221	4.1	22	
284	Stabilizing Atomically Dispersed Catalytic Sites on Tellurium Nanosheets with Strong Metal-Support Interaction Boosts Photocatalysis. <i>Small</i> , 2020 , 16, e2002356	11	22	
283	Water-stable MOFs-based core-shell nanostructures for advanced oxidation towards environmental remediation. <i>Composites Part B: Engineering</i> , 2020 , 192, 107985	10	22	
282	Recent advances and perspectives of fluorite and perovskite-based dual-ion conducting solid oxide fuel cells. <i>Journal of Energy Chemistry</i> , 2021 , 57, 406-427	12	22	
281	Unlocking the Potential of Mechanochemical Coupling: Boosting the Oxygen Evolution Reaction by Mating Proton Acceptors with Electron Donors. <i>Advanced Functional Materials</i> , 2021 , 31, 2008077	15.6	22	
2 80	Rational Design of Superior Electrocatalysts for Water Oxidation: Crystalline or Amorphous Structure?. <i>Small Science</i> , 2021 , 1, 2100030		22	
279	Significantly Improving the Durability of Single-Chamber Solid Oxide Fuel Cells: A Highly Active CO2-Resistant Perovskite Cathode. <i>ACS Applied Energy Materials</i> , 2018 , 1, 1337-1343	6.1	21	
278	Mixed protonic-electronic conducting perovskite oxide as a robust oxygen evolution reaction catalyst. <i>Electrochimica Acta</i> , 2018 , 282, 324-330	6.7	21	

277	Enhanced sulfur tolerance of nickel-based anodes for oxygen-ion conducting solid oxide fuel cells by incorporating a secondary water storing phase. <i>Environmental Science & Environmental Science & E</i>	10.3	21
276	Insight into an unusual lanthanum effect on the oxygen reduction reaction activity of Ruddlesden-Popper-type cation-nonstoichiometric La2 \mathbb{N} NiO4+ \mathbb{I} (x = 0 \mathbb{D} .1) oxides. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 6501-6508	13	21
275	Hierarchical porous cobalt-free perovskite electrode for highly efficient oxygen reduction. <i>Journal of Materials Chemistry</i> , 2012 , 22, 16214		21
274	Direct-methane solid oxide fuel cells with an in situ formed NiBe alloy composite catalyst layer over NiBSZ anodes. <i>Renewable Energy</i> , 2020 , 150, 334-341	8.1	21
273	Recent Advances in the Understanding of the Surface Reconstruction of Oxygen Evolution Electrocatalysts and Materials Development. <i>Electrochemical Energy Reviews</i> , 2021 , 4, 566-600	29.3	21
272	Recent development on perovskite-type cathode materials based on SrCoO3 Iparent oxide for intermediate-temperature solid oxide fuel cells. <i>Asia-Pacific Journal of Chemical Engineering</i> , 2016 , 11, 370-381	1.3	21
271	Cadmium sulfide quantum dots/dodecahedral polyoxometalates/oxygen-doped mesoporous graphite carbon nitride with Z-scheme and Type-II as tandem heterojunctions for boosting visible-light-driven photocatalytic performance. <i>Journal of Colloid and Interface Science</i> , 2021 , 582, 752-	9.3 763	21
270	A high performance composite cathode with enhanced CO2 resistance for low and intermediate-temperature solid oxide fuel cells. <i>Journal of Power Sources</i> , 2018 , 405, 124-131	8.9	21
269	Silver-doped strontium niobium cobaltite as a new perovskite-type ceramic membrane for oxygen separation. <i>Journal of Membrane Science</i> , 2018 , 563, 617-624	9.6	21
268	Fundamental Understanding and Application of Ba0.5Sr0.5Co0.8Fe0.2O3IPerovskite in Energy Storage and Conversion: Past, Present, and Future. <i>Energy & Description</i> 2021, 35, 13585-13609	4.1	21
267	Rational Design of LaNiO3/Carbon Composites as Outstanding Platinum-Free Photocathodes in Dye-Sensitized Solar Cells With Enhanced Catalysis for the Triiodide Reduction Reaction. <i>Solar Rrl</i> , 2017 , 1, 1700074	7.1	20
266	A highly sensitive perovskite oxide sensor for detection of p-phenylenediamine in hair dyes. <i>Journal of Hazardous Materials</i> , 2019 , 369, 699-706	12.8	20
265	Dodecylamine-Induced Synthesis of a Nitrogen-Doped Carbon Comb for Advanced LithiumBulfur Battery Cathodes. <i>Advanced Materials Interfaces</i> , 2018 , 5, 1701659	4.6	20
264	Facile Strategy to Low-Cost Synthesis of Hierarchically Porous, Active Carbon of High Graphitization for Energy Storage. <i>ACS Applied Materials & Damp; Interfaces</i> , 2018 , 10, 21573-21581	9.5	20
263	Smart Control of Composition for Double Perovskite Electrocatalysts toward Enhanced Oxygen Evolution Reaction. <i>ChemSusChem</i> , 2019 , 12, 5111-5116	8.3	20
262	Nickel zirconia cerate cermet for catalytic partial oxidation of ethanol in a solid oxide fuel cell system. <i>International Journal of Hydrogen Energy</i> , 2012 , 37, 8603-8612	6.7	20
261	Optimal hydrothermal synthesis of hierarchical porous ZnMn 2 O 4 microspheres with more porous core for improved lithium storage performance. <i>Electrochimica Acta</i> , 2016 , 207, 58-65	6.7	20
260	Cation-Deficient Perovskites for Clean Energy Conversion. <i>Accounts of Materials Research</i> , 2021 , 2, 477-	488	20

259	An in situ formed MnOtto composite catalyst layer over Nitte0.8Sm0.2O2\(\mathbb{\textra}\) anodes for direct methane solid oxide fuel cells. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 6494-6503	13	19
258	Boosting the oxygen evolution catalytic performance of perovskites via optimizing calcination temperature. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 6480-6486	13	19
257	Bulk and Surface Properties Regulation of Single/Double Perovskites to Realize Enhanced Oxygen Evolution Reactivity. <i>ChemSusChem</i> , 2020 , 13, 3045-3052	8.3	19
256	Enhancing Oxygen Reduction Reaction Activity and CO Tolerance of Cathode for Low-Temperature Solid Oxide Fuel Cells by in Situ Formation of Carbonates. <i>ACS Applied Materials & Company Company</i> , 11, 26909-26919	9.5	19
255	A CO2-tolerant nanostructured layer for oxygen transport membranes. <i>RSC Advances</i> , 2014 , 4, 25924	3.7	19
254	A single-step synthesized cobalt-free barium ferrites-based composite cathode for intermediate temperature solid oxide fuel cells. <i>Electrochemistry Communications</i> , 2011 , 13, 1340-1343	5.1	19
253	Fabrication and performance of a carbon dioxide-tolerant proton-conducting solid oxide fuel cells with a dual-layer electrolyte. <i>International Journal of Hydrogen Energy</i> , 2010 , 35, 10513-10521	6.7	19
252	Understanding and Engineering of Multiphase Transport Processes in Membrane Electrode Assembly of Proton-Exchange Membrane Fuel Cells with a Focus on the Cathode Catalyst Layer: A Review. <i>Energy & Description</i> , 2020, 34, 9175-9188	4.1	19
251	Tailored Brownmillerite Oxide Catalyst with Multiple Electronic Functionalities Enables Ultrafast Water Oxidation. <i>Chemistry of Materials</i> , 2021 , 33, 5233-5241	9.6	19
250	A Highly Ordered Hydrophilic Hydrophobic Janus Bi-Functional Layer with Ultralow Pt Loading and Fast Gas/Water Transport for Fuel Cells. <i>Energy and Environmental Materials</i> , 2021 , 4, 126-133	13	19
249	Tailoring charge and mass transport in cation/anion-codoped Ni3N / N-doped CNT integrated electrode toward rapid oxygen evolution for fast-charging zinc-air batteries. <i>Energy Storage Materials</i> , 2021 , 39, 11-20	19.4	19
248	An Intrinsically Conductive Phosphorus-Doped Perovskite Oxide as a New Cathode for High-Performance Dye-Sensitized Solar Cells by Providing Internal Conducting Pathways. <i>Solar Rrl</i> , 2019 , 3, 1900108	7.1	18
247	New Phosphorus-Doped Perovskite Oxide as an Oxygen Reduction Reaction Electrocatalyst in an Alkaline Solution. <i>Chemistry - A European Journal</i> , 2018 , 24, 6950-6957	4.8	18
246	Three Strongly Coupled Allotropes in a Functionalized Porous All-Carbon Nanocomposite as a Superior Anode for Lithium-Ion Batteries. <i>ChemElectroChem</i> , 2016 , 3, 698-703	4.3	18
245	A new approach to nanoporous graphene sheets via rapid microwave-induced plasma for energy applications. <i>Nanotechnology</i> , 2014 , 25, 495604	3.4	18
244	Electric Power and Synthesis Gas Co-generation From Methane with Zero Waste Gas Emission. <i>Angewandte Chemie</i> , 2011 , 123, 1832-1837	3.6	18
243	Effects of preparation methods on the oxygen nonstoichiometry, B-site cation valences and catalytic efficiency of perovskite La0.6Sr0.4Co0.2Fe0.8O3\(\text{D}\)Ceramics International, 2009 , 35, 3201-3206	5.1	18
242	Influence of high-energy ball milling of the starting powder on the sintering; microstructure and oxygen permeability of Ba0.5Sr0.5Co0.5Fe0.5O3Imembranes. <i>Journal of Membrane Science</i> , 2011 , 366, 203-211	9.6	18

241	Effect of pH on synthesis and properties of perovskite oxide via a citrate process. <i>AICHE Journal</i> , 2006 , 52, 769-776	3.6	18
240	Modified cellulose adsorption method for the synthesis of conducting perovskite powders for membrane application. <i>Powder Technology</i> , 2002 , 122, 26-33	5.2	18
239	Enhancing the cycle life of Li-S batteries by designing a free-standing cathode with excellent flexible, conductive, and catalytic properties. <i>Electrochimica Acta</i> , 2019 , 298, 421-429	6.7	18
238	Core Effect on the Performance of N/P Codoped Carbon Encapsulating Noble-Metal Phosphide Nanostructures for Hydrogen Evolution Reaction. <i>ACS Applied Energy Materials</i> , 2019 , 2, 2645-2653	6.1	17
237	Rational design of NiCo2O4/g-C3N4 composite as practical anode of lithium-ion batteries with outstanding electrochemical performance from multiple aspects. <i>Journal of Alloys and Compounds</i> , 2019 , 805, 522-530	5.7	17
236	Ternary Phase Diagram-Facilitated Rapid Screening of Double Perovskites As Electrocatalysts for the Oxygen Evolution Reaction. <i>Chemistry of Materials</i> , 2019 , 31, 5919-5926	9.6	17
235	Morphology, crystal structure and electronic state one-step co-tuning strategy towards developing superior perovskite electrocatalysts for water oxidation. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 1922	8-192	3 1 7
234	High performance tubular solid oxide fuel cells with BSCF cathode. <i>International Journal of Hydrogen Energy</i> , 2012 , 37, 13022-13029	6.7	17
233	Electrochemical contribution of silver current collector to oxygen reduction reaction over Ba0.5Sr0.5Co0.8Fe0.2O3lelectrode on oxygen-ionic conducting electrolyte. <i>International Journal of Hydrogen Energy</i> , 2012 , 37, 14492-14500	6.7	17
232	Functional nano-composite oxides synthesized by environmental-friendly auto-combustion within a micro-bioreactor. <i>Materials Research Bulletin</i> , 2008 , 43, 2248-2259	5.1	17
231	High-Performance Proton-Conducting Fuel Cell with B-Site-Deficient Perovskites for All Cell Components. <i>Energy & Description</i> 2020, 34, 11464-11471	4.1	17
230	CrIn Redox Battery with NiFe2O4 as Catalyst for Enhanced Degradation of Cr(VI) Pollution. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 111-116	8.3	17
229	Reduced air sensitivity and improved electrochemical stability of P2Na2/3Mn1/2Fe1/4Co1/4O2 through atomic layer deposition-assisted Al2O3 coating. <i>Composites Part B: Engineering</i> , 2019 , 173, 106	943	16
228	Rationally designed Water-Insertable Layered Oxides with Synergistic Effect of Transition-Metal Elements for High-Performance Oxygen Evolution Reaction. <i>ACS Applied Materials & amp; Interfaces</i> , 2019 , 11, 25227-25235	9.5	16
227	In situ electrochemical creation of cobalt oxide nanosheets with favorable performance as a high tap density anode material for lithium-ion batteries. <i>Electrochimica Acta</i> , 2015 , 180, 914-921	6.7	16
226	Efficient water splitting through solid oxide electrolysis cells with a new hydrogen electrode derived from A-site cation-deficient La0.4Sr0.55Co0.2Fe0.6Nb0.2O3-perovskite. <i>Materials Today Energy</i> , 2020 , 17, 100458	7	16
225	The Synergistic Effect Accelerates the Oxygen Reduction/Evolution Reaction in a Zn-Air Battery. <i>Frontiers in Chemistry</i> , 2019 , 7, 524	5	16
224	Integrated Ultrafine Co Se in Carbon Nanofibers: An Efficient and Robust Bifunctional Catalyst for Oxygen Electrocatalysis. <i>Chemistry - A European Journal</i> , 2019 , 26, 4063	4.8	16

223	Facile fabrication and improved carbon dioxide tolerance of a novel bilayer-structured ceramic oxygen permeating membrane. <i>Journal of Membrane Science</i> , 2014 , 472, 10-18	9.6	16	
222	Activation of a single-chamber solid oxide fuel cell by a simple catalyst-assisted in-situ process. <i>Electrochemistry Communications</i> , 2009 , 11, 1563-1566	5.1	16	
221	NiCo2S4 spheres grown on N,S co-doped rGO with high sulfur vacancies as superior oxygen bifunctional electrocatalysts. <i>Electrochimica Acta</i> , 2020 , 331, 135356	6.7	16	
220	Advances in Ceramic Thin Films Fabricated by Pulsed Laser Deposition for Intermediate-Temperature Solid Oxide Fuel Cells. <i>Energy & Description</i> 2020, 34, 10568-10582	4.1	16	
219	Self-Supported Nickel Phosphide Electrode for Efficient Alkaline Water-to-Hydrogen Conversion via Urea Electrolysis. <i>Industrial & Engineering Chemistry Research</i> , 2021 , 60, 1185-1193	3.9	16	
218	Materials design for ceramic oxygen permeation membranes: Single perovskite vs. single/double perovskite composite, a case study of tungsten-doped barium strontium cobalt ferrite. <i>Journal of Membrane Science</i> , 2018 , 566, 278-287	9.6	16	
217	NaCoFeO Layered Oxide As Highly Efficient Water Oxidation Electrocatalyst in Alkaline Media. <i>ACS Applied Materials & District Material</i>	9.5	15	
216	Oxygen permeation behavior through Ce0.9Gd0.1O2Imembranes electronically short-circuited by dual-phase Ce0.9Gd0.1O2Iag decoration. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 19033-19041	13	15	
215	A new highly active and CO2-stable perovskite-type cathode material for solid oxide fuel cells developed from A- and B-site cation synergy. <i>Journal of Power Sources</i> , 2020 , 457, 227995	8.9	15	
214	Activation-free supercapacitor electrode based on surface-modified Sr2CoMo1-xNixO6-I perovskite. <i>Chemical Engineering Journal</i> , 2020 , 390, 124645	14.7	15	
213	Rational confinement of molybdenum based nanodots in porous carbon for highly reversible lithium storage. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 10403-10408	13	15	
212	Facile conversion of commercial coarse-type LiCoO2 to nanocomposite-separated nanolayer architectures as a way for electrode performance enhancement. <i>ACS Applied Materials & amp; Interfaces,</i> 2015 , 7, 1787-94	9.5	15	
211	Sintering and oxygen permeation studies of La0.6Sr0.4Co0.2Fe0.8O3Leramic membranes with improved purity. <i>Journal of the European Ceramic Society</i> , 2011 , 31, 2931-2938	6	15	
210	A three-dimensional highly interconnected composite oxygen reduction reaction electrocatalyst prepared from a core-shell precursor. <i>ChemSusChem</i> , 2011 , 4, 1582-6	8.3	15	
209	Activation and Deactivation Kinetics of Oxygen Reduction over a La0.8Sr0.2Sc0.1Mn0.9O3 Cathode. Journal of Physical Chemistry C, 2008 , 112, 18690-18700	3.8	15	
208	Zeolitic Imidazolate Framework-Derived Ordered Pt E e Intermetallic Electrocatalysts for High-Performance Zn-Air Batteries. <i>Energy & Description</i> 2020, 34, 11527-11535	4.1	15	
207	Exsolved Alloy Nanoparticles Decorated Ruddlesden Popper Perovskite as Sulfur-Tolerant Anodes for Solid Oxide Fuel Cells. <i>Energy & Documents</i> 2020, 34, 11449-11457	4.1	15	
206	New Undisputed Evidence and Strategy for Enhanced Lattice-Oxygen Participation of Perovskite Electrocatalyst through Cation Deficiency Manipulation <i>Advanced Science</i> , 2022 , e2200530	13.6	15	

205	Synthesis of nano-particle and highly porous conducting perovskites from simple in situ sol-gel derived carbon templating process. <i>Bulletin of Materials Science</i> , 2010 , 33, 371-376	1.7	14
204	Robust non-Pt noble metal-based nanomaterials for electrocatalytic hydrogen generation. <i>Applied Physics Reviews</i> , 2020 , 7, 041304	17.3	14
203	Porous Structure Engineering of Iridium Oxide Nanoclusters on Atomic Scale for Efficient pH-Universal Overall Water Splitting. <i>Small</i> , 2021 , 17, e2100121	11	14
202	Nanofluidic Behaviors of Water and Ions in Covalent Triazine Framework (CTF) Multilayers. <i>Small</i> , 2020 , 16, e1903879	11	14
201	Nanocomposites: A New Opportunity for Developing Highly Active and Durable Bifunctional Air Electrodes for Reversible Protonic Ceramic Cells. <i>Advanced Energy Materials</i> , 2021 , 11, 2101899	21.8	14
200	A bilateral cyano molecule serving as an effective additive enables high-efficiency and stable perovskite solar cells. <i>Journal of Energy Chemistry</i> , 2021 , 62, 243-251	12	14
199	High Configuration Entropy Activated Lattice Oxygen for O 2 Formation on Perovskite Electrocatalyst. <i>Advanced Functional Materials</i> ,2112157	15.6	14
198	Sc and Nb dopants in SrCoO3 modulate electronic and vacancy structures for improved water splitting and SOFC cathodes. <i>Energy Storage Materials</i> , 2017 , 9, 229-234	19.4	13
197	The preparation of LaSr3Fe3O10 hand its electrochemical performance. <i>Journal of Solid State Electrochemistry</i> , 2017 , 21, 1343-1348	2.6	13
196	Preparation of thin electrolyte film via dry pressing/heating/quenching/calcining for electrolyte-supported SOFCs. <i>Ceramics International</i> , 2019 , 45, 9866-9870	5.1	13
195	Facile synthesis of synergistic Pt/(Co-N)@C composites as alternative oxygen-reduction electrode of PEMFCs with attractive activity and durability. <i>Composites Part B: Engineering</i> , 2020 , 193, 108012	10	13
194	Manipulating cation nonstoichiometry towards developing better electrolyte for self-humidified dual-ion solid oxide fuel cells. <i>Journal of Power Sources</i> , 2020 , 460, 228105	8.9	13
193	A new way to increase performance of oxide electrode for oxygen reduction using grain growth inhibitor. <i>Electrochemistry Communications</i> , 2012 , 14, 36-38	5.1	13
192	A Highly Active Perovskite Electrode for the Oxygen Reduction Reaction Below 600 LC. <i>Angewandte Chemie</i> , 2013 , 125, 14286-14290	3.6	13
191	Effect of foreign oxides on the phase structure, sintering and transport properties of Ba0.5Sr0.5Co0.8Fe0.2O3las ceramic membranes for oxygen separation. <i>Separation and Purification Technology</i> , 2011 , 81, 384-391	8.3	13
190	Facile auto-combustion synthesis for oxygen separation membrane application. <i>Journal of Membrane Science</i> , 2009 , 329, 219-227	9.6	13
189	Cr doping effect in B-site of La0.75Sr0.25MnO3 on its phase stability and performance as an SOFC anode. <i>Rare Metals</i> , 2009 , 28, 361-366	5.5	13
188	A New Durable Surface Nanoparticles-Modified Perovskite Cathode for Protonic Ceramic Fuel Cells from Selective Cation Exsolution under Oxidizing Atmosphere <i>Advanced Materials</i> , 2021 , e2106379	24	13

(2021-2020)

187	Efficient Water Splitting Actualized through an Electrochemistry-Induced Hetero-Structured Antiperovskite/(Oxy)Hydroxide Hybrid. <i>Small</i> , 2020 , 16, e2006800	11	13	
186	Progress on X-ray Absorption Spectroscopy for the Characterization of Perovskite-Type Oxide Electrocatalysts. <i>Energy & Description</i> 2021, 35, 5716-5737	4.1	13	
185	SrCo0.8Ti0.1Ta0.1O3-sperovskite: A new highly active and durable cathode material for intermediate-temperature solid oxide fuel cells. <i>Composites Part B: Engineering</i> , 2021 , 213, 108726	10	13	
184	Utilization of low-concentration coal-bed gas to generate power using a core-shell catalyst-modified solid oxide fuel cell. <i>Renewable Energy</i> , 2020 , 147, 602-609	8.1	13	
183	Intermediate-Temperature Solid Oxide Fuel Cells. <i>Green Chemistry and Sustainable Technology</i> , 2016 ,	1.1	12	
182	Process Investigation of a Solid Carbon-Fueled Solid Oxide Fuel Cell Integrated with a CO2-Permeating Membrane and a Sintering-Resistant Reverse Boudouard Reaction Catalyst. <i>Energy & Documents</i> , 2016, 30, 1841-1848	4.1	12	
181	Constructing self-standing and non-precious metal heterogeneous nanowire arrays as high-performance oxygen evolution electrocatalysts: Beyond the electronegativity effect of the substrate. <i>Journal of Power Sources</i> , 2018 , 396, 421-428	8.9	12	
180	Enhanced coking resistance of Ni cermet anodes for solid oxide fuel cells based on methane on-cell reforming by a redox-stable double-perovskite Sr2MoFeO6-\(\textstyle{1}\) International Journal of Energy Research, 2019, 43, 2527-2537	4.5	12	
179	Influence of sealing materials on the oxygen permeation fluxes of some typical oxygen ion conducting ceramic membranes. <i>Journal of Membrane Science</i> , 2014 , 470, 102-111	9.6	12	
178	Effect of fabrication method on properties and performance of bimetallic Ni0.75Fe0.25 anode catalyst for solid oxide fuel cells. <i>International Journal of Hydrogen Energy</i> , 2012 , 37, 9287-9297	6.7	12	
177	Microwave-plasma induced reconstruction of silver catalysts for highly efficient oxygen reduction. Journal of Materials Chemistry A, 2013 , 1, 13746	13	12	
176	Low-temperature synthesis of La0.6Sr0.4Co0.2Fe0.8O3Derovskite powder via asymmetric soldel process and catalytic auto-combustion. <i>Ceramics International</i> , 2009 , 35, 2809-2815	5.1	12	
175	Modulating metalBrganic frameworks for catalyzing acidic oxygen evolution for proton exchange membrane water electrolysis. <i>SusMat</i> , 2021 , 1, 460-481		12	
174	Postsynthesis Oxygen Nonstoichiometric Regulation: A New Strategy for Performance Enhancement of Perovskites in Advanced Oxidation. <i>Industrial & Engineering Chemistry Research</i> , 2020 , 59, 99-109	3.9	12	
173	Realizing stable high hydrogen permeation flux through BaCo0.4Fe0.4Zr0.1Y0.1O3-Imembrane using a thin Pd film protection strategy. <i>Journal of Membrane Science</i> , 2020 , 596, 117709	9.6	12	
172	Development of nickel based cermet anode materials in solid oxide fuel cells INow and future. <i>Materials Reports Energy</i> , 2021 , 1, 100003		12	
171	Interfacial La Diffusion in the CeO/LaFeO Hybrid for Enhanced Oxygen Evolution Activity. <i>ACS Applied Materials & Diffusion in the CeO/LaFeO Hybrid for Enhanced Oxygen Evolution Activity. ACS Applied Materials & Diffusion in the CeO/LaFeO Hybrid for Enhanced Oxygen Evolution Activity. <i>ACS Applied Materials & Diffusion in the CeO/LaFeO Hybrid for Enhanced Oxygen Evolution Activity. ACS Applied Materials & Diffusion in the CeO/LaFeO Hybrid for Enhanced Oxygen Evolution Activity. <i>ACS Applied Materials & Diffusion in the CeO/LaFeO Hybrid for Enhanced Oxygen Evolution Activity. ACS Applied Materials & Diffusion in the CeO/LaFeO Hybrid for Enhanced Oxygen Evolution Activity. ACS Applied Materials & Diffusion in the CeO/LaFeO Hybrid for Enhanced Oxygen Evolution Activity. ACS Applied Materials & Diffusion in the CeO/LaFeO Hybrid for Enhanced Oxygen Evolution Activity. ACS Applied Materials & Diffusion in the CeO/LaFeO Hybrid for Enhanced Oxygen Evolution Activity. ACS Applied Materials & Diffusion in the CeO/LaFeO Hybrid for Enhanced Oxygen Evolution In the CeO/LaFeO Hybrid for Enhanced Oxygen In the C</i></i></i>	9.5	12	
170	A molecular-level strategy to boost the mass transport of perovskite electrocatalyst for enhanced oxygen evolution. <i>Applied Physics Reviews</i> , 2021 , 8, 011407	17.3	12	

Coal pretreatment and Ag-infiltrated anode for high-performance hybrid direct coal fuel cell.

Defects for Zinc-Air Batteries. ChemElectroChem, 2020, 7, 4949-4955

Facilitating Oxygen Redox on Manganese Oxide Nanosheets by Tuning Active Species and Oxygen

10.7

4.3

11

11

Applied Energy, 2020, 260, 114197

153

152

151	Tuning Nitrogen in Graphitic Carbon Nitride Enabling Enhanced Performance for Polysulfide Confinement in Liß Batteries. <i>Energy & Double States</i> 2020, 34, 11557-11564	4.1	11
150	Achieving Safe and Dendrite-Suppressed Solid-State Li Batteries via a Novel Self-Extinguished Trimethyl Phosphate-Based Wetting Agent. <i>Energy & Description</i> (2008), 34, 11547-11556	4.1	11
149	Towards highly stable and efficient planar perovskite solar cells: Materials development, defect control and interfacial engineering. <i>Chemical Engineering Journal</i> , 2021 , 420, 127599	14.7	11
148	Synergistic effects in ordered Co oxides for boosting catalytic activity in advanced oxidation processes. <i>Applied Catalysis B: Environmental</i> , 2021 , 297, 120463	21.8	11
147	A simple strategy that may effectively tackle the anode-electrolyte interface issues in solid-state lithium metal batteries. <i>Chemical Engineering Journal</i> , 2022 , 427, 131001	14.7	11
146	Two-Step Fabrication of Li4Ti5O12-Coated Carbon Nanofibers as a Flexible Film Electrode for High-Power Lithium-Ion Batteries. <i>ChemElectroChem</i> , 2017 , 4, 2286-2292	4.3	10
145	Amorphous Ni0.75Fe0.25(OH)2-Decorated Layered Double Perovskite Pr0.5Ba0.5CoO3-For Highly Efficient and Stable Water Oxidation. <i>ChemElectroChem</i> , 2017 , 4, 550-556	4.3	10
144	Turning Detrimental Effect into Benefits: Enhanced Oxygen Reduction Reaction Activity of Cobalt-Free Perovskites at Intermediate Temperature CO-Induced Surface Activation. <i>ACS Applied Materials & Discrete Activation</i> , 12, 16417-16425	9.5	10
143	Highly Oxygen Non-Stoichiometric BaSc0.25Co0.75O3-las a High-Performance Cathode for Intermediate-Temperature Solid Oxide Fuel Cells. <i>ChemElectroChem</i> , 2018 , 5, 785-792	4.3	10
142	Graphene decorated with multiple nanosized active species as dual function electrocatalysts for lithium-oxygen batteries. <i>Electrochimica Acta</i> , 2016 , 188, 718-726	6.7	10
141	Rational Design of Superior, Coking-Resistant, Nickel-Based Anodes through Tailoring Interfacial Reactions for Solid Oxide Fuel Cells Operated on Methane Fuel. <i>ChemSusChem</i> , 2018 , 11, 3112-3119	8.3	10
140	Multifold Nanostructuring and Atomic-Scale Modulation of Cobalt Phosphide to Significantly Boost Hydrogen Production. <i>Chemistry - A European Journal</i> , 2018 , 24, 13800-13806	4.8	10
139	Fabrication and operation of flow-through tubular SOFCs for electric power and synthesis gas cogeneration from methane. <i>AICHE Journal</i> , 2014 , 60, 1036-1044	3.6	10
138	Single-chamber solid oxide fuel cells with nanocatalyst-modified anodes capable of in situ activation. <i>Journal of Power Sources</i> , 2014 , 264, 220-228	8.9	10
137	YolkBhell-Structured Cu/Fe@Fe2O3 Nanoparticles Loaded Graphitic Porous Carbon for the Oxygen Reduction Reaction. <i>Particle and Particle Systems Characterization</i> , 2017 , 34, 1700158	3.1	10
136	Development of high-performance cathodes for IT-SOFCs through beneficial interfacial reactions. <i>Electrochemistry Communications</i> , 2009 , 11, 2216-2219	5.1	10
135	Reducing the operation temperature of a solid oxide fuel cell using a conventional nickel-based cermet anode on dimethyl ether fuel through internal partial oxidation. <i>Journal of Power Sources</i> , 2011 , 196, 7601-7608	8.9	10
134	Characterization and optimization of La0.8Sr0.2Sc0.1Mn0.9O3Ebased composite electrodes for intermediate-temperature solid-oxide fuel cells. <i>Journal of Power Sources</i> , 2008 , 185, 641-648	8.9	10

133	Electrochemistry and energy conversion features of protonic ceramic cells with mixed ionic-electronic electrolytes. <i>Energy and Environmental Science</i> , 2021 ,	35.4	10
132	Non-metal fluorine doping in Ruddlesden-Popper perovskite oxide enables high-efficiency photocatalytic water splitting for hydrogen production. <i>Materials Today Energy</i> , 2021 , 100896	7	10
131	Rational design of spinel oxides as bifunctional oxygen electrocatalysts for rechargeable Zn-air batteries. <i>Chemical Physics Reviews</i> , 2020 , 1, 011303	4.4	10
130	Enabling efficient hydrogen-evolution reaction over perovskite oxide electrocatalysts through phosphorus promotion. <i>International Journal of Hydrogen Energy</i> , 2020 , 45, 24859-24869	6.7	10
129	Recent advances in functional oxides for high energy density sodium-ion batteries. <i>Materials Reports Energy</i> , 2021 , 1, 100022		10
128	An Aurivillius Oxide Based Cathode with Excellent CO2 Tolerance for Intermediate-Temperature Solid Oxide Fuel Cells. <i>Angewandte Chemie</i> , 2016 , 128, 9134-9139	3.6	10
127	Scandium and phosphorus co-doped perovskite oxides as high-performance electrocatalysts for the oxygen reduction reaction in an alkaline solution. <i>Journal of Materials Science and Technology</i> , 2020 , 39, 22-27	9.1	10
126	An Adsorption datalysis Pathway toward Sustainable Application of Mesoporous Carbon Nanospheres for Efficient Environmental Remediation. <i>ACS ES&T Water</i> , 2021 , 1, 145-156		10
125	Layered Co/Ni-free oxides for sodium-ion battery cathode materials. <i>Current Opinion in Green and Sustainable Chemistry</i> , 2019 , 17, 29-34	7.9	9
124	Co -Rich Na CoP O Phosphates as Efficient Bifunctional Catalysts for Oxygen Evolution and Reduction Reactions in Alkaline Solution. <i>Chemistry - A European Journal</i> , 2019 , 25, 11007-11014	4.8	9
123	Perovskite-Based Multifunctional Cathode with Simultaneous Supplementation of Substrates and Electrons for Enhanced Microbial Electrosynthesis of Organics. <i>ACS Applied Materials & amp; Interfaces</i> , 2020 , 12, 30449-30456	9.5	9
122	Optimization of SnO2 Nanoparticles Confined in a Carbon Matrix towards Applications as High-Capacity Anodes in Sodium-Ion Batteries. <i>ChemistrySelect</i> , 2018 , 3, 4015-4022	1.8	9
121	Design and investigation of dual-layer electrodes for proton exchange membrane fuel cells. <i>Solid State Ionics</i> , 2014 , 262, 313-318	3.3	9
120	Enhancing the photocatalytic activity of Ruddlesden-Popper Sr2TiO4 for hydrogen evolution through synergistic silver doping and moderate reducing pretreatment. <i>Materials Today Energy</i> , 2021 , 23, 100899	7	9
119	Purified high-sulfur coal as a fuel for direct carbon solid oxide fuel cells. <i>International Journal of Energy Research</i> , 2019 , 43, 2501-2513	4.5	9
118	Ultrafine ruthenium-iridium alloy nanoparticles well-dispersed on N-rich carbon frameworks as efficient hydrogen-generation electrocatalysts. <i>Chemical Engineering Journal</i> , 2021 , 417, 128105	14.7	9
117	Alkaline metal doped strontium cobalt ferrite perovskites as cathodes for intermediate-temperature solid oxide fuel cells. <i>International Journal of Hydrogen Energy</i> , 2018 , 43, 13	420 ⁷ 13	 429
116	Activating Both Basal Plane and Edge Sites of Layered Cobalt Oxides for Boosted Water Oxidation. <i>Advanced Functional Materials</i> , 2021 , 31, 2103569	15.6	9

(2021-2021)

115	Ni2+/Co2+ doped Au-Fe7S8 nanoplatelets with exceptionally high oxygen evolution reaction activity. <i>Nano Energy</i> , 2021 , 89, 106463	17.1	9
114	Double perovskite Pr2CoFeO6 thermoelectric oxide: Roles of Sr-doping and Micro/nanostructuring. <i>Chemical Engineering Journal</i> , 2021 , 425, 130668	14.7	9
113	Interface engineered perovskite oxides for enhanced catalytic oxidation: The vital role of lattice oxygen. <i>Chemical Engineering Science</i> , 2021 , 245, 116944	4.4	9
112	One-pot synthesis of silver-modified sulfur-tolerant anode for SOFCs with an expanded operation temperature window. <i>AICHE Journal</i> , 2017 , 63, 4287-4295	3.6	8
111	Synthesis of Highly Porous Metal-Free Oxygen Reduction Electrocatalysts in a Self-Sacrificial Bacterial Cellulose Microreactor. <i>Advanced Sustainable Systems</i> , 2017 , 1, 1700045	5.9	8
110	Enhancing the oxygen reduction activity of PrBaCo2O5+Edouble perovskite cathode by tailoring the calcination temperatures. <i>International Journal of Hydrogen Energy</i> , 2020 , 45, 25996-26004	6.7	8
109	Inherently Catalyzed Boudouard Reaction of Bamboo Biochar for Solid Oxide Fuel Cells with Improved Performance. <i>Energy & Damp; Fuels</i> , 2018 , 32, 4559-4568	4.1	8
108	MnO-Co composite modified Ni-SDC anode for intermediate temperature solid oxide fuel cells. <i>Fuel Processing Technology</i> , 2017 , 161, 241-247	7.2	8
107	Low-Temperature Synthesis of Hierarchical Amorphous Basic Nickel Carbonate Particles for Water Oxidation Catalysis. <i>ChemSusChem</i> , 2015 , 8, 2193-7	8.3	8
106	Alternative perovskite materials as a cathode component for intermediate temperature single-chamber solid oxide fuel cell. <i>Journal of Power Sources</i> , 2010 , 195, 4758-4764	8.9	8
105	Superstructures with Atomic-Level Arranged Perovskite and Oxide Layers for Advanced Oxidation with an Enhanced Non-Free Radical Pathway. <i>ACS Sustainable Chemistry and Engineering</i> , 2022 , 10, 1899	- ⁸ 909	8
104	Towards practically accessible aprotic Li-air batteries: Progress and challenges related to oxygen-permeable membranes and cathodes. <i>Energy Storage Materials</i> , 2022 , 45, 869-902	19.4	8
103	A mini-review of noble-metal-free electrocatalysts for overall water splitting in non-alkaline electrolytes. <i>Materials Reports Energy</i> , 2021 , 1, 100024		8
102	One-pot combustion synthesis of Li3VO4-Li4Ti5O12 nanocomposite as anode material of lithium-ion batteries with improved performance. <i>Electrochimica Acta</i> , 2016 , 222, 587-595	6.7	8
101	Enhanced coking resistance of a Ni cermet anode by a chromates protective layer. <i>Journal of Energy Chemistry</i> , 2019 , 37, 117-125	12	8
100	Improving Moisture/Thermal Stability and Efficiency of CH3NH3PbI3-Based Perovskite Solar Cells via Gentle Butyl Acrylate Additive Strategy. <i>Solar Rrl</i> , 2021 , 5, 2000621	7.1	8
99	Nitrogen-Doped Graphic Carbon Protected Cu/Co/CoO Nanoparticles for Ultrasensitive and Stable Non-Enzymatic Determination of Glucose and Fructose in Wine. <i>Journal of the Electrochemical Society</i> , 2018 , 165, B543-B550	3.9	8
98	Exceptionally Robust Face-Sharing Motifs Enable Efficient and Durable Water Oxidation. <i>Advanced Materials</i> , 2021 , 33, e2103392	24	8

		WEI :	Z нои
97	Exceptional lattice-oxygen participation on artificially controllable electrochemistry-induced crystalline-amorphous phase to boost oxygen-evolving performance. <i>Applied Catalysis B: Environmental</i> , 2021 , 297, 120484	21.8	8
96	Spontaneous Formation of Heterodimer Au E e7S8 Nanoplatelets by a Seeded Growth Approach. Journal of Physical Chemistry C, 2019 , 123, 10604-10613	3.8	7
95	A cobalt-free layered oxide as an oxygen reduction catalyst for intermediate-temperature solid oxide fuel cells. <i>International Journal of Hydrogen Energy</i> , 2015 , 40, 15578-15584	6.7	7
94	In situ growth of nanoflake and nanoflower-like Ni hydrated hydroxide on the surface of Ni foam as a free-standing electrode for high-performance phosphate detection. <i>Journal of Hazardous Materials</i> , 2020 , 392, 122313	12.8	7
93	Direct Operation of Solid Oxide Fuel Cells on Low-Concentration Oxygen-Bearing Coal-Bed Methane with High Stability. <i>Energy & Dels</i> , 2018, 32, 4547-4558	4.1	7
92	Evaluation of the CO2 tolerant cathode for solid oxide fuel cells: Praseodymium oxysulfates/Ba0.5Sr0.5Co0.8Fe0.2O3-\(\Pi\)Applied Surface Science, 2019 , 472, 10-15	6.7	7
91	The significant effect of the phase composition on the oxygen reduction reaction activity of a layered oxide cathode. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 11026	13	7
90	A CarbonAir Battery for High Power Generation. <i>Angewandte Chemie</i> , 2015 , 127, 3793-3796	3.6	7
89	Further performance enhancement of a DME-fueled solid oxide fuel cell by applying anode functional catalyst. <i>International Journal of Hydrogen Energy</i> , 2012 , 37, 6844-6852	6.7	7
88	The instability of solid oxide fuel cells in an intermediate temperature region. <i>Asia-Pacific Journal of Chemical Engineering</i> , 2011 , 6, 199-203	1.3	7
87	Maximizing acetylene packing density for highly efficient C2H2/CO2 separation through immobilization of amine sites within a prototype MOF. <i>Chemical Engineering Journal</i> , 2022 , 431, 134184	14.7	7
86	Roadmap on Sustainable Mixed Ionic-Electronic Conducting Membranes. <i>Advanced Functional Materials</i> ,2105702	15.6	7
85	Tuning the A-Site Cation Deficiency of La0.8Sr0.2FeO3lPerovskite Oxides for High-Efficiency Triiodide Reduction Reaction in Dye-Sensitized Solar Cells. <i>Energy & amp; Fuels</i> , 2020 , 34, 11322-11329	4.1	7
84	In-situ exsolution of CoNi alloy nanoparticles on LiFe0.8Co0.1Ni0.1O2 parent: New opportunity for boosting oxygen evolution and reduction reaction. <i>Applied Surface Science</i> , 2021 , 543, 148817	6.7	7
83	A Direct -Butane Solid Oxide Fuel Cell Using Ba(ZrCeYYb)NiRuO Perovskite as the Reforming Layer. <i>ACS Applied Materials & Direct -Butane Solid Oxide Fuel Cell Using Ba(ZrCeYYb)NiRuO Perovskite as the Reforming Layer.</i>	9.5	7
82	Cu-modified Ni foams as three-dimensional outer anodes for high-performance hybrid direct coal fuel cells. <i>Chemical Engineering Journal</i> , 2021 , 410, 128239	14.7	7
81	Oxide-based precious metal-free electrocatalysts for anion exchange membrane fuel cells: from material design to cell applications. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 3151-3179	13	7
80	Rational Design of Perovskite-Based Anode with Decent Activity for Hydrogen Electro-Oxidation and Beneficial Effect of Sulfur for Promoting Power Generation in Solid Oxide Fuel Cells. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> 10, 41257-41267	9.5	7

79	Bridging the Charge Accumulation and High Reaction Order for High-Rate Oxygen Evolution and Long Stable Zn-Air Batteries. <i>Advanced Functional Materials</i> ,2111989	15.6	7
78	Promoted spatial charge separation of plasmon Ag and co-catalyst Co P decorated mesoporous g-CN nanosheet assembly for unexpected solar-driven photocatalytic performance. Nanotechnology, 2019, 30, 485401	3.4	6
77	Unveiling Lithium Roles in Cobalt-Free Cathodes for Efficient Oxygen Reduction Reaction below 600 °C. ChemElectroChem, 2019 , 6, 5340-5348	4.3	6
76	Morphology and Catalytic Performance of Flake-Shaped NiO-Yttria-Stabilized Zirconia (YSZ) Particles with Nanocrystalline YSZ Grains. <i>Industrial & Engineering Chemistry Research</i> , 2012 , 51, 6387-6394	3.9	6
75	Effects of niobium doping site and concentration on the phase structure and oxygen permeability of Nb-substituted SrCoOx oxides. <i>Ceramics International</i> , 2010 , 36, 635-641	5.1	6
74	A low resistance and stable lithium-garnet electrolyte interface enabled by a multifunctional anode additive for solid-state lithium batteries. <i>Journal of Materials Chemistry A</i> , 2022 , 10, 2519-2527	13	6
73	Self-catalyzed formation of strongly interconnected multiphase molybdenum-based composites for efficient hydrogen evolution		6
72	Benefitting from Synergistic Effect of Anion and Cation in Antimony Acetate for Stable CH NH PbI -Based Perovskite Solar Cell with Efficiency Beyond 21. <i>Small</i> , 2021 , 17, e2102186	11	6
71	Organic Photochemistry-Assisted Nanoparticle Segregation on Perovskites. <i>Cell Reports Physical Science</i> , 2020 , 1, 100243	6.1	6
70	New TiO -Based Oxide for Catalyzing Alkaline Hydrogen Evolution Reaction with Noble Metal-Like Performance <i>Small Methods</i> , 2021 , 5, e2100246	12.8	6
69	Building Ruddlesden-Popper and Single Perovskite Nanocomposites: A New Strategy to Develop High-Performance Cathode for Protonic Ceramic Fuel Cells. <i>Small</i> , 2021 , 17, e2101872	11	6
68	Ultrathin 2D catalysts with N-coordinated single Co atom outside Co cluster for highly efficient Zn-air battery. <i>Chemical Engineering Journal</i> , 2021 , 421, 129719	14.7	6
67	High activity and durability of a Pttuto ternary alloy electrocatalyst and its large-scale preparation for practical proton exchange membrane fuel cells. <i>Composites Part B: Engineering</i> , 2021 , 222, 109082	10	6
66	Single-atom catalysts for high-efficiency photocatalytic and photoelectrochemical water splitting: distinctive roles, unique fabrication methods and specific design strategies. <i>Journal of Materials Chemistry A</i> , 2022 , 10, 6835-6871	13	6
65	A universal chemical-induced tensile strain tuning strategy to boost oxygen-evolving electrocatalysis on perovskite oxides. <i>Applied Physics Reviews</i> , 2022 , 9, 011422	17.3	6
64	Electrochemical performance and stability of nano-structured Co/PdO-co-impregnated Y2O3 stabilized ZrO2 cathode for intermediate temperature solid oxide fuel cells. <i>International Journal of Hydrogen Energy</i> , 2017 , 42, 6978-6987	6.7	5
63	Perovskites: Realizing Ultrafast Oxygen Evolution by Introducing Proton Acceptor into Perovskites (Adv. Energy Mater. 20/2019). <i>Advanced Energy Materials</i> , 2019 , 9, 1970071	21.8	5
62	Fast cation exchange of layered sodium transition metal oxides for boosting oxygen evolution activity and enhancing durability. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 8075-8083	13	5

A New Sodium-ion-conducting Layered Perovskite Oxide as Highly Active and Sulfur Tolerant

Electrocatalyst for Solid Oxide Fuel Cells. Energy Procedia, 2019, 158, 1660-1665

2.3

(2020-2019)

43	Model based evaluation of the electrochemical reaction sites in solid oxide fuel cell electrodes. <i>International Journal of Hydrogen Energy</i> , 2019 , 44, 8439-8459	6.7	3
42	Advanced Cathodes for Solid Oxide Fuel Cells 2013 , 49-95		3
41	In situ templating synthesis of conic Ba0lbSr0lbCo0lBFe0l2O3lperovskite at elevated temperature. <i>Bulletin of Materials Science</i> , 2009 , 32, 407-412	1.7	3
40	BaCe0.16Y0.04Fe0.8O3-Inanocomposite: A new high-performance cobalt-free triple-conducting cathode for protonic ceramic fuel cells operating at reduced temperatures. <i>Journal of Materials Chemistry A</i> ,	13	3
39	Rational design of ZnO-zeolite imidazole hybrid nanoparticles with reduced charge recombination for enhanced photocatalysis <i>Journal of Colloid and Interface Science</i> , 2022 , 614, 538-546	9.3	3
38	New perovskite membrane with improved sintering and self-reconstructed surface for efficient hydrogen permeation. <i>Journal of Membrane Science</i> , 2021 , 620, 118980	9.6	3
37	Electroless deposition of Co(Mn)/Pd-decorator into Y2O3-stabilized ZrO2 scaffold as cathodes for solid oxide fuel cells. <i>International Journal of Hydrogen Energy</i> , 2018 , 43, 53-63	6.7	3
36	Perovskite Oxides in Catalytic Combustion of Volatile Organic Compounds: Recent Advances and Future Prospects. <i>Energy and Environmental Materials</i> ,	13	3
35	Novel monoclinic ABO4 oxide with single-crystal structure as next generation electrocatalyst for oxygen evolution reaction. <i>Chemical Engineering Journal</i> , 2021 , 420, 130492	14.7	3
34	Pine-Leaf-Shaped \oplus -Fe2O3 Micro/Nanostructures with a Preferred Orientation along the (110) Plane for Efficient Reversible Lithium Storage. <i>ChemElectroChem</i> , 2017 , 4, 2278-2285	4.3	3
33	Realizing Simultaneous Detrimental Reactions Suppression and Multiple Benefits Generation from Nickel Doping toward Improved Protonic Ceramic Fuel Cell Performance <i>Small</i> , 2022 , e2200450	11	3
32	Textured SrBcNbCoFeO Thin Film Cathodes for IT-SOFCs. <i>Materials</i> , 2019 , 12,	3.5	2
31	A strategy to reduce the impact of tar on a Ni-YSZ anode of solid oxide fuel cells. <i>International Journal of Energy Research</i> , 2019 , 43, 3038-3048	4.5	2
30	Synthesis of Flake-Shaped NiOMSZ Particles for High-Porosity Anode of Solid Oxide Fuel Cell. Journal of the American Ceramic Society, 2011 , 94, 3666-3670	3.8	2
29	A Comparative Structure and Performance Study of La[sub 1월]Sr[sub x]CoO[sub 3년] and La[sub 1월]Sr[sub x]Co[sub 0.9]Nb[sub 0.1]O[sub 3년] (x=0.5, 0.7, 0.9, and 1.0) Oxygen Permeable Mixed Conductors. <i>Journal of the Electrochemical Society</i> , 2011 , 158, H299	3.9	2
28	Stabilizing Li Anodes in I Steam to Tackle the Shuttling-Induced Depletion of an Iodide/Triiodide Redox Mediator in Li-O Batteries with Suppressed Li Dendrite Growth. <i>ACS Applied Materials & Interfaces</i> , 2021 , 13, 53859-53867	9.5	2
27	Recent progresses and remaining issues on the ultrathin catalyst layer design strategy for high-performance proton exchange membrane fuel cell with further reduced Pt loadings: A review. <i>International Journal of Hydrogen Energy</i> , 2021 , 47, 1529-1529	6.7	2
26	Perovskite Materials in Electrocatalysis. <i>Materials Horizons</i> , 2020 , 209-250	0.6	2

25	Cathodes for IT-SOFCs. Green Chemistry and Sustainable Technology, 2016, 59-126	1.1	2
24	Phase and morphology engineering of porous cobaltDopper sulfide as a bifunctional oxygen electrode for rechargeable ZnBir batteries. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 18329-18337	13	2
23	Protective Effect of Blood Cora Polysaccharides on H9c2 Rat Heart Cells Injury Induced by Oxidative Stress by Activating Nrf2/HO-1 Signal Pathway. <i>Frontiers in Nutrition</i> , 2021 , 8, 632161	6.2	2
22	Utilizing the charge-transfer model to design promising electrocatalysts. <i>Current Opinion in Electrochemistry</i> , 2021 , 30, 100805	7.2	2
21	Low thermal-expansion and high proton uptake for protonic ceramic fuel cell cathode. <i>Journal of Power Sources</i> , 2022 , 530, 231321	8.9	2
20	One Pot-Synthesized Ag/Ag-Doped CeO Nanocomposite with Rich and Stable 3D Interfaces and Ce for Efficient Carbon Dioxide Electroreduction. <i>ACS Applied Materials & Discounty (Continued Section 2021)</i>	9.5	2
19	Protonic ceramic materials for clean and sustainable energy: advantages and challenges. <i>International Materials Reviews</i> ,1-29	16.1	2
18	Realizing Interfacial Electron/Hole Redistribution and Superhydrophilic Surface through Building Heterostructural 2[hm Co Se-NiSe Nanograins for Efficient Overall Water Splittings <i>Small Methods</i> , 2022 , e2200459	12.8	2
17	Realizing robust and efficient acidic oxygen evolution by electronic modulation of 0D/2D CeO2 quantum dots decorated SrIrO3 nanosheets. <i>Applied Catalysis B: Environmental</i> , 2022 , 315, 121579	21.8	2
16	Anodes for IT-SOFCs. <i>Green Chemistry and Sustainable Technology</i> , 2016 , 127-175	1.1	1
15	CHAPTER 2:Electrolyte Materials for Solid Oxide Fuel Cells (SOFCs). <i>RSC Energy and Environment Series</i> ,26-55	0.6	1
14	A double-layer composite electrode based on SrSc0.2Co0.8O3 perovskite with improved performance in intermediate temperature solid oxide fuel cells. <i>International Journal of Hydrogen Energy</i> , 2010 , 35, 7608-7617	6.7	1
13	Cobalt nanoparticles encapsulated in iron and nitrogen co-doped urchin-like porous carbons as an efficient bifunctional oxygen reversible catalyst for Zn-air batteries. <i>Chemical Engineering Journal</i> , 2022 , 436, 135191	14.7	1
12	SrCo0.4Fe0.4Zr0.1Y0.1O3-∏A new CO2 tolerant cathode for proton-conducting solid oxide fuel cells. <i>Renewable Energy</i> , 2022 , 185, 8-16	8.1	1
11	Microwave plasma rapid heating towards robust cathode/electrolyte interface for solid oxide fuel cells. <i>Journal of Colloid and Interface Science</i> , 2022 , 607, 53-60	9.3	1
10	Ternary BaCaZrTi Perovskite Oxide Piezocatalysts Dancing for Efficient Hydrogen Peroxide Generation. <i>Nano Energy</i> , 2022 , 107251	17.1	1
9	Engineering anion defect in perovskite oxyfluoride cathodes enables proton involved oxygen reduction reaction for protonic ceramic fuel cells. <i>Separation and Purification Technology</i> , 2022 , 290, 12	0844	1
8	Regulating the Interfacial Electron Density of LaSrMnCoO/RuO for Efficient and Low-Cost Bifunctional Oxygen Electrocatalysts and Rechargeable Zn-Air Batteries <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 61098-61106	9.5	1

LIST OF PUBLICATIONS

7	Microscale-decoupled charge-discharge reaction sites for an air electrode with abundant triple-phase boundary and enhanced cycle stability of Zn-Air batteries. <i>Journal of Power Sources</i> , 2022 , 525, 231108	8.9	O
6	A Controllable Dual Interface Engineering Concept for Rational Design of Efficient Bifunctional Electrocatalyst for Zinc-Air Batteries. <i>Small</i> , 2021 , e2105604	11	O
5	Perovskite Materials in Photovoltaics. <i>Materials Horizons</i> , 2020 , 175-207	0.6	O
4	Antiperovskite FeNNi2Co and FeNNi3 nanosheets as a non-enzymatic electrochemical sensor for highly sensitive detection of glucose. <i>Journal of Electroanalytical Chemistry</i> , 2021 , 884, 115072	4.1	O
3	Electrolyte Materials for IT-SOFCs. Green Chemistry and Sustainable Technology, 2016, 15-57	1.1	
2	A No Chamber Fuel Cell Using Ethanol as Flame. <i>Ceramic Engineering and Science Proceedings</i> , 2010 , 53-	-62.1	
1	A Novel Method to Purposely Modify the Anode/Electrolyte Interface in Solid Oxide Fuel Cells. <i>ChemistrySelect</i> , 2019 , 4, 13835-13840	1.8	