
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7334878/publications.pdf Version: 2024-02-01

Μει Ζηου

#	Article	IF	CITATIONS
1	A high-performance cathode for the next generation of solid-oxide fuel cells. Nature, 2004, 431, 170-173.	27.8	2,737
2	Investigation of the permeation behavior and stability of a Ba0.5Sr0.5Co0.8Fe0.2O3â^´Î´oxygen membrane. Journal of Membrane Science, 2000, 172, 177-188.	8.2	983
3	Nonstoichiometric Oxides as Low-Cost and Highly-Efficient Oxygen Reduction/Evolution Catalysts for Low-Temperature Electrochemical Devices. Chemical Reviews, 2015, 115, 9869-9921.	47.7	770
4	Research progress of perovskite materials in photocatalysis- and photovoltaics-related energy conversion and environmental treatment. Chemical Society Reviews, 2015, 44, 5371-5408.	38.1	725
5	Nonradical reactions in environmental remediation processes: Uncertainty and challenges. Applied Catalysis B: Environmental, 2018, 224, 973-982.	20.2	694
6	Enhancing Electrocatalytic Activity of Perovskite Oxides by Tuning Cation Deficiency for Oxygen Reduction and Evolution Reactions. Chemistry of Materials, 2016, 28, 1691-1697.	6.7	635
7	Recent Progress in Metalâ€Organic Frameworks for Applications in Electrocatalytic and Photocatalytic Water Splitting. Advanced Science, 2017, 4, 1600371.	11.2	594
8	A thermally self-sustained micro solid-oxide fuel-cell stack with high power density. Nature, 2005, 435, 795-798.	27.8	583
9	A comprehensive review of Li4Ti5O12-based electrodes for lithium-ion batteries: The latest advancements and future perspectives. Materials Science and Engineering Reports, 2015, 98, 1-71.	31.8	501
10	Recent Advances and Prospective in Ruthenium-Based Materials for Electrochemical Water Splitting. ACS Catalysis, 2019, 9, 9973-10011.	11.2	491
11	Flexible Zn– and Li–air batteries: recent advances, challenges, and future perspectives. Energy and Environmental Science, 2017, 10, 2056-2080.	30.8	477
12	Synthesis, characterization and evaluation of cation-ordered LnBaCo2O5+ as materials of oxygen permeation membranes and cathodes of SOFCs. Acta Materialia, 2008, 56, 4876-4889.	7.9	461
13	Dynamic traction of lattice-confined platinum atoms into mesoporous carbon matrix for hydrogen evolution reaction. Science Advances, 2018, 4, eaao6657.	10.3	460
14	Non-precious-metal catalysts for alkaline water electrolysis: <i>operando</i> characterizations, theoretical calculations, and recent advances. Chemical Society Reviews, 2020, 49, 9154-9196.	38.1	448
15	Stable Hierarchical Bimetal–Organic Nanostructures as HighPerformance Electrocatalysts for the Oxygen Evolution Reaction. Angewandte Chemie - International Edition, 2019, 58, 4227-4231.	13.8	430
16	A Perovskite Electrocatalyst for Efficient Hydrogen Evolution Reaction. Advanced Materials, 2016, 28, 6442-6448.	21.0	429
17	Insights into perovskite-catalyzed peroxymonosulfate activation: Maneuverable cobalt sites for promoted evolution of sulfate radicals. Applied Catalysis B: Environmental, 2018, 220, 626-634.	20.2	428
18	Progress in Solid Oxide Fuel Cells with Nickel-Based Anodes Operating on Methane and Related Fuels. Chemical Reviews, 2013, 113, 8104-8151.	47.7	420

#	Article	IF	CITATIONS
19	Progress in understanding and development of Ba0.5Sr0.5Co0.8Fe0.2O3â^´Î-based cathodes for intermediate-temperature solid-oxide fuel cells: A review. Journal of Power Sources, 2009, 192, 231-246.	7.8	409
20	SrNb _{0.1} Co _{0.7} Fe _{0.2} O _{3â^'<i>δ</i>} Perovskite as a Nextâ€Generation Electrocatalyst for Oxygen Evolution in Alkaline Solution. Angewandte Chemie - International Edition, 2015, 54, 3897-3901.	13.8	400
21	Hydrogen Storage in a Prototypical Zeolitic Imidazolate Framework-8. Journal of the American Chemical Society, 2007, 129, 5314-5315.	13.7	393
22	Recent advances in nanostructured metal nitrides for water splitting. Journal of Materials Chemistry A, 2018, 6, 19912-19933.	10.3	392
23	Surface controlled generation of reactive radicals from persulfate by carbocatalysis on nanodiamonds. Applied Catalysis B: Environmental, 2016, 194, 7-15.	20.2	390
24	Advanced synthesis of materials for intermediate-temperature solid oxide fuel cells. Progress in Materials Science, 2012, 57, 804-874.	32.8	372
25	Metal oxide-based materials as an emerging family of hydrogen evolution electrocatalysts. Energy and Environmental Science, 2020, 13, 3361-3392.	30.8	370
26	A Perovskite Nanorod as Bifunctional Electrocatalyst for Overall Water Splitting. Advanced Energy Materials, 2017, 7, 1602122.	19.5	369
27	Direct evidence of boosted oxygen evolution over perovskite by enhanced lattice oxygen participation. Nature Communications, 2020, 11, 2002.	12.8	366
28	Advances in non-enzymatic glucose sensors based on metal oxides. Journal of Materials Chemistry B, 2016, 4, 7333-7349.	5.8	348
29	Surfactantâ€Assisted Phase‣elective Synthesis of New Cobalt MOFs and Their Efficient Electrocatalytic Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2017, 56, 13001-13005.	13.8	334
30	Intermediate-temperature electrochemical performance of a polycrystalline PrBaCo2O5+ cathode on samarium-doped ceria electrolyte. Journal of Power Sources, 2009, 188, 96-105.	7.8	330
31	Thermal-expansion offset for high-performance fuel cell cathodes. Nature, 2021, 591, 246-251.	27.8	328
32	Perovskite oxides applications in high temperature oxygen separation, solid oxide fuel cell and membrane reactor: A review. Progress in Energy and Combustion Science, 2017, 61, 57-77.	31.2	314
33	Enhancing Electrocatalytic Activity for Hydrogen Evolution by Strongly Coupled Molybdenum Nitride@Nitrogen-Doped Carbon Porous Nano-Octahedrons. ACS Catalysis, 2017, 7, 3540-3547.	11.2	306
34	Molten salt synthesis of nitrogen-doped carbon with hierarchical pore structures for use as high-performance electrodes in supercapacitors. Carbon, 2015, 93, 48-58.	10.3	293
35	Self-Assembled Triple-Conducting Nanocomposite as a Superior Protonic Ceramic Fuel Cell Cathode. Joule, 2019, 3, 2842-2853.	24.0	292
36	Recent Advances in Novel Nanostructuring Methods of Perovskite Electrocatalysts for Energyâ€Related Applications. Small Methods, 2018, 2, 1800071.	8.6	285

#	Article	IF	CITATIONS
37	Perovskite/Carbon Composites: Applications in Oxygen Electrocatalysis. Small, 2017, 13, 1603793.	10.0	277
38	The use of nitrogen-doped graphene supporting Pt nanoparticles as a catalyst for methanol electrocatalytic oxidation. Carbon, 2013, 52, 181-192.	10.3	275
39	Phosphorusâ€Doped Perovskite Oxide as Highly Efficient Water Oxidation Electrocatalyst in Alkaline Solution. Advanced Functional Materials, 2016, 26, 5862-5872.	14.9	271
40	Ba effect in doped Sr(Co0.8Fe0.2)O3-δ on the phase structure and oxygen permeation properties of the dense ceramic membranes. Separation and Purification Technology, 2001, 25, 419-429.	7.9	267
41	Mixed Conducting Perovskite Materials as Superior Catalysts for Fast Aqueous-Phase Advanced Oxidation: A Mechanistic Study. ACS Catalysis, 2017, 7, 388-397.	11.2	260
42	Recent Progress on Advanced Materials for Solidâ€Oxide Fuel Cells Operating Below 500 °C. Advanced Materials, 2017, 29, 1700132.	21.0	257
43	Nitrogen-doped simple and complex oxides for photocatalysis: A review. Progress in Materials Science, 2018, 92, 33-63.	32.8	257
44	Oxygen Reduction Reaction Activity of La-Based Perovskite Oxides in Alkaline Medium: A Thin-Film Rotating Ring-Disk Electrode Study. Journal of Physical Chemistry C, 2012, 116, 5827-5834.	3.1	253
45	Perovskite Oxide Based Electrodes for Highâ€Performance Photoelectrochemical Water Splitting. Angewandte Chemie - International Edition, 2020, 59, 136-152.	13.8	253
46	Biogas reforming for hydrogen production over nickel and cobalt bimetallic catalysts. International Journal of Hydrogen Energy, 2009, 34, 6646-6654.	7.1	252
47	A Highâ€Performance Electrocatalyst for Oxygen Evolution Reaction: LiCo _{0.8} Fe _{0.2} O ₂ . Advanced Materials, 2015, 27, 7150-7155.	21.0	249
48	Coâ€doping Strategy for Developing Perovskite Oxides as Highly Efficient Electrocatalysts for Oxygen Evolution Reaction. Advanced Science, 2016, 3, 1500187.	11.2	245
49	An Amorphous Nickel–Ironâ€Based Electrocatalyst with Unusual Local Structures for Ultrafast Oxygen Evolution Reaction. Advanced Materials, 2019, 31, e1900883.	21.0	243
50	Zirconium doping effect on the performance of proton-conducting BaZryCe0.8â^'yY0.2O3â^'δ (0.0â‰ y â‰ 9 .8) for fuel cell applications. Journal of Power Sources, 2009, 193, 400-407.	7.8	242
51	Performance of a mixed-conducting ceramic membrane reactor with high oxygen permeability for methane conversion. Journal of Membrane Science, 2001, 183, 181-192.	8.2	237
52	Interfacial polymerization of covalent organic frameworks (COFs) on polymeric substrates for molecular separations. Journal of Membrane Science, 2018, 566, 197-204.	8.2	236
53	Intramolecular electronic coupling in porous iron cobalt (oxy)phosphide nanoboxes enhances the electrocatalytic activity for oxygen evolution. Energy and Environmental Science, 2019, 12, 3348-3355.	30.8	234
54	Molecular Design of Mesoporous NiCo ₂ O ₄ and NiCo ₂ S ₄ with Subâ€Micrometerâ€Polyhedron Architectures for Efficient Pseudocapacitive Energy Storage. Advanced Functional Materials, 2017, 27, 1701229.	14.9	230

#	Article	IF	CITATIONS
55	Recent advances in the interface engineering of solid-state Li-ion batteries with artificial buffer layers: challenges, materials, construction, and characterization. Energy and Environmental Science, 2019, 12, 1780-1804.	30.8	230
56	Advances in Cathode Materials for Solid Oxide Fuel Cells: Complex Oxides without Alkaline Earth Metal Elements. Advanced Energy Materials, 2015, 5, 1500537.	19.5	229
57	Double Perovskites in Catalysis, Electrocatalysis, and Photo(electro)catalysis. Trends in Chemistry, 2019, 1, 410-424.	8.5	227
58	Re-evaluation of Ba0.5Sr0.5Co0.8Fe0.2O3â^î^perovskite as oxygen semi-permeable membrane. Journal of Membrane Science, 2007, 291, 148-156.	8.2	226
59	Highly defective CeO ₂ as a promoter for efficient and stable water oxidation. Journal of Materials Chemistry A, 2015, 3, 634-640.	10.3	225
60	Fundamental Understanding of Photocurrent Hysteresis in Perovskite Solar Cells. Advanced Energy Materials, 2019, 9, 1803017.	19.5	224
61	Evaluation of A-site cation-deficient (Ba0.5Sr0.5)1â^'xCo0.8Fe0.2O3â^'î´ (x>0) perovskite as a solid-oxide fuel cell cathode. Journal of Power Sources, 2008, 182, 24-31.	7.8	218
62	Selfâ€Catalyzed Growth of Co, Nâ€Codoped CNTs on Carbonâ€Encased CoS <i>_x</i> Surface: A Nobleâ€Metalâ€Free Bifunctional Oxygen Electrocatalyst for Flexible Solid Zn–Air Batteries. Advanced Functional Materials, 2019, 29, 1904481.	14.9	217
63	Carbon-based electrocatalysts for sustainable energy applications. Progress in Materials Science, 2021, 116, 100717.	32.8	216
64	Nanodiamonds in sp 2 /sp 3 configuration for radical to nonradical oxidation: Core-shell layer dependence. Applied Catalysis B: Environmental, 2018, 222, 176-181.	20.2	214
65	Bigger is Surprisingly Better: Agglomerates of Larger RuP Nanoparticles Outperform Benchmark Pt Nanocatalysts for the Hydrogen Evolution Reaction. Advanced Materials, 2018, 30, e1800047.	21.0	212
66	Metal-organic frameworks derived porous carbon, metal oxides and metal sulfides-based compounds for supercapacitors application. Energy Storage Materials, 2020, 26, 1-22.	18.0	208
67	Promotion of Oxygen Reduction by Exsolved Silver Nanoparticles on a Perovskite Scaffold for Low-Temperature Solid Oxide Fuel Cells. Nano Letters, 2016, 16, 512-518.	9.1	202
68	Anion Doping: A New Strategy for Developing Highâ€Performance Perovskiteâ€Type Cathode Materials of Solid Oxide Fuel Cells. Advanced Energy Materials, 2017, 7, 1700242.	19.5	198
69	Designing Highâ€Valence Metal Sites for Electrochemical Water Splitting. Advanced Functional Materials, 2021, 31, 2009779.	14.9	195
70	Tunable titanium metal–organic frameworks with infinite 1D Ti–O rods for efficient visible-light-driven photocatalytic H ₂ evolution. Journal of Materials Chemistry A, 2019, 7, 11928-11933.	10.3	192
71	Boosting Oxygen Evolution Reaction by Creating Both Metal Ion and Latticeâ€Oxygen Active Sites in a Complex Oxide. Advanced Materials, 2020, 32, e1905025.	21.0	190
72	Unusual synergistic effect in layered Ruddlesdenâ^'Popper oxide enables ultrafast hydrogen evolution. Nature Communications, 2019, 10, 149.	12.8	187

ARTICLE IF CITATIONS Water Splitting with an Enhanced Bifunctional Double Perovskite. ACS Catalysis, 2018, 8, 364-371. 11.2 Developing a "Waterâ€Defendable―and "Dendriteâ€Free―Lithiumâ€Metal Anode Using a Simple and Promising 74 186 GeCl₄ Pretreatment Method. Advanced Materials, 2018, 30, e1705711. La-doped BaFeO3â^îî perovskite as a cobalt-free oxygen reduction electrode for solid oxide fuel cells 6.7 184 with oxygen-ion conducting electrolyte. Journal of Materials Chemistry, 2012, 22, 15071. Assessment of Ba0.5Sr0.5Co1â[°]yFeyO3â[~]Î[′] (y=0.0â€["]1.0) for prospective application as cathode for IT-SOFCs 5.2 76 182 or oxygen permeating membrane. Electrochimica Acta, 2007, 52, 7343-7351. Highâ€Quality Ruddlesden–Popper Perovskite Film Formation for Highâ€Performance Perovskite Solar Cells. Advanced Materials, 2021, 33, e2002582. 21.0 182 A niobium and tantalum co-doped perovskite cathode for solid oxide fuel cells operating below 500 °C. 78 12.8 180 Nature Communications, 2017, 8, 13990. Anion Etching for Accessing Rapid and Deep Self-Reconstruction of Precatalysts for Water Oxidation. 79 177 Matter, 2020, 3, 2124-2137. Systematic Study of Oxygen Evolution Activity and Stability on Lá<sub>1–<i>x</i> </śub>Sr<sub><i>x</i> /sub>FeO_{3â°î'} Perovskite Electrocatalysts in 80 8.0 173 Alkaline Media. ACS Applied Materials & amp; Interfaces, 2018, 10, 11715-11721. Enhancing Bi-functional Electrocatalytic Activity of Perovskite by Temperature Shock: A Case Study of 4.6 LaNiO_{3â^{^1}Î}. Journal of Physical Chemistry Letters, 2013, 4, 2982-2988. Two orders of magnitude enhancement in oxygen evolution reactivity on amorphous Ba 82 _{0.5} Šr _{0.5} Co _{0.8} Fe _{0.2} O _{3a²¹1} nanofilms 10.3 170 with tunable oxidation state. Science Advances, 2017, 3, e1603206. Simultaneous Power Conversion Efficiency and Stability Enhancement of Cs₂AgBiBr₆ Leadâ€Free Inorganic Perovskite Solar Cell through Adopting a 14.9 169 Multifunctional Dye Interlayer. Advanced Functional Materials, 2020, 30, 2001557. Advances in three-dimensional graphene-based materials: configurations, preparation and application in secondary metal (Li, Na, K, Mg, Al)-ion batteries. Energy and Environmental Science, 2019, 12, 84 30.8 163 2030-2053. Surface exchange and bulk diffusion properties of Ba0.5Sr0.5Co0.8Fe0.2O3â~î^ mixed conductor. 161 International Journal of Hydrogen Energy, 2011, 36, 6948-6956. Synthesis, oxygen permeation study and membrane performance of a Ba0.5Sr0.5Co0.8Fe0.2O3â[~]Î[′] oxygen-permeable dense ceramic reactor for partial oxidation of methane to syngas. Separation and 86 7.9 160 Purification Technology, 2001, 25, 97-116. Highâ€Performance GeTeâ€Based Thermoelectrics: from Materials to Devices. Advanced Energy Materials, 160 2020, 10, 2000367. A new symmetric solid-oxide fuel cell with La0.8Sr0.2Sc0.2Mn0.8O3-Î perovskite oxide as both the 88 7.9 158 anode and cathode. Acta Materialia, 2009, 57, 1165-1175. Evaluation of Ba0.5Sr0.5Co0.8Fe0.2O3â^{°°}Î[′] as a potential cathode for an anode-supported 7.8 156 proton-conducting solid-oxide fuel cell. Journal of Power Sources, 2008, 180, 15-22

Wei Zhou

152

90Toward Reducing the Operation Temperature of Solid Oxide Fuel Cells: Our Past 15 Years of Efforts in
Cathode Development. Energy & amp; Fuels, 2020, 34, 15169-15194.5.1

#	Article	IF	CITATIONS
91	Calcium-doped lanthanum nickelate layered perovskite and nickel oxide nano-hybrid for highly efficient water oxidation. Nano Energy, 2015, 12, 115-122.	16.0	144
92	Research progress and materials selection guidelines on mixed conducting perovskite-type ceramic membranes for oxygen production. RSC Advances, 2011, 1, 1661.	3.6	143
93	Mixed matrix membranes incorporated with size-reduced Cu-BTC for improved gas separation. Journal of Materials Chemistry A, 2013, 1, 6350.	10.3	140
94	High activity electrocatalysts from metal–organic framework-carbon nanotube templates for the oxygen reduction reaction. Carbon, 2015, 82, 417-424.	10.3	140
95	Constructing Conductive Interfaces between Nickel Oxide Nanocrystals and Polymer Carbon Nitride for Efficient Electrocatalytic Oxygen Evolution Reaction. Advanced Functional Materials, 2019, 29, 1904020.	14.9	140
96	Defect engineering of oxide perovskites for catalysis and energy storage: synthesis of chemistry and materials science. Chemical Society Reviews, 2021, 50, 10116-10211.	38.1	140
97	Screening highly active perovskites for hydrogen-evolving reaction via unifying ionic electronegativity descriptor. Nature Communications, 2019, 10, 3755.	12.8	139
98	Ruddlesden–Popper perovskites in electrocatalysis. Materials Horizons, 2020, 7, 2519-2565.	12.2	139
99	Recent Advances in Cs ₂ AgBiBr ₆ -Based Halide Double Perovskites as Lead-Free and Inorganic Light Absorbers for Perovskite Solar Cells. Energy & Fuels, 2020, 34, 10513-10528.	5.1	139
100	A Highly Active Perovskite Electrode for the Oxygen Reduction Reaction Below 600 °C. Angewandte Chemie - International Edition, 2013, 52, 14036-14040.	13.8	138
101	Fast Desalination by Multilayered Covalent Organic Framework (COF) Nanosheets. ACS Applied Materials & Interfaces, 2019, 11, 16847-16854.	8.0	135
102	Single-phase perovskite oxide with super-exchange induced atomic-scale synergistic active centers enables ultrafast hydrogen evolution. Nature Communications, 2020, 11, 5657.	12.8	134
103	High performance cobalt-free perovskite cathode for intermediate temperature solid oxide fuel cells. Journal of Materials Chemistry, 2010, 20, 9619.	6.7	133
104	Recent advances in anion-doped metal oxides for catalytic applications. Journal of Materials Chemistry A, 2019, 7, 7280-7300.	10.3	133
105	Efficient stabilization of cubic perovskite SrCoO3â~îδ by B-site low concentration scandium doping combined with sol–gel synthesis. Journal of Alloys and Compounds, 2008, 455, 465-470.	5.5	132
106	Boosting performance of lanthanide magnetism perovskite for advanced oxidation through lattice doping with catalytically inert element. Chemical Engineering Journal, 2019, 355, 721-730.	12.7	132
107	Advances in Zeolite Imidazolate Frameworks (ZIFs) Derived Bifunctional Oxygen Electrocatalysts and Their Application in Zinc–Air Batteries. Advanced Energy Materials, 2021, 11, 2100514.	19.5	132
108	Co ₃ O ₄ Nanosheets as Active Material for Hybrid Zn Batteries. Small, 2018, 14, e1800225.	10.0	131

#	Article	IF	CITATIONS
109	Combustion synthesis of high-performance Li4Ti5O12 for secondary Li-ion battery. Ceramics International, 2009, 35, 1757-1768.	4.8	130
110	Recent Advances in Perovskite Oxides as Electrode Materials for Nonaqueous Lithium–Oxygen Batteries. Advanced Energy Materials, 2017, 7, 1602674.	19.5	129
111	Electrolyte materials for intermediate-temperature solid oxide fuel cells. Progress in Natural Science: Materials International, 2020, 30, 764-774.	4.4	129
112	Progress and Prospects in Symmetrical Solid Oxide Fuel Cells with Two Identical Electrodes. Advanced Energy Materials, 2015, 5, 1500188.	19.5	128
113	High activity and durability of novel perovskite electrocatalysts for water oxidation. Materials Horizons, 2015, 2, 495-501.	12.2	128
114	Rationally Designed Hierarchically Structured Tungsten Nitride and Nitrogenâ€Rich Grapheneâ€Like Carbon Nanocomposite as Efficient Hydrogen Evolution Electrocatalyst. Advanced Science, 2018, 5, 1700603.	11.2	128
115	Highâ€Performance Perovskite Composite Electrocatalysts Enabled by Controllable Interface Engineering. Small, 2021, 17, e2101573.	10.0	128
116	Homologous NiO//Ni ₂ P nanoarrays grown on nickel foams: a well matched electrode pair with high stability in overall water splitting. Nanoscale, 2017, 9, 4409-4418.	5.6	127
117	SrTiO3-based thermoelectrics: Progress and challenges. Nano Energy, 2020, 78, 105195.	16.0	127
118	A new carbon fuel cell with high power output by integrating with in situ catalytic reverse Boudouard reaction. Electrochemistry Communications, 2009, 11, 1265-1268.	4.7	126
119	A novel efficient oxide electrode for electrocatalytic oxygen reduction at 400–600 °C. Chemical Communications, 2008, , 5791.	4.1	125
120	SrCo _{0.9} Ti _{0.1} O _{3â^îl´} As a New Electrocatalyst for the Oxygen Evolution Reaction in Alkaline Electrolyte with Stable Performance. ACS Applied Materials & Interfaces, 2015, 7, 17663-17670.	8.0	125
121	New reduced-temperature ceramic fuel cells with dual-ion conducting electrolyte and triple-conducting double perovskite cathode. Journal of Materials Chemistry A, 2019, 7, 13265-13274.	10.3	125
122	Bifunctionality from Synergy: CoP Nanoparticles Embedded in Amorphous CoOx Nanoplates with Heterostructures for Highly Efficient Water Electrolysis. Advanced Science, 2018, 5, 1800514.	11.2	124
123	Utilizing ion leaching effects for achieving high oxygen-evolving performance on hybrid nanocomposite with self-optimized behaviors. Nature Communications, 2020, 11, 3376.	12.8	122
124	Hydrogen spillover in complex oxide multifunctional sites improves acidic hydrogen evolution electrocatalysis. Nature Communications, 2022, 13, 1189.	12.8	122
125	Recent Advances in Metalâ€Organic Framework Derivatives as Oxygen Catalysts for Zincâ€Air Batteries. Batteries and Supercaps, 2019, 2, 272-289.	4.7	121
126	Advances in Porous Perovskites: Synthesis and Electrocatalytic Performance in Fuel Cells and Metal–Air Batteries. Energy and Environmental Materials, 2020, 3, 121-145.	12.8	119

#	Article	IF	CITATIONS
127	Barium- and strontium-enriched (Ba0.5Sr0.5)1+xCo0.8Fe0.2O3â~î´ oxides as high-performance cathodes for intermediate-temperature solid-oxide fuel cells. Acta Materialia, 2008, 56, 2687-2698.	7.9	118
128	Synthesis of nanocrystalline conducting composite oxides based on a non-ion selective combined complexing process for functional applications. Journal of Alloys and Compounds, 2006, 426, 368-374.	5.5	117
129	Boosting Oxygen Reduction Reaction Activity of Palladium by Stabilizing Its Unusual Oxidation States in Perovskite. Chemistry of Materials, 2015, 27, 3048-3054.	6.7	117
130	Advanced perovskite anodes for solid oxide fuel cells: A review. International Journal of Hydrogen Energy, 2019, 44, 31275-31304.	7.1	117
131	Systematic investigation on new SrCo1â~'yNbyO3â~'Î′ ceramic membranes with high oxygen semi-permeability. Journal of Membrane Science, 2008, 323, 436-443.	8.2	114
132	Flexible, Flameâ€Resistant, and Dendriteâ€Impermeable Gelâ€Polymer Electrolyte for Li–O ₂ /Air Batteries Workable Under Hurdle Conditions. Small, 2018, 14, e1801798.	10.0	113
133	One-Pot Synthesis of NiCo ₂ S ₄ Hollow Spheres via Sequential Ion-Exchange as an Enhanced Oxygen Bifunctional Electrocatalyst in Alkaline Solution. ACS Applied Materials & Interfaces, 2018, 10, 29521-29531.	8.0	113
134	A Cobaltâ€Free Multiâ€Phase Nanocomposite as Nearâ€Ideal Cathode of Intermediateâ€Temperature Solid Oxide Fuel Cells Developed by Smart Selfâ€Assembly. Advanced Materials, 2020, 32, e1906979.	21.0	113
135	Fundamental Understanding and Application of Ba _{0.5} Sr _{0.5} Co _{0.8} Fe _{0.2} O _{3â^î^} Perovskite in Energy Storage and Conversion: Past, Present, and Future. Energy & Fuels, 2021, 35, 13585-13609.	5.1	113
136	Novel B-site ordered double perovskite Ba ₂ Bi _{0.1} Sc _{0.2} Co _{1.7} O _{6â^'x} for highly efficient oxygen reduction reaction. Energy and Environmental Science, 2011, 4, 872-875.	30.8	112
137	Properties and performance of A-site deficient (Ba0.5Sr0.5)1â^'xCo0.8Fe0.2O3â^'î´ for oxygen permeating membrane. Journal of Membrane Science, 2007, 306, 318-328.	8.2	111
138	Boosting the Activity of BaCo _{0.4} Fe _{0.4} Zr _{0.1} Y _{0.1} O _{3â[^]} <i>_{Î[´]}< Perovskite for Oxygen Reduction Reactions at Lowâ€toâ€Intermediate Temperatures through Tuning Bâ€Site Cation Deficiency. Advanced Energy Materials, 2019, 9, 1902384.</i>	/iչ _{9.5}	111
139	Cobalt Oxide and Cobaltâ€Graphitic Carbon Core–Shell Based Catalysts with Remarkably High Oxygen Reduction Reaction Activity. Advanced Science, 2016, 3, 1600060.	11.2	109
140	A Universal Strategy to Design Superior Waterâ€Splitting Electrocatalysts Based on Fast In Situ Reconstruction of Amorphous Nanofilm Precursors. Advanced Materials, 2018, 30, e1804333.	21.0	108
141	Electrochemistry and energy conversion features of protonic ceramic cells with mixed ionic-electronic electrolytes. Energy and Environmental Science, 2022, 15, 439-465.	30.8	108
142	Novel SrSc0.2Co0.8O3â^' as a cathode material for low temperature solid-oxide fuel cell. Electrochemistry Communications, 2008, 10, 1647-1651.	4.7	107
143	BaNb0.05Fe0.95O3â~δas a new oxygen reduction electrocatalyst for intermediate temperature solid oxide fuel cells. Journal of Materials Chemistry A, 2013, 1, 9781.	10.3	107
144	Rational Design of Agâ€Based Catalysts for the Electrochemical CO ₂ Reduction to CO: A Review. ChemSusChem, 2020, 13, 39-58.	6.8	106

#	Article	IF	CITATIONS
145	Systematic evaluation of Co-free LnBaFe2O5+l̃´ (Ln=Lanthanides or Y) oxides towards the application as cathodes for intermediate-temperature solid oxide fuel cells. Electrochimica Acta, 2012, 78, 466-474.	5.2	105
146	Facile synthesis of nitrogen-doped carbon nanotubes encapsulating nickel cobalt alloys 3D networks for oxygen evolution reaction in an alkaline solution. Journal of Power Sources, 2017, 338, 26-33.	7.8	105
147	Nickel-doped BaCo0.4Fe0.4Zr0.1Y0.1O3-î´ as a new high-performance cathode for both oxygen-ion and proton conducting fuel cells. Chemical Engineering Journal, 2021, 420, 127717.	12.7	102
148	Design of Perovskite Oxides as Anion-Intercalation-Type Electrodes for Supercapacitors: Cation Leaching Effect. ACS Applied Materials & amp; Interfaces, 2016, 8, 23774-23783.	8.0	101
149	Scalable synthesis of self-standing sulfur-doped flexible graphene films as recyclable anode materials for low-cost sodium-ion batteries. Carbon, 2016, 107, 67-73.	10.3	101
150	Trapping sulfur in hierarchically porous, hollow indented carbon spheres: a high-performance cathode for lithium–sulfur batteries. Journal of Materials Chemistry A, 2016, 4, 9526-9535.	10.3	100
151	Evaluation of the CO ₂ Poisoning Effect on a Highly Active Cathode SrSc _{0.175} Nb _{0.025} Co _{0.8} O _{3-1´} in the Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2016, 8, 3003-3011.	8.0	99
152	Highly Defective Layered Double Perovskite Oxide for Efficient Energy Storage via Reversible Pseudocapacitive Oxygenâ€Anion Intercalation. Advanced Energy Materials, 2018, 8, 1702604.	19.5	99
153	Facile Mechanochemical Synthesis of Nano SnO ₂ /Graphene Composite from Coarse Metallic Sn and Graphite Oxide: An Outstanding Anode Material for Lithiumâ€Ion Batteries. Chemistry - A European Journal, 2014, 20, 4055-4063.	3.3	98
154	Facile synthesis of a MoO2–Mo2C–C composite and its application as favorable anode material for lithium-ion batteries. Journal of Power Sources, 2016, 307, 552-560.	7.8	98
155	Highâ€Performance Platinumâ€Perovskite Composite Bifunctional Oxygen Electrocatalyst for Rechargeable Zn–Air Battery. Advanced Energy Materials, 2020, 10, 1903271.	19.5	98
156	Synthesis and oxygen permeation study of novel perovskite-type BaBixCo0.2Fe0.8â^'xO3â^'δ ceramic membranes. Journal of Membrane Science, 2000, 164, 167-176.	8.2	97
157	Proton-conducting fuel cells operating on hydrogen, ammonia and hydrazine at intermediate temperatures. International Journal of Hydrogen Energy, 2010, 35, 2637-2642.	7.1	97
158	Solidâ€Oxide Fuel Cells: Recent Progress on Advanced Materials for Solidâ€Oxide Fuel Cells Operating Below 500 °C (Adv. Mater. 48/2017). Advanced Materials, 2017, 29, 1770345.	21.0	97
159	Smart Construction of an Intimate Lithium Garnet Interface for Allâ€Solidâ€State Batteries by Tuning the Tension of Molten Lithium. Advanced Functional Materials, 2021, 31, 2101556.	14.9	97
160	Porous Polyethersulfone-Supported Zeolitic Imidazolate Framework Membranes for Hydrogen Separation. Journal of Physical Chemistry C, 2012, 116, 13264-13270.	3.1	96
161	High Configuration Entropy Activated Lattice Oxygen for O ₂ Formation on Perovskite Electrocatalyst. Advanced Functional Materials, 2022, 32, .	14.9	96
162	High power-density single-chamber fuel cells operated on methane. Journal of Power Sources, 2006, 162, 589-596.	7.8	94

#	Article	IF	CITATIONS
163	n-type boron phosphide as a highly stable, metal-free, visible-light-active photocatalyst for hydrogen evolution. Nano Energy, 2016, 28, 158-163.	16.0	94
164	Searching General Sufficientâ€andâ€Necessary Conditions for Ultrafast Hydrogenâ€Evolving Electrocatalysis. Advanced Functional Materials, 2019, 29, 1900704.	14.9	94
165	Surprisingly High Activity for Oxygen Reduction Reaction of Selected Oxides Lacking Long Oxygen-Ion Diffusion Paths at Intermediate Temperatures: A Case Study of Cobalt-Free BaFeO _{3-δ} . ACS Applied Materials & Interfaces, 2014, 6, 11180-11189.	8.0	93
166	Probing CO2 reaction mechanisms and effects on the SrNb0.1Co0.9â^'xFexO3â^'δ cathodes for solid oxide fuel cells. Applied Catalysis B: Environmental, 2015, 172-173, 52-57.	20.2	93
167	Perovskite Oxide Catalysts for Advanced Oxidation Reactions. Advanced Functional Materials, 2021, 31, 2102089.	14.9	93
168	A Comparative Study of Oxygen Reduction Reaction on Bi- and La-Doped SrFeO[sub 3â^î] Perovskite Cathodes. Journal of the Electrochemical Society, 2011, 158, B132.	2.9	92
169	Structural and oxygen-transport studies of double perovskites PrBa _{1â~x} Co ₂ O _{5+1~} (x = 0.00, 0.05, and 0.10) toward their application as superior oxygen reduction electrodes. Journal of Materials Chemistry A, 2014, 2, 20520-20529.	10.3	92
170	Nanostructured Co-Mn containing perovskites for degradation of pollutants: Insight into the activity and stability. Journal of Hazardous Materials, 2018, 349, 177-185.	12.4	92
171	An Aâ€Siteâ€Deficient Perovskite offers High Activity and Stability for Lowâ€Temperature Solidâ€Oxide Fuel Cells. ChemSusChem, 2013, 6, 2249-2254.	6.8	90
172	Activity and Stability of Ruddlesden–Popperâ€Type La _{<i>n</i>+1} Ni _{<i>n</i>} O _{3<i>n</i>+1} (<i>n</i> =1, 2, 3, and â^ž) Electrocatalysts for Oxygen Reduction and Evolution Reactions in Alkaline Media. Chemistry - A European Journal, 2016, 22, 2719-2727.	3.3	90
173	Enhancing Electrode Performance by Exsolved Nanoparticles: A Superior Cobalt-Free Perovskite Electrocatalyst for Solid Oxide Fuel Cells. ACS Applied Materials & Interfaces, 2016, 8, 35308-35314.	8.0	90
174	Recent Advances in the Understanding of the Surface Reconstruction of Oxygen Evolution Electrocatalysts and Materials Development. Electrochemical Energy Reviews, 2021, 4, 566-600.	25.5	90
175	Properties and performance of Ba0.5Sr0.5Co0.8Fe0.2O3â~δ+Sm0.2Ce0.8O1.9 composite cathode. Journal of Power Sources, 2008, 179, 60-68.	7.8	89
176	Recent Advances in Filler Engineering of Polymer Electrolytes for Solid-State Li-Ion Batteries: A Review. Energy & Fuels, 2020, 34, 9189-9207.	5.1	89
177	Facile Synthesis of a 3D Nanoarchitectured Li ₄ Ti ₅ O ₁₂ Electrode for Ultrafast Energy Storage. Advanced Energy Materials, 2016, 6, 1500924.	19.5	88
178	Stable direct-methane solid oxide fuel cells with calcium-oxide-modified nickel-based anodes operating at reduced temperatures. Applied Energy, 2016, 164, 563-571.	10.1	88
179	A Universal and Facile Way for the Development of Superior Bifunctional Electrocatalysts for Oxygen Reduction and Evolution Reactions Utilizing the Synergistic Effect. Chemistry - A European Journal, 2014, 20, 15533-15542.	3.3	87
180	Perovskite SrCo _{0.9} Nb _{0.1} O _{3â^'<i>δ</i>} as an Anionâ€Intercalated Electrode Material for Supercapacitors with Ultrahigh Volumetric Energy Density. Angewandte Chemie - International Edition, 2016, 55, 9576-9579.	13.8	87

#	Article	IF	CITATIONS
181	AÂsurface-modified antiperovskite asÂan electrocatalyst for water oxidation. Nature Communications, 2018, 9, 2326.	12.8	87
182	Enabling High and Stable Electrocatalytic Activity of Ironâ€Based Perovskite Oxides for Water Splitting by Combined Bulk Doping and Morphology Designing. Advanced Materials Interfaces, 2019, 6, 1801317.	3.7	87
183	Oxygen vacancies-rich Ce0.9Cd0.1O2-δ decorated Pr0.5Ba0.5CoO3-δ bifunctional catalyst for efficient and long-lasting rechargeable Zn-air batteries. Applied Catalysis B: Environmental, 2020, 266, 118656.	20.2	87
184	Perovskites for protonic ceramic fuel cells: a review. Energy and Environmental Science, 2022, 15, 2200-2232.	30.8	87
185	Ba0.5Sr0.5Co0.8Fe0.2O3â ^{~1} Î′+LaCoO3 composite cathode for Sm0.2Ce0.8O1.9-electrolyte based intermediate-temperature solid-oxide fuel cells. Journal of Power Sources, 2007, 168, 330-337.	7.8	86
186	Electrodeposition and characterization of polypyrrole films on aluminium alloy 6061-T6. Electrochimica Acta, 2008, 53, 4754-4763.	5.2	86
187	Advanced Symmetric Solid Oxide Fuel Cell with an Infiltrated K ₂ NiF ₄ -Type La ₂ NiO ₄ Electrode. Energy & Fuels, 2014, 28, 356-362.	5.1	86
188	Perovskite-based proton conducting membranes for hydrogen separation: A review. International Journal of Hydrogen Energy, 2018, 43, 15281-15305.	7.1	86
189	Modulating metal–organic frameworks for catalyzing acidic oxygen evolution for proton exchange membrane water electrolysis. SusMat, 2021, 1, 460-481.	14.9	86
190	Synergistically enhanced hydrogen evolution electrocatalysis by <i>in situ</i> exsolution of metallic nanoparticles on perovskites. Journal of Materials Chemistry A, 2018, 6, 13582-13587.	10.3	85
191	A Functionâ€5eparated Design of Electrode for Realizing Highâ€Performance Hybrid Zinc Battery. Advanced Energy Materials, 2020, 10, 2002992.	19.5	84
192	Rich atomic interfaces between sub-1 nm RuOx clusters and porous Co3O4 nanosheets boost oxygen electrocatalysis bifunctionality for advanced Zn-air batteries. Energy Storage Materials, 2020, 32, 20-29.	18.0	84
193	Boosting oxygen reduction/evolution reaction activities with layered perovskite catalysts. Chemical Communications, 2016, 52, 10739-10742.	4.1	83
194	Self-Recovery Chemistry and Cobalt-Catalyzed Electrochemical Deposition of Cathode for Boosting Performance of Aqueous Zinc-Ion Batteries. IScience, 2020, 23, 100943.	4.1	83
195	In situ catalyzed Boudouard reaction of coal char for solid oxide-based carbon fuel cells with improved performance. Applied Energy, 2015, 141, 200-208.	10.1	82
196	High-performance non-enzymatic perovskite sensor for hydrogen peroxide and glucose electrochemical detection. Sensors and Actuators B: Chemical, 2017, 244, 482-491.	7.8	82
197	Facile Synthesis of Co ₉ S ₈ Hollow Spheres as a High-Performance Electrocatalyst for the Oxygen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2018, 6, 1863-1871.	6.7	82
198	Gas Humidification Impact on the Properties and Performance of Perovskiteâ€Type Functional Materials in Protonâ€Conducting Solid Oxide Cells. Advanced Functional Materials, 2018, 28, 1802592.	14.9	82

#	Article	IF	CITATIONS
199	Ultrahigh-performance tungsten-doped perovskites for the oxygen evolution reaction. Journal of Materials Chemistry A, 2018, 6, 9854-9859.	10.3	82
200	Cation-Deficient Perovskites for Clean Energy Conversion. Accounts of Materials Research, 2021, 2, 477-488.	11.7	82
201	A new cathode for solid oxide fuel cells capable of in situ electrochemical regeneration. Journal of Materials Chemistry, 2011, 21, 15343.	6.7	81
202	Highly flexible self-standing film electrode composed of mesoporous rutile TiO2/C nanofibers for lithium-ion batteries. Electrochimica Acta, 2012, 85, 636-643.	5.2	81
203	Perovskite materials in energy storage and conversion. Asia-Pacific Journal of Chemical Engineering, 2016, 11, 338-369.	1.5	81
204	Cellulose-assisted combustion synthesis of Li4Ti5O12 adopting anatase TiO2 solid as raw material with high electrochemical performance. Journal of Alloys and Compounds, 2009, 477, 665-672.	5.5	80
205	Amorphous Iron Oxide Decorated 3D Heterostructured Electrode for Highly Efficient Oxygen Reduction. Chemistry of Materials, 2011, 23, 4193-4198.	6.7	80
206	Fineâ€Tuning Surface Properties of Perovskites via Nanocompositing with Inert Oxide toward Developing Superior Catalysts for Advanced Oxidation. Advanced Functional Materials, 2018, 28, 1804654.	14.9	80
207	Double-layered yolk-shell microspheres with NiCo2S4-Ni9S8-C hetero-interfaces as advanced battery-type electrode for hybrid supercapacitors. Chemical Engineering Journal, 2020, 396, 125316.	12.7	80
208	Performance of PrBaCo ₂ O _{5+δ} as a Proton-Conducting Solid-Oxide Fuel Cell Cathode. Journal of Physical Chemistry A, 2010, 114, 3764-3772.	2.5	79
209	Nano La _{0.6} Ca _{0.4} Fe _{0.8} Ni _{0.2} O _{3â~î^} decorated porous doped ceria as a novel cobalt-free electrode for "symmetrical―solid oxide fuel cells. Journal of Materials Chemistry A, 2014, 2, 19526-19535.	10.3	79
210	Mesoporous and Nanostructured TiO ₂ layer with Ultraâ€High Loading on Nitrogenâ€Doped Carbon Foams as Flexible and Free‣tanding Electrodes for Lithiumâ€Ion Batteries. Small, 2016, 12, 6724-6734.	10.0	79
211	A New Durable Surface Nanoparticlesâ€Modified Perovskite Cathode for Protonic Ceramic Fuel Cells from Selective Cation Exsolution under Oxidizing Atmosphere. Advanced Materials, 2022, 34, e2106379.	21.0	79
212	Structural, electrical and electrochemical characterizations of SrNb0.1Co0.9O3â^´î´ as a cathode of solid oxide fuel cells operating below 600°C. International Journal of Hydrogen Energy, 2010, 35, 1356-1366.	7.1	78
213	Novel CO ₂ -tolerant ion-transporting ceramic membranes with an external short circuit for oxygen separation at intermediate temperatures. Energy and Environmental Science, 2012, 5, 5257-5264.	30.8	78
214	Assessment of PrBaCo2O5+l´+Sm0.2Ce0.8O1.9 composites prepared by physical mixing as electrodes of solid oxide fuel cells. Journal of Power Sources, 2010, 195, 7187-7195.	7.8	77
215	Cobalt-free SrNbxFe1â ^{^,} xO3â ^{^,} Î [′] (xÂ=Â0.05, 0.1 and 0.2) perovskite cathodes for intermediate temperature solid oxide fuel cells. Journal of Power Sources, 2015, 298, 209-216.	7.8	77
216	Anode-supported ScSZ-electrolyte SOFC with whole cell materials from combined EDTA–citrate complexing synthesis process. Journal of Power Sources, 2007, 172, 704-712.	7.8	76

#	Article	IF	CITATIONS
217	Realizing Ultrafast Oxygen Evolution by Introducing Proton Acceptor into Perovskites. Advanced Energy Materials, 2019, 9, 1900429.	19.5	76
218	Multifunctional Iron Oxide Nanoflake/Graphene Composites Derived from Mechanochemical Synthesis for Enhanced Lithium Storage and Electrocatalysis. ACS Applied Materials & Interfaces, 2015, 7, 14446-14455.	8.0	75
219	Spherical Ruthenium Disulfide-Sulfur-Doped Graphene Composite as an Efficient Hydrogen Evolution Electrocatalyst. ACS Applied Materials & amp; Interfaces, 2018, 10, 34098-34107.	8.0	75
220	New Undisputed Evidence and Strategy for Enhanced Latticeâ€Oxygen Participation of Perovskite Electrocatalyst through Cation Deficiency Manipulation. Advanced Science, 2022, 9, e2200530.	11.2	75
221	High performance of Mn-Co-Ni-O spinel nanofilms sputtered from acetate precursors. Scientific Reports, 2015, 5, 10899.	3.3	74
222	Rational Design of a Waterâ€Storable Hierarchical Architecture Decorated with Amorphous Barium Oxide and Nickel Nanoparticles as a Solid Oxide Fuel Cell Anode with Excellent Sulfur Tolerance. Advanced Science, 2017, 4, 1700337.	11.2	74
223	Recent progress in metal–organic frameworks for lithium–sulfur batteries. Polyhedron, 2018, 155, 464-484.	2.2	74
224	Porous TiO2(B)/anatase microspheres with hierarchical nano and microstructures for high-performance lithium-ion batteries. Electrochimica Acta, 2013, 97, 386-392.	5.2	73
225	Non-aqueous hybrid supercapacitors fabricated with mesoporous TiO2 microspheres and activated carbon electrodes with superior performance. Journal of Power Sources, 2014, 253, 80-89.	7.8	73
226	A comparative study of Sm0.5Sr0.5MO3â´î´ (MÂ=ÂCo and Mn) as oxygen reduction electrodes for solid oxide fuel cells. International Journal of Hydrogen Energy, 2012, 37, 4377-4387.	7.1	72
227	Toward Enhanced Oxygen Evolution on Perovskite Oxides Synthesized from Different Approaches: A Case Study of Ba 0.5 Sr 0.5 Co 0.8 Fe 0.2 O 3â~'δ. Electrochimica Acta, 2016, 219, 553-559.	5.2	72
228	Monoclinic SrIrO ₃ : An Easily Synthesized Conductive Perovskite Oxide with Outstanding Performance for Overall Water Splitting in Alkaline Solution. Chemistry of Materials, 2020, 32, 4509-4517.	6.7	72
229	Electric Power and Synthesis Gas Coâ€generation From Methane with Zero Waste Gas Emission. Angewandte Chemie - International Edition, 2011, 50, 1792-1797.	13.8	71
230	High-performance SrNb _{0.1} Co _{0.9â^'x} Fe _x O _{3â^'î} perovskite cathodes for low-temperature solid oxide fuel cells. Journal of Materials Chemistry A, 2014, 2, 15454-15462.	10.3	71
231	Evaluation and optimization of Bi1â^'xSrxFeO3â^'δ perovskites as cathodes of solid oxide fuel cells. International Journal of Hydrogen Energy, 2011, 36, 3179-3186.	7.1	70
232	An efficient electrocatalyst as cathode material for solid oxide fuel cells: BaFe0·95Sn0·05O3â^1´. Journal of Power Sources, 2016, 326, 459-465.	7.8	70
233	Nanocomposites: A New Opportunity for Developing Highly Active and Durable Bifunctional Air Electrodes for Reversible Protonic Ceramic Cells. Advanced Energy Materials, 2021, 11, 2101899.	19.5	70
234	B-Site Cation-Ordered Double-Perovskite Oxide as an Outstanding Electrode Material for Supercapacitive Energy Storage Based on the Anion Intercalation Mechanism. ACS Applied Materials & Interfaces, 2018, 10, 9415-9423.	8.0	69

#	Article	IF	CITATIONS
235	Postsynthesis Growth of CoOOH Nanostructure on SrCo _{0.6} Ti _{0.4} O _{3â°î́} Perovskite Surface for Enhanced Degradation of Aqueous Organic Contaminants. ACS Sustainable Chemistry and Engineering, 2018, 6, 15737-15748.	6.7	69
236	Water-proof, electrolyte-nonvolatile, and flexible Li-Air batteries via O2-Permeable silica-aerogel-reinforced polydimethylsiloxane external membranes. Energy Storage Materials, 2020, 27, 297-306.	18.0	69
237	Chlorine-anion doping induced multi-factor optimization in perovskties for boosting intrinsic oxygen evolution. Journal of Energy Chemistry, 2021, 52, 115-120.	12.9	69
238	The BaCe _{0.16} Y _{0.04} Fe _{0.8} O _{3â^'<i>Î'</i>} nanocomposite: a new high-performance cobalt-free triple-conducting cathode for protonic ceramic fuel cells operating at reduced temperatures. Journal of Materials Chemistry A, 2022, 10, 5381-5390.	10.3	69
239	LSCF Nanopowder from Cellulose–Glycineâ€Nitrate Process and its Application in Intermediateâ€Temperature Solidâ€Oxide Fuel Cells. Journal of the American Ceramic Society, 2008, 91, 1155-1162.	3.8	68
240	Electrospinning based fabrication and performance improvement of film electrodes for lithium-ion batteries composed of TiO2 hollow fibersâ€. Journal of Materials Chemistry, 2011, 21, 15041.	6.7	68
241	Sm0.5Sr0.5CoO3â^`î-infiltrated cathodes for solid oxide fuel cells with improved oxygen reduction activity and stability. Journal of Power Sources, 2012, 216, 208-215.	7.8	68
242	A Green Route to a Na ₂ FePO ₄ F-Based Cathode for Sodium Ion Batteries of High Rate and Long Cycling Life. ACS Applied Materials & Interfaces, 2017, 9, 16280-16287.	8.0	68
243	SrCo1â^'xTixO3â^'δ perovskites as excellent catalysts for fast degradation of water contaminants in neutral and alkaline solutions. Scientific Reports, 2017, 7, 44215.	3.3	68
244	Promoting the Efficiency and Stability of CsPblBr ₂ -Based All-Inorganic Perovskite Solar Cells through a Functional Cu ²⁺ Doping Strategy. ACS Applied Materials & Interfaces, 2020, 12, 23984-23994.	8.0	68
245	Fast operando spectroscopy tracking in situ generation of rich defects in silver nanocrystals for highly selective electrochemical CO2 reduction. Nature Communications, 2021, 12, 660.	12.8	68
246	Superâ€Exchange Interaction Induced Overall Optimization in Ferromagnetic Perovskite Oxides Enables Ultrafast Water Oxidation. Small, 2019, 15, e1903120.	10.0	67
247	Recent Advances in the Development of Anode Materials for Solid Oxide Fuel Cells Utilizing Liquid Oxygenated Hydrocarbon Fuels: A Mini Review. Energy Technology, 2019, 7, 33-44.	3.8	67
248	A universal chemical-induced tensile strain tuning strategy to boost oxygen-evolving electrocatalysis on perovskite oxides. Applied Physics Reviews, 2022, 9, .	11.3	67
249	Silver-modified Ba0.5Sr0.5Co0.8Fe0.2O3â~`δ as cathodes for a proton conducting solid-oxide fuel cell. International Journal of Hydrogen Energy, 2010, 35, 8281-8288.	7.1	66
250	Hierarchical CO2-protective shell for highly efficient oxygen reduction reaction. Scientific Reports, 2012, 2, 327.	3.3	66
251	Compositional Engineering of Perovskite Oxides for Highly Efficient Oxygen Reduction Reactions. ACS Applied Materials & Interfaces, 2015, 7, 8562-8571.	8.0	66
252	Cobalt-free polycrystalline Ba0.95La0.05FeO3â~δthin films as cathodes for intermediate-temperature solid oxide fuel cells. Journal of Power Sources, 2014, 250, 188-195.	7.8	65

#	Article	IF	CITATIONS
253	Pt/C–LiCoO ₂ composites with ultralow Pt loadings as synergistic bifunctional electrocatalysts for oxygen reduction and evolution reactions. Journal of Materials Chemistry A, 2016, 4, 4516-4524.	10.3	65
254	Recent Progress on Structurally Ordered Materials for Electrocatalysis. Advanced Energy Materials, 2021, 11, 2101937.	19.5	65
255	Novel mixed conducting SrSc _{0.05} Co _{0.95} O _{3â€Î´} ceramic membrane for oxygen separation. AICHE Journal, 2007, 53, 3116-3124.	3.6	64
256	Influence of M cations on structural, thermal and electrical properties of new oxygen selective membranes based on SrCo0.95M0.05O3â^îr´ perovskite. Separation and Purification Technology, 2009, 67, 304-311.	7.9	64
257	Single-Layered Two-Dimensional Metal–Organic Framework Nanosheets as an in Situ Visual Test Paper for Solvents. ACS Applied Materials & Interfaces, 2018, 10, 28860-28867.	8.0	64
258	Direct growth of ordered Nâ€doped carbon nanotube arrays on carbon fiber cloth as a freeâ€standing and binderâ€free air electrode for flexible quasiâ€solidâ€state rechargeable Znâ€Air batteries. , 2020, 2, 461-471.		64
259	Single-atom catalysts for high-efficiency photocatalytic and photoelectrochemical water splitting: distinctive roles, unique fabrication methods and specific design strategies. Journal of Materials Chemistry A, 2022, 10, 6835-6871.	10.3	63
260	Tuning layer-structured La _{0.6} Sr _{1.4} MnO _{4+δ} into a promising electrode for intermediate-temperature symmetrical solid oxide fuel cells through surface modification. Journal of Materials Chemistry A, 2016, 4, 10641-10649.	10.3	62
261	Cobaltâ€Free Perovskite Cathodes for Solid Oxide Fuel Cells. ChemElectroChem, 2019, 6, 3549-3569.	3.4	62
262	Boosting the oxygen evolution reaction activity of a perovskite through introducing multi-element synergy and building an ordered structure. Journal of Materials Chemistry A, 2019, 7, 9924-9932.	10.3	62
263	An Aurivillius Oxide Based Cathode with Excellent CO ₂ Tolerance for Intermediateâ€Temperature Solid Oxide Fuel Cells. Angewandte Chemie - International Edition, 2016, 55, 8988-8993.	13.8	61
264	B‣ite Cation Ordered Double Perovskites as Efficient and Stable Electrocatalysts for Oxygen Evolution Reaction. Chemistry - A European Journal, 2017, 23, 5722-5728.	3.3	61
265	Selfâ€Assembled Ruddlesden–Popper/Perovskite Hybrid with Latticeâ€Oxygen Activation as a Superior Oxygen Evolution Electrocatalyst. Small, 2020, 16, e2001204.	10.0	61
266	Characterization and evaluation of BaCo0.7Fe0.2Nb0.1O3â~δ as a cathode for proton-conducting solid oxide fuel cells. International Journal of Hydrogen Energy, 2012, 37, 484-497.	7.1	59
267	Nickelâ€Based Anode with Water Storage Capability to Mitigate Carbon Deposition for Direct Ethanol Solid Oxide Fuel Cells. ChemSusChem, 2014, 7, 1719-1728.	6.8	59
268	Computational and experimental analysis of Ba _{0.95} La _{0.05} FeO _{3â^îî} as a cathode material for solid oxide fuel cells. Journal of Materials Chemistry A, 2014, 2, 14154-14163.	10.3	59
269	A NiFeCu alloy anode catalyst for direct-methane solid oxide fuel cells. Journal of Power Sources, 2014, 258, 134-141.	7.8	59
270	Hierarchical carbon-coated acanthosphere-like Li4Ti5O12 microspheres for high-power lithium-ion batteries. Journal of Power Sources, 2016, 314, 18-27.	7.8	59

#	Article	IF	CITATIONS
271	Evaluation of SrSc0.175Nb0.025Co0.8O3-l̂´ perovskite as a cathode for proton-conducting solid oxide fuel cells: The possibility of in situ creating protonic conductivity and electrochemical performance. Electrochimica Acta, 2018, 259, 559-565.	5.2	59
272	Defects-rich porous carbon microspheres as green electrocatalysts for efficient and stable oxygen-reduction reaction over a wide range of pH values. Chemical Engineering Journal, 2021, 406, 126883.	12.7	59
273	Superstructures with Atomic-Level Arranged Perovskite and Oxide Layers for Advanced Oxidation with an Enhanced Non-Free Radical Pathway. ACS Sustainable Chemistry and Engineering, 2022, 10, 1899-1909.	6.7	59
274	A new Gd-promoted nickel catalyst for methane conversion to syngas and as an anode functional layer in a solid oxide fuel cell. Journal of Power Sources, 2011, 196, 3855-3862.	7.8	58
275	In situ fabrication of (Sr,La)FeO ₄ with CoFe alloy nanoparticles as an independent catalyst layer for direct methane-based solid oxide fuel cells with a nickel cermet anode. Journal of Materials Chemistry A, 2016, 4, 13997-14007.	10.3	58
276	Surfactantâ€Assisted Phaseâ€Selective Synthesis of New Cobalt MOFs and Their Efficient Electrocatalytic Hydrogen Evolution Reaction. Angewandte Chemie, 2017, 129, 13181-13185.	2.0	58
277	Boosting oxygen evolution reaction by activation of latticeâ€oxygen sites in layered Ruddlesdenâ€Popper oxide. EcoMat, 2020, 2, e12021.	11.9	58
278	A mechanism study of synthesis of Li4Ti5O12 from TiO2 anatase. Journal of Alloys and Compounds, 2010, 505, 367-373.	5.5	57
279	H2S poisoning effect and ways to improve sulfur tolerance of nickel cermet anodes operating on carbonaceous fuels. Applied Energy, 2016, 179, 765-777.	10.1	57
280	Recent advances in single-chamber fuel-cells: Experiment and modeling. Solid State Ionics, 2006, 177, 2013-2021.	2.7	56
281	Evaluation of Ba0.6Sr0.4Co0.9Nb0.1O3â~δ mixed conductor as a cathode for intermediate-temperature oxygen-ionic solid-oxide fuel cells. Journal of Power Sources, 2010, 195, 5176-5184.	7.8	56
282	Perovskite oxide/carbon nanotube hybrid bifunctional electrocatalysts for overall water splitting. Electrochimica Acta, 2018, 286, 47-54.	5.2	56
283	Recent advances and perspectives of fluorite and perovskite-based dual-ion conducting solid oxide fuel cells. Journal of Energy Chemistry, 2021, 57, 406-427.	12.9	56
284	Amorphous V–O–C composite nanofibers electrospun from solution precursors as binder- and conductive additive-free electrodes for supercapacitors with outstanding performance. Nanoscale, 2013, 5, 12589.	5.6	55
285	A comparative study of different carbon fuels in an electrolyte-supported hybrid direct carbon fuel cell. Applied Energy, 2013, 108, 402-409.	10.1	55
286	Impregnated LaCo0.3Fe0.67Pd0.03O3-Î′ as a promising electrocatalyst for "symmetrical― intermediate-temperature solid oxide fuel cells. Journal of Power Sources, 2016, 306, 92-99.	7.8	54
287	New Ba0.5Sr0.5Co0.8Fe0.2O3â^Î^+Co3O4 composite electrode for IT-SOFCs with improved electrical conductivity and catalytic activity. Electrochemistry Communications, 2011, 13, 197-199.	4.7	53
288	Tin-doped perovskite mixed conducting membrane for efficient air separation. Journal of Materials Chemistry A, 2014, 2, 9666-9674.	10.3	53

#	Article	IF	CITATIONS
289	Novel Approach for Developing Dual-Phase Ceramic Membranes for Oxygen Separation through Beneficial Phase Reaction. ACS Applied Materials & Interfaces, 2015, 7, 22918-22926.	8.0	53
290	Surfactant-free self-assembly of reduced graphite oxide-MoO2 nanobelt composites used as electrode for lithium-ion batteries. Electrochimica Acta, 2016, 211, 972-981.	5.2	53
291	A strongly coupled CoS2/ reduced graphene oxide nanostructure as an anode material for efficient sodium-ion batteries. Journal of Alloys and Compounds, 2017, 726, 394-402.	5.5	53
292	Earthâ€Abundant Silicon for Facilitating Water Oxidation over Ironâ€Based Perovskite Electrocatalyst. Advanced Materials Interfaces, 2018, 5, 1701693.	3.7	53
293	Ruddlesden–Popper Perovskite Oxides for Photocatalysis-Based Water Splitting and Wastewater Treatment. Energy & Fuels, 2020, 34, 9208-9221.	5.1	53
294	Infiltrated NiCo Alloy Nanoparticle Decorated Perovskite Oxide: A Highly Active, Stable, and Antisintering Anode for Directâ€Ammonia Solid Oxide Fuel Cells. Small, 2020, 16, e2001859.	10.0	53
295	A smart lithiophilic polymer filler in gel polymer electrolyte enables stable and dendrite-free Li metal anode. Journal of Materials Chemistry A, 2020, 8, 9733-9742.	10.3	53
296	A New Pd Doped Proton Conducting Perovskite Oxide with Multiple Functionalities for Efficient and Stable Power Generation from Ammonia at Reduced Temperatures. Advanced Energy Materials, 2021, 11, 2003916.	19.5	53
297	Methane-fueled SOFC with traditional nickel-based anode by applying Ni/Al2O3 as a dual-functional layer. Electrochemistry Communications, 2009, 11, 194-197.	4.7	52
298	Phase Transition of a Cobaltâ€Free Perovskite as a Highâ€Performance Cathode for Intermediateâ€Temperature Solid Oxide Fuel Cells. ChemSusChem, 2012, 5, 2023-2031.	6.8	52
299	A comparative study of SrCo _{0.8} Nb _{0.2} O _{3â[~]δ} and SrCo _{0.8} Ta _{0.2} O _{3â[~]δ} as low-temperature solid oxide fuel cell cathodes: effect of non-geometry factors on the oxygen reduction reaction. Journal of Materials Chemistry A, 2015, 3, 24064-24070.	10.3	52
300	Emerging Strategies for Developing High-Performance Perovskite-Based Materials for Electrochemical Water Splitting. Energy & Fuels, 2020, 34, 10547-10567.	5.1	52
301	High-performance metal-organic framework-perovskite hybrid as an important component of the air-electrode for rechargeable Zn-Air battery. Journal of Power Sources, 2020, 468, 228377.	7.8	52
302	A Porous Nano-Micro-Composite as a High-Performance Bi-Functional Air Electrode with Remarkable Stability for Rechargeable Zinc–Air Batteries. Nano-Micro Letters, 2020, 12, 130.	27.0	52
303	Anchoring perovskite LaMnO3 nanoparticles on biomassâ^'derived N, P coâ^'doped porous carbon for efficient oxygen reduction. Electrochimica Acta, 2018, 274, 40-48.	5.2	51
304	In situ formation of a 3D core-shell and triple-conducting oxygen reduction reaction electrode for proton-conducting SOFCs. Journal of Power Sources, 2018, 385, 76-83.	7.8	51
305	Realizing fourfold enhancement in conductivity of perovskite Li0.33La0.557TiO3 electrolyte membrane via a Sr and Ta co-doping strategy. Journal of Membrane Science, 2019, 582, 194-202.	8.2	51
306	A high-performance no-chamber fuel cell operated on ethanol flame. Journal of Power Sources, 2008, 177, 33-39.	7.8	50

#	Article	IF	CITATIONS
307	Lithium and lanthanum promoted Ni-Al2O3 as an active and highly coking resistant catalyst layer for solid-oxide fuel cells operating on methane. Journal of Power Sources, 2011, 196, 90-97.	7.8	50
308	Nanoscaled Sm-doped CeO2 buffer layers for intermediate-temperature solid oxide fuel cells. Electrochemistry Communications, 2013, 35, 131-134.	4.7	50
309	Comparative Studies of SrCo _{1â^'<i>x</i>} Ta _{<i>x</i>} O _{3â^'<i>δ</i>} (<i>x</i> =0.05–0.4) Oxides as Cathodes for Lowâ€Temperature Solidâ€Oxide Fuel Cells. ChemElectroChem, 2015, 2, 1331-1338.	3.4	50
310	Pyrite-type ruthenium disulfide with tunable disorder and defects enables ultra-efficient overall water splitting. Journal of Materials Chemistry A, 2019, 7, 14222-14232.	10.3	50
311	Deactivation and Regeneration of Oxygen Reduction Reactivity on Double Perovskite Ba ₂ Bi _{0.1} Sc _{0.2} Co _{1.7} O _{6â^'<i>x</i>} Cathode for Intermediate-Temperature Solid Oxide Fuel Cells. Chemistry of Materials, 2011, 23, 1618-1624.	6.7	49
312	BaCo _{0.6} Fe _{0.3} Sn _{0.1} O _{3â^îr} perovskite as a new superior oxygen reduction electrode for intermediate-to-low temperature solid oxide fuel cells. Journal of Materials Chemistry A, 2014, 2, 15078.	10.3	49
313	An "electronegative―bifunctional coating layer: simultaneous regulation of polysulfide and Li-ion adsorption sites for long-cycling and "dendrite-free―Li–S batteries. Journal of Materials Chemistry A, 2019, 7, 22463-22474.	10.3	49
314	Roadmap for Sustainable Mixed Ionicâ€Electronic Conducting Membranes. Advanced Functional Materials, 2022, 32, .	14.9	49
315	Maximizing acetylene packing density for highly efficient C2H2/CO2 separation through immobilization of amine sites within a prototype MOF. Chemical Engineering Journal, 2022, 431, 134184.	12.7	49
316	Bridging the Charge Accumulation and High Reaction Order for Highâ€Rate Oxygen Evolution and Long Stable Znâ€Air Batteries. Advanced Functional Materials, 2022, 32, .	14.9	49
317	Significant impact of nitric acid treatment on the cathode performance of Ba0.5Sr0.5Co0.8Fe0.2O3â^î^ perovskite oxide via combined EDTA–citric complexing process. Journal of Power Sources, 2007, 174, 237-245.	7.8	48
318	A novel approach for substantially improving the sinterability of BaZr0.4Ce0.4Y0.2O3â^`î´ electrolyte for fuel cells by impregnating the green membrane with zinc nitrate as a sintering aid. Journal of Membrane Science, 2013, 437, 189-195.	8.2	48
319	Perovskite SrCo _{0.9} Nb _{0.1} O _{3â^'<i>δ</i>} as an Anionâ€Intercalated Electrode Material for Supercapacitors with Ultrahigh Volumetric Energy Density. Angewandte Chemie, 2016, 128, 9728-9731.	2.0	48
320	3D ordered macroporous SmCoO3 perovskite for highly active and selective hydrogen peroxide detection. Electrochimica Acta, 2018, 260, 372-383.	5.2	48
321	Nano-zero-valent iron and MnOx selective deposition on BiVO4 decahedron superstructures for promoted spatial charge separation and exceptional catalytic activity in visible-light-driven photocatalysis-Fenton coupling system. Journal of Hazardous Materials, 2019, 377, 330-340.	12.4	48
322	Fuel cells that operate at 300° to 500°C. Science, 2020, 369, 138-139.	12.6	48
323	Oxygen selective membranes based on B-site cation-deficient (Ba0.5Sr0.5)(Co0.8Fe0.2)yO3â^î^ perovskite with improved operational stability. Journal of Membrane Science, 2008, 318, 182-190.	8.2	47
324	Influence of high-energy ball milling of precursor on the morphology and electrochemical performance of Li4Ti5O12–ball-milling time. Solid State Ionics, 2008, 179, 946-950.	2.7	47

#	Article	IF	CITATIONS
32	Effect of Ba nonstoichiometry on the phase structure, sintering, electrical conductivity and phase stability of Ba1±xCe0.4Zr0.4Y0.2O3â^l´(´(0≤≩.20) proton conductors. International Journal of Hydrogen Energy, 2011, 36, 8450-8460.	7.1	47
32	Cobalt-free SrFe0.9Ti0.1O3â^Î as a high-performance electrode material for oxygen reduction reaction on doped ceria electrolyte with favorable CO2 tolerance. Journal of the European Ceramic Society, 2015, 35, 2531-2539.	5.7	47
32'	Cobalt-free Ba0.5Sr0.5Fe0.8Cu0.1Ti0.1O3â [~] δ as a bi-functional electrode material for solid oxide fuel cells. Journal of Power Sources, 2015, 298, 184-192.	7.8	47
32	⁸ Understanding the doping effect toward the design of CO2-tolerant perovskite membranes with enhanced oxygen permeability. Journal of Membrane Science, 2016, 519, 11-21.	8.2	47
329	A CO ₂ -tolerant SrCo _{0.8} Fe _{0.15} Zr _{0.05} O _{3â^`î} cathode for proton-conducting solid oxide fuel cells. Journal of Materials Chemistry A, 2020, 8, 11292-11301.	10.3	47
33	O Coking-free direct-methanol-flame fuel cell with traditional nickel–cermet anode. International Journal of Hydrogen Energy, 2010, 35, 7971-7981.	7.1	46
33	Development of a Ni–Ce0.8Zr0.2O2 catalyst for solid oxide fuel cells operating on ethanol through internal reforming. Journal of Power Sources, 2011, 196, 6177-6185.	7.8	46
333	SrCo0.85Fe0.1P0.05O3â^î^ perovskite as a cathode for intermediate-temperature solid oxide fuel cells. Journal of Materials Chemistry A, 2013, 1, 13632.	10.3	46
33	Efficient and CO2-tolerant oxygen transport membranes prepared from high-valence B-site substituted cobalt-free SrFeO3â^îî. Journal of Membrane Science, 2015, 495, 187-197.	8.2	46
334	Enhanced electrochemical performance, water storage capability and coking resistance of a 4 Ni+BaZr0.1Ce0.7Y0.1Yb0.1O3â^ anode for solid oxide fuel cells operating on ethanol. Chemical Engineering Science, 2015, 126, 22-31.	3.8	46
33	Ultralong Cycle Life Li–O ₂ Battery Enabled by a MOF-Derived Ruthenium–Carbon Composite Catalyst with a Durable Regenerative Surface. ACS Applied Materials & Interfaces, 2019, 11, 20091-20097.	8.0	46
33	From scheelite BaMoO4 to perovskite BaMoO3: Enhanced electrocatalysis toward the hydrogen evolution in alkaline media. Composites Part B: Engineering, 2020, 198, 108214.	12.0	46
33	Non-metal fluorine doping in Ruddlesden–Popper perovskite oxide enables high-efficiency 7 photocatalytic water splitting for hydrogen production. Materials Today Energy, 2022, 23, 100896.	4.7	46
33	Nickel catalyst prepared via glycine nitrate process for partial oxidation of methane to syngas. Catalysis Communications, 2008, 9, 1418-1425.	3.3	45
339	Improved conductivity of a new Co(<scp>ii</scp>)-MOF by assembled acetylene black for efficient hydrogen evolution reaction. CrystEngComm, 2018, 20, 4804-4809.	2.6	45
34	Resistance of water transport in carbon nanotube membranes. Nanoscale, 2018, 10, 13242-13249.	5.6	45
34:	Stabilizing Atomically Dispersed Catalytic Sites on Tellurium Nanosheets with Strong Metal–Support Interaction Boosts Photocatalysis. Small, 2020, 16, e2002356.	10.0	45
342	Ni2+/Co2+ doped Au-Fe7S8 nanoplatelets with exceptionally high oxygen evolution reaction activity. Nano Energy, 2021, 89, 106463.	16.0	45

#	Article	IF	CITATIONS
343	Self atalyzed formation of strongly interconnected multiphase molybdenumâ€based composites for efficient hydrogen evolution. , 2022, 4, 77-87.		45
344	Synthesis and assessment of La0.8Sr0.2ScyMn1â^'yO3â^'δ as cathodes for solid-oxide fuel cells on scandium-stabilized zirconia electrolyte. Journal of Power Sources, 2008, 183, 471-478.	7.8	44
345	Performance of SrSc0.2Co0.8O3â~î´+Sm0.5Sr0.5CoO3â~δ mixed-conducting composite electrodes for oxygen reduction at intermediate temperatures. International Journal of Hydrogen Energy, 2009, 34, 9496-9504.	7.1	44
346	Role of silver current collector on the operational stability of selected cobalt-containing oxide electrodes for oxygen reduction reaction. Journal of Power Sources, 2012, 210, 146-153.	7.8	44
347	3D core–shell architecture from infiltration and beneficial reactive sintering as highly efficient and thermally stable oxygen reduction electrode. Journal of Materials Chemistry A, 2014, 2, 1284-1293.	10.3	44
348	A top-down strategy for the synthesis of mesoporous Ba0.5Sr0.5Co0.8Fe0.2O3â^' as a cathode precursor for buffer layer-free deposition on stabilized zirconia electrolyte with a superior electrochemical performance. Journal of Power Sources, 2015, 274, 1024-1033.	7.8	44
349	Efficient Wastewater Remediation Enabled by Self-Assembled Perovskite Oxide Heterostructures with Multiple Reaction Pathways. ACS Sustainable Chemistry and Engineering, 2020, 8, 6033-6042.	6.7	44
350	Rational Design of Superior Electrocatalysts for Water Oxidation: Crystalline or Amorphous Structure?. Small Science, 2021, 1, 2100030.	9.9	44
351	Tailoring charge and mass transport in cation/anion-codoped Ni3N / N-doped CNT integrated electrode toward rapid oxygen evolution for fast-charging zinc-air batteries. Energy Storage Materials, 2021, 39, 11-20.	18.0	44
352	Further performance improvement of Ba0.5Sr0.5Co0.8Fe0.2O3â^î^ perovskite membranes for air separation. Ceramics International, 2009, 35, 2455-2461.	4.8	43
353	A comprehensive evaluation of a Ni–Al2O3 catalyst as a functional layer of solid-oxide fuel cell anode. Journal of Power Sources, 2010, 195, 402-411.	7.8	43
354	Assessment of nickel cermets and La0.8Sr0.2Sc0.2Mn0.8O3 as solid-oxide fuel cell anodes operating on carbon monoxide fuel. Journal of Power Sources, 2010, 195, 1333-1343.	7.8	43
355	Aluminum oxide as a dual-functional modifier of Ni-based anodes of solid oxide fuel cells for operation on simulated biogas. Journal of Power Sources, 2014, 268, 787-793.	7.8	43
356	A single-/double-perovskite composite with an overwhelming single-perovskite phase for the oxygen reduction reaction at intermediate temperatures. Journal of Materials Chemistry A, 2017, 5, 24842-24849.	10.3	43
357	Cobalt-free niobium-doped barium ferrite as potential materials of dense ceramic membranes for oxygen separation. Journal of Membrane Science, 2014, 455, 75-82.	8.2	42
358	Highly Active Carbon/αâ€MnO ₂ Hybrid Oxygen Reduction Reaction Electrocatalysts. ChemElectroChem, 2016, 3, 1760-1767.	3.4	42
359	Open hollow Co–Pt clusters embedded in carbon nanoflake arrays for highly efficient alkaline water splitting. Journal of Materials Chemistry A, 2018, 6, 20214-20223.	10.3	42
360	Electrochemical performance and effect of moisture on Ba0.5Sr0.5Sc0.175Nb0.025Co0.8O3-l´ oxide as a promising electrode for proton-conducting solid oxide fuel cells. Applied Energy, 2019, 238, 344-350.	10.1	42

#	Article	IF	CITATIONS
361	Rational design of strontium antimony co-doped Li7La3Zr2O12 electrolyte membrane for solid-state lithium batteries. Journal of Alloys and Compounds, 2019, 794, 347-357.	5.5	42
362	Understanding and Engineering of Multiphase Transport Processes in Membrane Electrode Assembly of Proton-Exchange Membrane Fuel Cells with a Focus on the Cathode Catalyst Layer: A Review. Energy & Fuels, 2020, 34, 9175-9188.	5.1	42
363	Structurally modified coal char as a fuel for solid oxide-based carbon fuel cells with improved performance. Journal of Power Sources, 2015, 288, 106-114.	7.8	41
364	Two facile routes to an AB&Cu-MOF composite with improved hydrogen evolution reaction. Journal of Alloys and Compounds, 2018, 753, 228-233.	5.5	41
365	Exceptional lattice-oxygen participation on artificially controllable electrochemistry-induced crystalline-amorphous phase to boost oxygen-evolving performance. Applied Catalysis B: Environmental, 2021, 297, 120484.	20.2	41
366	Influence of crystal structure on the electrochemical performance of A-site-deficient Sr _{1â^'s} Nb _{0.1} Co _{0.9} O _{3â~δ} perovskite cathodes. RSC Advances, 2014, 4, 40865-40872.	3.6	40
367	A Carbon–Air Battery for High Power Generation. Angewandte Chemie - International Edition, 2015, 54, 3722-3725.	13.8	40
368	Nitrogen-doped TiO ₂ microspheres with hierarchical micro/nanostructures and rich dual-phase junctions for enhanced photocatalytic activity. RSC Advances, 2016, 6, 40923-40931.	3.6	40
369	High-Performance Proton-Conducting Fuel Cell with B-Site-Deficient Perovskites for All Cell Components. Energy & Fuels, 2020, 34, 11464-11471.	5.1	40
370	A Selfâ€Assembled Heteroâ€Structured Inverseâ€Spinel and Antiâ€Perovskite Nanocomposite for Ultrafast Water Oxidation. Small, 2020, 16, e2002089.	10.0	40
371	Unlocking the Potential of Mechanochemical Coupling: Boosting the Oxygen Evolution Reaction by Mating Proton Acceptors with Electron Donors. Advanced Functional Materials, 2021, 31, 2008077.	14.9	40
372	Porous Structure Engineering of Iridium Oxide Nanoclusters on Atomic Scale for Efficient pHâ€Universal Overall Water Splitting. Small, 2021, 17, e2100121.	10.0	40
373	SrCo0.8Ti0.1Ta0.1O3-Î′ perovskite: A new highly active and durable cathode material for intermediate-temperature solid oxide fuel cells. Composites Part B: Engineering, 2021, 213, 108726.	12.0	40
374	Renewable acetic acid in combination with solid oxide fuel cells for sustainable clean electric power generation. Journal of Materials Chemistry A, 2013, 1, 5620.	10.3	39
375	Molybdenum and Niobium Codoped B-Site-Ordered Double Perovskite Catalyst for Efficient Oxygen Evolution Reaction. ACS Applied Materials & Interfaces, 2018, 10, 16939-16942.	8.0	39
376	Morphology, crystal structure and electronic state one-step co-tuning strategy towards developing superior perovskite electrocatalysts for water oxidation. Journal of Materials Chemistry A, 2019, 7, 19228-19233.	10.3	39
377	Cadmium sulfide quantum dots/dodecahedral polyoxometalates/oxygen-doped mesoporous graphite carbon nitride with Z-scheme and Type-II as tandem heterojunctions for boosting visible-light-driven photocatalytic performance. Journal of Colloid and Interface Science, 2021, 582, 752-763.	9.4	39
378	Double perovskite Pr2CoFeO6 thermoelectric oxide: Roles of Sr-doping and Micro/nanostructuring. Chemical Engineering Journal, 2021, 425, 130668.	12.7	39

#	Article	IF	CITATIONS
379	Facile autocombustion synthesis of La0.6Sr0.4Co0.2Fe0.8O3â~δ (LSCF) perovskite via a modified complexing sol–gel process with NH4NO3 as combustion aid. Journal of Alloys and Compounds, 2008, 450, 338-347.	5.5	38
380	Coke formation and performance of an intermediate-temperature solid oxide fuel cell operating on dimethyl ether fuel. Journal of Power Sources, 2011, 196, 1967-1974.	7.8	38
381	A comparison study of catalytic oxidation and acid oxidation to prepare carbon nanotubes for filling with Ru nanoparticles. Carbon, 2011, 49, 2022-2032.	10.3	38
382	Combustion-synthesized Ru–Al2O3 composites as anode catalyst layer of a solid oxide fuel cell operating on methane. International Journal of Hydrogen Energy, 2011, 36, 755-764.	7.1	38
383	Facile Strategy to Low-Cost Synthesis of Hierarchically Porous, Active Carbon of High Graphitization for Energy Storage. ACS Applied Materials & amp; Interfaces, 2018, 10, 21573-21581.	8.0	38
384	Interfacial La Diffusion in the CeO ₂ /LaFeO ₃ Hybrid for Enhanced Oxygen Evolution Activity. ACS Applied Materials & Interfaces, 2021, 13, 2799-2806.	8.0	38
385	Building Ruddlesden–Popper and Single Perovskite Nanocomposites: A New Strategy to Develop Highâ€Performance Cathode for Protonic Ceramic Fuel Cells. Small, 2021, 17, e2101872.	10.0	38
386	Ultrathin 2D catalysts with N-coordinated single Co atom outside Co cluster for highly efficient Zn-air battery. Chemical Engineering Journal, 2021, 421, 129719.	12.7	38
387	A simple strategy that may effectively tackle the anode-electrolyte interface issues in solid-state lithium metal batteries. Chemical Engineering Journal, 2022, 427, 131001.	12.7	38
388	Ethanol Steam Reforming over Pt Catalysts Supported on Ce _{<i>x</i>} Zr _{1â^'<i>x</i>} O ₂ Prepared via a Glycine Nitrate Process. Energy & Fuels, 2008, 22, 1873-1879.	5.1	37
389	Pd-YSZ composite cathodes for oxygen reduction reaction of intermediate-temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 2011, 36, 7670-7676.	7.1	37
390	Controlled deposition and utilization of carbon on Ni-YSZ anodes of SOFCs operating on dry methane. Energy, 2016, 113, 432-443.	8.8	37
391	Synthesis of Hierarchical TiO ₂ –C ₃ N ₄ Hybrid Microspheres with Enhanced Photocatalytic and Photovoltaic Activities by Maximizing the Synergistic Effect. ChemPhotoChem, 2017, 1, 35-45.	3.0	37
392	Multi-active sites derived from a single/double perovskite hybrid for highly efficient water oxidation. Electrochimica Acta, 2019, 299, 926-932.	5.2	37
393	Advances in Ceramic Thin Films Fabricated by Pulsed Laser Deposition for Intermediate-Temperature Solid Oxide Fuel Cells. Energy & Fuels, 2020, 34, 10568-10582.	5.1	37
394	A Highly Ordered Hydrophilic–Hydrophobic Janus Biâ€Functional Layer with Ultralow Pt Loading and Fast Gas/Water Transport for Fuel Cells. Energy and Environmental Materials, 2021, 4, 126-133.	12.8	37
395	Towards highly stable and efficient planar perovskite solar cells: Materials development, defect control and interfacial engineering. Chemical Engineering Journal, 2021, 420, 127599.	12.7	37
396	Perovskite Oxides in Catalytic Combustion of Volatile Organic Compounds: Recent Advances and Future Prospects. Energy and Environmental Materials, 2022, 5, 751-776.	12.8	37

#	Article	IF	CITATIONS
397	A new nickel–ceria composite for direct-methane solid oxide fuel cells. International Journal of Hydrogen Energy, 2013, 38, 3741-3749.	7.1	36
398	Stable Hierarchical Bimetal–Organic Nanostructures as HighPerformance Electrocatalysts for the Oxygen Evolution Reaction. Angewandte Chemie, 2019, 131, 4271-4275.	2.0	36
399	A cobalt and nickel co-modified layered P2-Na2/3Mn1/2Fe1/2O2 with excellent cycle stability for high-energy density sodium-ion batteries. Journal of Alloys and Compounds, 2019, 775, 383-392.	5.5	36
400	NiCo2S4 spheres grown on N,S co-doped rGO with high sulfur vacancies as superior oxygen bifunctional electrocatalysts. Electrochimica Acta, 2020, 331, 135356.	5.2	36
401	Efficient Water Splitting Actualized through an Electrochemistryâ€Induced Heteroâ€Structured Antiperovskite/(Oxy)Hydroxide Hybrid. Small, 2020, 16, e2006800.	10.0	36
402	Water-stable MOFs-based core-shell nanostructures for advanced oxidation towards environmental remediation. Composites Part B: Engineering, 2020, 192, 107985.	12.0	36
403	Self-Supported Nickel Phosphide Electrode for Efficient Alkaline Water-to-Hydrogen Conversion via Urea Electrolysis. Industrial & Engineering Chemistry Research, 2021, 60, 1185-1193.	3.7	36
404	Exceptionally Robust Faceâ€6haring Motifs Enable Efficient and Durable Water Oxidation. Advanced Materials, 2021, 33, e2103392.	21.0	36
405	Covalent Organic Framework (COF)â€Based Hybrids for Electrocatalysis: Recent Advances and Perspectives. Small Methods, 2021, 5, e2100945.	8.6	36
406	Rational design of ZnO-zeolite imidazole hybrid nanoparticles with reduced charge recombination for enhanced photocatalysis. Journal of Colloid and Interface Science, 2022, 614, 538-546.	9.4	36
407	Initialization of a methane-fueled single-chamber solid-oxide fuel cell with NiO+SDC anode and BSCF+SDC cathode. Journal of Power Sources, 2008, 179, 640-648.	7.8	35
408	Fabrication of an anode-supported yttria-stabilized zirconia thin film for solid-oxide fuel cells via wet powder spraying. Journal of Power Sources, 2008, 184, 229-237.	7.8	35
409	Fabrication and evolution of catalyst-coated membranes by direct spray deposition of catalyst ink onto Nafion membrane at high temperature. International Journal of Hydrogen Energy, 2010, 35, 2921-2925.	7.1	35
410	Catalytic decomposition of hydrous hydrazine to hydrogen over oxide catalysts at ambient conditions for PEMFCs. International Journal of Hydrogen Energy, 2012, 37, 1133-1139.	7.1	35
411	Optimization of a direct carbon fuel cell for operation belowÂ700°C. International Journal of Hydrogen Energy, 2013, 38, 5367-5374.	7.1	35
412	In Situ Tetraethoxysilaneâ€Templated Porous Ba _{0.5} Sr _{0.5} Co _{0.8} Fe _{0.2} O _{3â^'<i>δ</i>} Perovskite for the Oxygen Evolution Reaction. ChemElectroChem, 2015, 2, 200-203.	3.4	35
413	Multi scale and physics models for intermediate and low temperatures H+-solid oxide fuel cells with H+/eâ^'/O2â~' mixed conducting properties: Part A, generalized percolation theory for LSCF-SDC-BZCY 3-component cathodes. Journal of Power Sources, 2016, 303, 305-316.	7.8	35
414	Co-generation of electricity and syngas on proton-conducting solid oxide fuel cell with a perovskite layer as a precursor of a highly efficient reforming catalyst. Journal of Power Sources, 2017, 348, 9-15.	7.8	35

#	Article	IF	CITATIONS
415	LiNi0.29Co0.33Mn0.38O2 polyhedrons with reduced cation mixing as a high-performance cathode material for Li-ion batteries synthesized via a combined co-precipitation and molten salt heating technique. Journal of Alloys and Compounds, 2017, 691, 206-214.	5.5	35
416	Enhancing the triiodide reduction activity of a perovskite-based electrocatalyst for dye-sensitized solar cells through exsolved silver nanoparticles. Journal of Materials Chemistry A, 2019, 7, 17489-17497.	10.3	35
417	Enhancing Oxygen Reduction Reaction Activity and CO ₂ Tolerance of Cathode for Low-Temperature Solid Oxide Fuel Cells by in Situ Formation of Carbonates. ACS Applied Materials & Interfaces, 2019, 11, 26909-26919.	8.0	35
418	Metal-free carbon based air electrodes for Zn-air batteries: Recent advances and perspective. Materials Research Bulletin, 2021, 140, 111315.	5.2	35
419	A bilateral cyano molecule serving as an effective additive enables high-efficiency and stable perovskite solar cells. Journal of Energy Chemistry, 2021, 62, 243-251.	12.9	35
420	A dense oxygen separation membrane with a layered morphologic structure. Journal of Membrane Science, 2007, 300, 182-190.	8.2	34
421	High performance electrode for electrochemical oxygen generator cell based on solid electrolyte ion transport membrane. Electrochimica Acta, 2007, 52, 6297-6303.	5.2	34
422	Physically mixed LiLaNi–Al2O3 and copper as conductive anode catalysts in a solid oxide fuel cell for methane internal reforming and partial oxidation. International Journal of Hydrogen Energy, 2011, 36, 5632-5643.	7.1	34
423	A new symmetric solid oxide fuel cell with a samaria-doped ceria framework and a silver-infiltrated electrocatalyst. Journal of Power Sources, 2012, 197, 57-64.	7.8	34
424	Composition and microstructure optimization and operation stability of barium deficient Ba1â^'xCo0.7Fe0.2Nb0.1O3â^'l´ perovskite oxide electrodes. Electrochimica Acta, 2013, 103, 23-31.	5.2	34
425	High performance porous iron oxide-carbon nanotube nanocomposite as an anode material for lithium-ion batteries. Electrochimica Acta, 2016, 212, 179-186.	5.2	34
426	Anodes for Carbonâ€Fueled Solid Oxide Fuel Cells. ChemElectroChem, 2016, 3, 193-203.	3.4	34
427	Nickelâ€Iron Alloy Nanoparticleâ€Decorated K ₂ NiF ₄ â€Type Oxide as an Efficient and Sulfurâ€Tolerant Anode for Solid Oxide Fuel Cells. ChemElectroChem, 2017, 4, 2378-2384.	3.4	34
428	Hierarchical Porous Yolk–Shell Carbon Nanosphere for Highâ€₽erformance Lithium–Sulfur Batteries. Particle and Particle Systems Characterization, 2017, 34, 1600281.	2.3	34
429	Highly Active and Stable Cobalt-Free Hafnium-doped SrFe _{0.9} Hf _{0.1} O _{3â^î<} Perovskite Cathode for Solid Oxide Fuel Cells. ACS Applied Energy Materials, 2018, 1, 2134-2142.	5.1	34
430	New Phosphorusâ€Doped Perovskite Oxide as an Oxygen Reduction Reaction Electrocatalyst in an Alkaline Solution. Chemistry - A European Journal, 2018, 24, 6950-6957.	3.3	34
431	Optimal synthesis and new understanding of P2-type Na2/3Mn1/2Fe1/4Co1/4O2 as an advanced cathode material in sodium-ion batteries with improved cycle stability. Ceramics International, 2018, 44, 5184-5192.	4.8	34
432	A highly sensitive perovskite oxide sensor for detection of p-phenylenediamine in hair dyes. Journal of Hazardous Materials, 2019, 369, 699-706.	12.4	34

#	Article	IF	CITATIONS
433	Activation-free supercapacitor electrode based on surface-modified Sr2CoMo1-xNixO6-δ perovskite. Chemical Engineering Journal, 2020, 390, 124645.	12.7	34
434	Development of nickel based cermet anode materials in solid oxide fuel cells – Now and future. Materials Reports Energy, 2021, 1, 100003.	3.2	34
435	First investigation of additive engineering for highly efficient Cs2AgBiBr6-based lead-free inorganic perovskite solar cells. Applied Physics Reviews, 2021, 8, .	11.3	34
436	Effect of firing temperature on the microstructure and performance of PrBaCo2O5+l̂´ cathodes on Sm0.2Ce0.8O1.9 electrolytes fabricated by spray deposition-firing processes. Journal of Power Sources, 2010, 195, 4667-4675.	7.8	33
437	The influence of impurity ions on the permeation and oxygen reduction properties of Ba0.5Sr0.5Co0.8Fe0.2O3â^î´ perovskite. Journal of Membrane Science, 2014, 449, 86-96.	8.2	33
438	Ceramic Lithium Ion Conductor to Solve the Anode Coking Problem of Practical Solid Oxide Fuel Cells. ChemSusChem, 2015, 8, 2978-2986.	6.8	33
439	Highly CO ₂ -Tolerant Cathode for Intermediate-Temperature Solid Oxide Fuel Cells: Samarium-Doped Ceria-Protected SrCo _{0.85} Ta _{0.15} O _{3â^`î} Hybrid. ACS Applied Materials & Interfaces, 2017, 9, 2326-2333.	8.0	33
440	Smart Control of Composition for Double Perovskite Electrocatalysts toward Enhanced Oxygen Evolution Reaction. ChemSusChem, 2019, 12, 5111-5116.	6.8	33
441	Methane-fueled IT-SOFCs with facile in situ inorganic templating synthesized mesoporous Sm0.2Ce0.8O1.9 as catalytic layer. Journal of Power Sources, 2007, 170, 251-258.	7.8	32
442	Preparation and re-examination of Li4Ti4.85Al0.15O12 as anode material of lithium-ion battery. International Journal of Energy Research, 2011, 35, 68-77.	4.5	32
443	Wet powder spraying fabrication and performance optimization of IT-SOFCs with thin-film ScSZ electrolyte. International Journal of Hydrogen Energy, 2012, 37, 1125-1132.	7.1	32
444	Green fabrication of composite cathode with attractive performance for solid oxide fuel cells through facile inkjet printing. Journal of Power Sources, 2015, 273, 465-471.	7.8	32
445	Recent development on perovskiteâ€ŧype cathode materials based on SrCoO _{3 â^'} <i>_δ</i> parent oxide for intermediateâ€ŧemperature solid oxide fu cells. Asia-Pacific Journal of Chemical Engineering, 2016, 11, 370-381.	el.5	32
446	Improved performance of a symmetrical solid oxide fuel cell by swapping the roles of doped ceria and La0.6Sr1.4MnO4+l´ in the electrode. Journal of Power Sources, 2017, 342, 644-651.	7.8	32
447	Exsolved Alloy Nanoparticles Decorated Ruddlesden–Popper Perovskite as Sulfur-Tolerant Anodes for Solid Oxide Fuel Cells. Energy & Fuels, 2020, 34, 11449-11457.	5.1	32
448	Efficient water splitting through solid oxide electrolysis cells with a new hydrogen electrode derived from A-site cation-deficient La0.4Sr0.55Co0.2Fe0.6Nb0.2O3-δperovskite. Materials Today Energy, 2020, 17, 100458.	4.7	32
449	Boosting the oxygen evolution catalytic performance of perovskites <i>via</i> optimizing calcination temperature. Journal of Materials Chemistry A, 2020, 8, 6480-6486.	10.3	32
450	Bulk and Surface Properties Regulation of Single/Double Perovskites to Realize Enhanced Oxygen Evolution Reactivity. ChemSusChem, 2020, 13, 3045-3052.	6.8	32

#	Article	IF	CITATIONS
451	Tailored Brownmillerite Oxide Catalyst with Multiple Electronic Functionalities Enables Ultrafast Water Oxidation. Chemistry of Materials, 2021, 33, 5233-5241.	6.7	32
452	Towards practically accessible aprotic Li-air batteries: Progress and challenges related to oxygen-permeable membranes and cathodes. Energy Storage Materials, 2022, 45, 869-902.	18.0	32
453	Sodium fluoride sacrificing layer concept enables high-efficiency and stable methylammonium lead iodide perovskite solar cells. Journal of Materials Science and Technology, 2022, 113, 138-146.	10.7	32
454	A High Electrochemical Performance Proton Conductor Electrolyte with CO2 Tolerance. Chinese Journal of Catalysis, 2009, 30, 479-481.	14.0	31
455	Cobalt-site cerium doped SmxSr1â^'xCoO3â^'δ oxides as potential cathode materials for solid-oxide fuel cells. Journal of Power Sources, 2010, 195, 3386-3393.	7.8	31
456	Modified template synthesis and electrochemical performance of a Co ₃ O ₄ /mesoporous cathode for lithium–oxygen batteries. Journal of Materials Chemistry A, 2015, 3, 16132-16141.	10.3	31
457	Core–shell structured Li _{0.33} La _{0.56} TiO ₃ perovskite as a highly efficient and sulfur-tolerant anode for solid-oxide fuel cells. Journal of Materials Chemistry A, 2015, 3, 8545-8551.	10.3	31
458	Sc and Nb dopants in SrCoO3 modulate electronic and vacancy structures for improved water splitting and SOFC cathodes. Energy Storage Materials, 2017, 9, 229-234.	18.0	31
459	Significantly Improving the Durability of Single-Chamber Solid Oxide Fuel Cells: A Highly Active CO ₂ -Resistant Perovskite Cathode. ACS Applied Energy Materials, 2018, 1, 1337-1343.	5.1	31
460	A high performance composite cathode with enhanced CO2 resistance for low and intermediate-temperature solid oxide fuel cells. Journal of Power Sources, 2018, 405, 124-131.	7.8	31
461	Hydrazine as efficient fuel for low-temperature SOFC through ex-situ catalytic decomposition with high selectivity toward hydrogen. International Journal of Hydrogen Energy, 2010, 35, 7919-7924.	7.1	30
462	A Highly Stable and Active Hybrid Cathode for Lowâ€Temperature Solid Oxide Fuel Cells. ChemElectroChem, 2014, 1, 1627-1631.	3.4	30
463	Rational Design of Metal Oxide–Based Cathodes for Efficient Dyeâ€Sensitized Solar Cells. Advanced Energy Materials, 2018, 8, 1800172.	19.5	30
464	Direct-methane solid oxide fuel cells with an in situ formed Ni–Fe alloy composite catalyst layer over Ni–YSZ anodes. Renewable Energy, 2020, 150, 334-341.	8.9	30
465	A new highly active and CO2-stable perovskite-type cathode material for solid oxide fuel cells developed from A- and B-site cation synergy. Journal of Power Sources, 2020, 457, 227995.	7.8	30
466	Engineering Charge Redistribution within Perovskite Oxides for Synergistically Enhanced Overall Water Splitting. , 2021, 3, 1258-1265.		30
467	Synergistic effects in ordered Co oxides for boosting catalytic activity in advanced oxidation processes. Applied Catalysis B: Environmental, 2021, 297, 120463.	20.2	30
468	Electrochemical Performance of SrSc[sub 0.2]Co[sub 0.8]O[sub 3â˜î] Cathode on Sm[sub 0.2]Ce[sub 0.8]O[sub 1.9] Electrolyte for Low Temperature SOFCs. Journal of the Electrochemical Society, 2009, 156, B884.	2.9	29

#	Article	IF	CITATIONS
469	Solid lithium electrolyte-Li4Ti5O12 composites as anodes of lithium-ion batteries showing high-rate performance. Journal of Power Sources, 2013, 231, 177-185.	7.8	29
470	Ethylene glycol as a new sustainable fuel for solid oxide fuel cells with conventional nickel-based anodes. Applied Energy, 2015, 148, 1-9.	10.1	29
471	Insight into an unusual lanthanum effect on the oxygen reduction reaction activity of Ruddlesden-Popper-type cation-nonstoichiometric La _{2â^'x} NiO _{4+δ} (x = 0–0.1) oxides. Journal of Materials Chemistry A, 2015, 3, 6501-6508.	10.3	29
472	A hierarchical Zn ₂ Mo ₃ O ₈ nanodots–porous carbon composite as a superior anode for lithium-ion batteries. Chemical Communications, 2016, 52, 9402-9405.	4.1	29
473	Proton-Conducting La-Doped Ceria-Based Internal Reforming Layer for Direct Methane Solid Oxide Fuel Cells. ACS Applied Materials & Interfaces, 2017, 9, 33758-33765.	8.0	29
474	Rationally designed Water-Insertable Layered Oxides with Synergistic Effect of Transition-Metal Elements for High-Performance Oxygen Evolution Reaction. ACS Applied Materials & Interfaces, 2019, 11, 25227-25235.	8.0	29
475	High activity and durability of a Pt–Cu–Co ternary alloy electrocatalyst and its large-scale preparation for practical proton exchange membrane fuel cells. Composites Part B: Engineering, 2021, 222, 109082.	12.0	29
476	Enhancing the photocatalytic activity of Ruddlesden-Popper Sr2TiO4 for hydrogen evolution through synergistic silver doping and moderate reducing pretreatment. Materials Today Energy, 2022, 23, 100899.	4.7	29
477	Effect of a reducing agent for silver on the electrochemical activity of an Ag/Ba0.5Sr0.5Co0.8Fe0.2O3â^î^ electrode prepared by electroless deposition technique. Journal of Power Sources, 2009, 186, 244-251.	7.8	28
478	Double-site yttria-doped Sr1â^'xYxCo1â^'yYyO3â^'δ perovskite oxides as oxygen semi-permeable membranes. Journal of Alloys and Compounds, 2009, 474, 477-483.	5.5	28
479	Comparative study of doped ceria thin-film electrolytes prepared by wet powder spraying with powder synthesized via two techniques. Journal of Power Sources, 2010, 195, 393-401.	7.8	28
480	A novel way to improve performance of proton-conducting solid-oxide fuel cells through enhanced chemical interaction of anode components. International Journal of Hydrogen Energy, 2011, 36, 1683-1691.	7.1	28
481	Interlayer-free electrodes for IT-SOFCs by applying Co3O4 as sintering aid. International Journal of Hydrogen Energy, 2012, 37, 11946-11954.	7.1	28
482	Robust ion-transporting ceramic membrane with an internal short circuit for oxygen production. Journal of Materials Chemistry A, 2013, 1, 9150.	10.3	28
483	Robust non-Pt noble metal-based nanomaterials for electrocatalytic hydrogen generation. Applied Physics Reviews, 2020, 7, .	11.3	28
484	Rational design of spinel oxides as bifunctional oxygen electrocatalysts for rechargeable Zn-air batteries. Chemical Physics Reviews, 2020, 1, .	5.7	28
485	Ultrafine ruthenium-iridium alloy nanoparticles well-dispersed on N-rich carbon frameworks as efficient hydrogen-generation electrocatalysts. Chemical Engineering Journal, 2021, 417, 128105.	12.7	28
486	Activating Both Basal Plane and Edge Sites of Layered Cobalt Oxides for Boosted Water Oxidation. Advanced Functional Materials, 2021, 31, 2103569.	14.9	28

#	Article	IF	CITATIONS
487	Benefitting from Synergistic Effect of Anion and Cation in Antimony Acetate for Stable CH ₃ NH ₃ PbI ₃ â€Based Perovskite Solar Cell with Efficiency Beyond 21%. Small, 2021, 17, e2102186.	10.0	28
488	Realizing High and Stable Electrocatalytic Oxygen Evolution for Ironâ€Based Perovskites by Coâ€Dopingâ€Induced Structural and Electronic Modulation. Advanced Functional Materials, 2022, 32, .	14.9	28
489	Realizing robust and efficient acidic oxygen evolution by electronic modulation of 0D/2D CeO2 quantum dots decorated SrIrO3 nanosheets. Applied Catalysis B: Environmental, 2022, 315, 121579.	20.2	28
490	Solid-oxide fuel cell operated on in situ catalytic decomposition products of liquid hydrazine. Journal of Power Sources, 2008, 177, 323-329.	7.8	27
491	Improving single-chamber performance of an anode-supported SOFC by impregnating anode with active nickel catalyst. International Journal of Hydrogen Energy, 2010, 35, 8171-8176.	7.1	27
492	Heterostructured electrode with concentration gradient shell for highly efficient oxygen reduction at low temperature. Scientific Reports, 2011, 1, 155.	3.3	27
493	Effect of nickel content and preparation method on the performance of Ni-Al2O3 towards the applications in solid oxide fuel cells. International Journal of Hydrogen Energy, 2011, 36, 10958-10967.	7.1	27
494	Effect of Sm3+ content on the properties and electrochemical performance of SmxSr1â^'xCoO3â^'δ (0.2≤â‰ 0 .8) as an oxygen reduction electrodes on doped ceria electrolytes. Electrochimica Acta, 2011, 56, 2870-2876.	5.2	27
495	Coking suppression in solid oxide fuel cells operating on ethanol by applying pyridine as fuel additive. Journal of Power Sources, 2014, 265, 20-29.	7.8	27
496	Fructoseâ€Ðerived Hollow Carbon Nanospheres with Ultrathin and Ordered Mesoporous Shells as Cathodes in Lithium–Sulfur Batteries for Fast Energy Storage. Advanced Sustainable Systems, 2017, 1, 1700081.	5.3	27
497	Rational design of NiCo2O4/g-C3N4 composite as practical anode of lithium-ion batteries with outstanding electrochemical performance from multiple aspects. Journal of Alloys and Compounds, 2019, 805, 522-530.	5.5	27
498	Nanofluidic Behaviors of Water and Ions in Covalent Triazine Framework (CTF) Multilayers. Small, 2020, 16, e1903879.	10.0	27
499	A mini-review of noble-metal-free electrocatalysts for overall water splitting in non-alkaline electrolytes. Materials Reports Energy, 2021, 1, 100024.	3.2	27
500	Tailoring structural properties of carbon via implanting optimal co nanoparticles in nâ€rich carbon cages toward highâ€efficiency oxygen electrocatalysis for rechargeable znâ€air batteries. , 2022, 4, 576-585.		27
501	Synergistically boosting the elementary reactions over multiheterogeneous ordered macroporous Mo ₂ C/NCâ€Ru for highly efficient alkaline hydrogen evolution. , 2022, 4, 856-866.		27
502	Evaluation of mixedâ€conducting lanthanumâ€strontiumâ€cobaltite ceramic membrane for oxygen separation. AICHE Journal, 2009, 55, 2603-2613.	3.6	26
503	A comparative study of La0.8Sr0.2MnO3 and La0.8Sr0.2Sc0.1Mn0.9O3 as cathode materials of single-chamber SOFCs operating on a methane–air mixture. Journal of Power Sources, 2009, 191, 225-232.	7.8	26
504	Significant impact of the current collection material and method on the performance of Ba0.5Sr0.5Co0.8Fe0.2O3â^' electrodes in solid oxide fuel cells. Journal of Power Sources, 2011, 196, 5511-5519.	7.8	26

#	Article	IF	CITATIONS
505	Tin and iron co-doping strategy for developing active and stable oxygen reduction catalysts from SrCoO3â~δfor operating below 800°C. Journal of Power Sources, 2015, 294, 339-346.	7.8	26
506	Evaluation of pulsed laser deposited SrNb0.1Co0.9O3â^î´ thin films as promising cathodes for intermediate-temperature solid oxide fuel cells. Journal of Power Sources, 2015, 295, 117-124.	7.8	26
507	Oriented PrBaCo2O5+δ thin films for solid oxide fuel cells. Journal of Power Sources, 2015, 278, 623-629.	7.8	26
508	Materials design for ceramic oxygen permeation membranes: Single perovskite vs. single/double perovskite composite, a case study of tungsten-doped barium strontium cobalt ferrite. Journal of Membrane Science, 2018, 566, 278-287.	8.2	26
509	Ternary Phase Diagram-Facilitated Rapid Screening of Double Perovskites As Electrocatalysts for the Oxygen Evolution Reaction. Chemistry of Materials, 2019, 31, 5919-5926.	6.7	26
510	Reduced air sensitivity and improved electrochemical stability of P2–Na2/3Mn1/2Fe1/4Co1/4O2 through atomic layer deposition-assisted Al2O3 coating. Composites Part B: Engineering, 2019, 173, 106913.	12.0	26
511	Nonstoichiometric perovskite for enhanced catalytic oxidation through excess A-site cation. Chemical Engineering Science, 2020, 219, 115596.	3.8	26
512	Manipulating cation nonstoichiometry towards developing better electrolyte for self-humidified dual-ion solid oxide fuel cells. Journal of Power Sources, 2020, 460, 228105.	7.8	26
513	Recent advances in functional oxides for high energy density sodium-ion batteries. Materials Reports Energy, 2021, 1, 100022.	3.2	26
514	Interface engineered perovskite oxides for enhanced catalytic oxidation: The vital role of lattice oxygen. Chemical Engineering Science, 2021, 245, 116944.	3.8	26
515	Layered perovskite Y1â^Ca BaCo4O7+ as ceramic membranes for oxygen separation. Journal of Alloys and Compounds, 2010, 492, 552-558.	5.5	25
516	Electrophoretic deposition of YSZ thin-film electrolyte for SOFCs utilizing electrostatic-steric stabilized suspensions obtained via high energy ball milling. International Journal of Hydrogen Energy, 2011, 36, 9195-9204.	7.1	25
517	Facile synthesis of porous MgO–CaO–SnOx nanocubes implanted firmly on in situ formed carbon paper and their lithium storage properties. Journal of Materials Chemistry A, 2014, 2, 9126.	10.3	25
518	Rational Design of LaNiO ₃ /Carbon Composites as Outstanding Platinumâ€Free Photocathodes in Dyeâ€Sensitized Solar Cells With Enhanced Catalysis for the Triiodide Reduction Reaction. Solar Rrl, 2017, 1, 1700074.	5.8	25
519	Silver-doped strontium niobium cobaltite as a new perovskite-type ceramic membrane for oxygen separation. Journal of Membrane Science, 2018, 563, 617-624.	8.2	25
520	The Synergistic Effect Accelerates the Oxygen Reduction/Evolution Reaction in a Zn-Air Battery. Frontiers in Chemistry, 2019, 7, 524.	3.6	25
521	Integrated Ultrafine Co _{0.85} Se in Carbon Nanofibers: An Efficient and Robust Bifunctional Catalyst for Oxygen Electrocatalysis. Chemistry - A European Journal, 2020, 26, 4063-4069.	3.3	25
522	Core Effect on the Performance of N/P Codoped Carbon Encapsulating Noble-Metal Phosphide Nanostructures for Hydrogen Evolution Reaction. ACS Applied Energy Materials, 2019, 2, 2645-2653.	5.1	25

#	Article	IF	CITATIONS
523	Scandium and phosphorus co-doped perovskite oxides as high-performance electrocatalysts for the oxygen reduction reaction in an alkaline solution. Journal of Materials Science and Technology, 2020, 39, 22-27.	10.7	25
524	New TiO ₂ â€Based Oxide for Catalyzing Alkaline Hydrogen Evolution Reaction with Noble Metalâ€Like Performance. Small Methods, 2021, 5, e2100246.	8.6	25
525	Recent progresses and remaining issues on the ultrathin catalyst layer design strategy for high-performance proton exchange membrane fuel cell with further reduced Pt loadings: A review. International Journal of Hydrogen Energy, 2022, 47, 1529-1542.	7.1	25
526	Realizing Simultaneous Detrimental Reactions Suppression and Multiple Benefits Generation from Nickel Doping toward Improved Protonic Ceramic Fuel Cell Performance. Small, 2022, 18, e2200450.	10.0	25
527	A novel Ba0.6Sr0.4Co0.9Nb0.1O3â^1^´ cathode for protonic solid-oxide fuel cells. Journal of Power Sources, 2010, 195, 4700-4703.	7.8	24
528	A composite oxygen-reduction electrode composed of SrSc0.2Co0.8O3â^'δ perovskite and Sm0.2Ce0.8O1.9 for an intermediate-temperature solid-oxide fuel cell. International Journal of Hydrogen Energy, 2010, 35, 5601-5610.	7.1	24
529	Nickel zirconia cerate cermet for catalytic partial oxidation of ethanol in a solid oxide fuel cell system. International Journal of Hydrogen Energy, 2012, 37, 8603-8612.	7.1	24
530	A CO2-tolerant nanostructured layer for oxygen transport membranes. RSC Advances, 2014, 4, 25924.	3.6	24
531	Optimal hydrothermal synthesis of hierarchical porous ZnMn 2 O 4 microspheres with more porous core for improved lithium storage performance. Electrochimica Acta, 2016, 207, 58-65.	5.2	24
532	Coal pretreatment and Ag-infiltrated anode for high-performance hybrid direct coal fuel cell. Applied Energy, 2020, 260, 114197.	10.1	24
533	Perovskite-Based Multifunctional Cathode with Simultaneous Supplementation of Substrates and Electrons for Enhanced Microbial Electrosynthesis of Organics. ACS Applied Materials & Interfaces, 2020, 12, 30449-30456.	8.0	24
534	Facile synthesis of synergistic Pt/(Co-N)@C composites as alternative oxygen-reduction electrode of PEMFCs with attractive activity and durability. Composites Part B: Engineering, 2020, 193, 108012.	12.0	24
535	Progress on X-ray Absorption Spectroscopy for the Characterization of Perovskite-Type Oxide Electrocatalysts. Energy & amp; Fuels, 2021, 35, 5716-5737.	5.1	24
536	In-situ exsolution of CoNi alloy nanoparticles on LiFe0.8Co0.1Ni0.1O2 parent: New opportunity for boosting oxygen evolution and reduction reaction. Applied Surface Science, 2021, 543, 148817.	6.1	24
537	Low temperature synthesis of perovskite oxide using the adsorption properties of cellulose. Journal of Materials Science, 2000, 35, 5639-5644.	3.7	23
538	A new approach to nanoporous graphene sheets via rapid microwave-induced plasma for energy applications. Nanotechnology, 2014, 25, 495604.	2.6	23
539	Enhanced Sulfur Tolerance of Nickel-Based Anodes for Oxygen-Ion Conducting Solid Oxide Fuel Cells by Incorporating a Secondary Water Storing Phase. Environmental Science & Technology, 2014, 48, 12427-12434.	10.0	23
540	Three Strongly Coupled Allotropes in a Functionalized Porous Allâ€Carbon Nanocomposite as a Superior Anode for Lithiumâ€Ion Batteries. ChemElectroChem, 2016, 3, 698-703.	3.4	23

#	Article	IF	CITATIONS
541	Mixed protonic-electronic conducting perovskite oxide as a robust oxygen evolution reaction catalyst. Electrochimica Acta, 2018, 282, 324-330.	5.2	23
542	Facilitating Oxygen Redox on Manganese Oxide Nanosheets by Tuning Active Species and Oxygen Defects for Zincâ€Air Batteries. ChemElectroChem, 2020, 7, 4949-4955.	3.4	23
543	Enhancing the oxygen reduction activity of PrBaCo2O5+Î′ double perovskite cathode by tailoring the calcination temperatures. International Journal of Hydrogen Energy, 2020, 45, 25996-26004.	7.1	23
544	Ternary BaCaZrTi perovskite oxide piezocatalysts dancing for efficient hydrogen peroxide generation. Nano Energy, 2022, 98, 107251.	16.0	23
545	Low thermal-expansion and high proton uptake for protonic ceramic fuel cell cathode. Journal of Power Sources, 2022, 530, 231321.	7.8	23
546	Engineering anion defect in perovskite oxyfluoride cathodes enables proton involved oxygen reduction reaction for protonic ceramic fuel cells. Separation and Purification Technology, 2022, 290, 120844.	7.9	23
547	Effect of pH on synthesis and properties of perovskite oxide via a citrate process. AICHE Journal, 2006, 52, 769-776.	3.6	22
548	Fabrication and performance of a carbon dioxide-tolerant proton-conducting solid oxide fuel cells with a dual-layer electrolyte. International Journal of Hydrogen Energy, 2010, 35, 10513-10521.	7.1	22
549	High performance tubular solid oxide fuel cells with BSCF cathode. International Journal of Hydrogen Energy, 2012, 37, 13022-13029.	7.1	22
550	Electrochemical contribution of silver current collector to oxygen reduction reaction over Ba0.5Sr0.5Co0.8Fe0.2O3â~δelectrode on oxygen-ionic conducting electrolyte. International Journal of Hydrogen Energy, 2012, 37, 14492-14500.	7.1	22
551	Hierarchical porous cobalt-free perovskite electrode for highly efficient oxygen reduction. Journal of Materials Chemistry, 2012, 22, 16214.	6.7	22
552	Enhancing the cycle life of Li-S batteries by designing a free-standing cathode with excellent flexible, conductive, and catalytic properties. Electrochimica Acta, 2019, 298, 421-429.	5.2	22
553	Utilization of low-concentration coal-bed gas to generate power using a core-shell catalyst-modified solid oxide fuel cell. Renewable Energy, 2020, 147, 602-609.	8.9	22
554	Zeolitic Imidazolate Framework-Derived Ordered Pt–Fe Intermetallic Electrocatalysts for High-Performance Zn-Air Batteries. Energy & Fuels, 2020, 34, 11527-11535.	5.1	22
555	Enabling efficient hydrogen-evolution reaction over perovskite oxide electrocatalysts through phosphorus promotion. International Journal of Hydrogen Energy, 2020, 45, 24859-24869.	7.1	22
556	Rational Design of a High-Durability Pt-Based ORR Catalyst Supported on Mn/N Codoped Carbon Sheets for PEMFCs. Energy & Fuels, 2022, 36, 1707-1715.	5.1	22
557	A low resistance and stable lithium-garnet electrolyte interface enabled by a multifunctional anode additive for solid-state lithium batteries. Journal of Materials Chemistry A, 2022, 10, 2519-2527.	10.3	22
558	A single-step synthesized cobalt-free barium ferrites-based composite cathode for intermediate temperature solid oxide fuel cells. Electrochemistry Communications, 2011, 13, 1340-1343.	4.7	21

#	Article	IF	CITATIONS
559	Oxygen permeation behavior through Ce _{0.9} Gd _{0.1} O _{2â^Î} membranes electronically short-circuited by dual-phase Ce _{0.9} Gd _{0.1} O _{2â^Î} –Ag decoration. Journal of Materials Chemistry A, 2015, 3, 19033-19041.	10.3	21
560	Na _{0.86} Co _{0.95} Fe _{0.05} O ₂ Layered Oxide As Highly Efficient Water Oxidation Electrocatalyst in Alkaline Media. ACS Applied Materials & Interfaces, 2017, 9, 21587-21592.	8.0	21
561	Twoâ€Step Fabrication of Li ₄ Ti ₅ O ₁₂ â€Coated Carbon Nanofibers as a Flexible Film Electrode for Highâ€Power Lithiumâ€Ion Batteries. ChemElectroChem, 2017, 4, 2286-2292.	3.4	21
562	Dodecylamineâ€Induced Synthesis of a Nitrogenâ€Doped Carbon Comb for Advanced Lithium–Sulfur Battery Cathodes. Advanced Materials Interfaces, 2018, 5, 1701659.	3.7	21
563	Realizing stable high hydrogen permeation flux through BaCo0.4Fe0.4Zr0.1Y0.1O3-Î′ membrane using a thin Pd film protection strategy. Journal of Membrane Science, 2020, 596, 117709.	8.2	21
564	New perovskite membrane with improved sintering and self-reconstructed surface for efficient hydrogen permeation. Journal of Membrane Science, 2021, 620, 118980.	8.2	21
565	An Adsorption–Catalysis Pathway toward Sustainable Application of Mesoporous Carbon Nanospheres for Efficient Environmental Remediation. ACS ES&T Water, 2021, 1, 145-156.	4.6	21
566	Intrinsic vacancy suppression and band convergence to enhance thermoelectric performance of (Ge,) Tj ETQq0 0	0 <u>fg</u> BT /O	verlock 10 Tf
567	Effects of preparation methods on the oxygen nonstoichiometry, B-site cation valences and catalytic efficiency of perovskite La0.6Sr0.4Co0.2Fe0.8O3â^l´. Ceramics International, 2009, 35, 3201-3206.	4.8	20
568	Facile fabrication and improved carbon dioxide tolerance of a novel bilayer-structured ceramic oxygen permeating membrane. Journal of Membrane Science, 2014, 472, 10-18.	8.2	20
569	Intermediate-Temperature Solid Oxide Fuel Cells. Green Chemistry and Sustainable Technology, 2016, , .	0.7	20
570	An in situ formed MnO–Co composite catalyst layer over Ni–Ce _{0.8} Sm _{0.2} O _{2â"x} anodes for direct methane solid oxide fuel cells. Journal of Materials Chemistry A, 2017, 5, 6494-6503.	10.3	20
571	Preparation of thin electrolyte film via dry pressing/heating /quenching/calcining for electrolyte-supported SOFCs. Ceramics International, 2019, 45, 9866-9870.	4.8	20
572	Improving Moisture/Thermal Stability and Efficiency of CH 3 NH 3 PbI 3 â€Based Perovskite Solar Cells via Gentle Butyl Acrylate Additive Strategy. Solar Rrl, 2021, 5, 2000621.	5.8	20
573	A molecular-level strategy to boost the mass transport of perovskite electrocatalyst for enhanced oxygen evolution. Applied Physics Reviews, 2021, 8, .	11.3	20
574	Cu-modified Ni foams as three-dimensional outer anodes for high-performance hybrid direct coal fuel cells. Chemical Engineering Journal, 2021, 410, 128239.	12.7	20
575	Influence of high-energy ball milling of the starting powder on the sintering; microstructure and oxygen permeability of Ba0.5Sr0.5Co0.5Fe0.5O3â ^{~?} membranes. Journal of Membrane Science, 2011, 366, 203-211.	8.2	19
576	Cr–Zn Redox Battery with NiFe ₂ O ₄ as Catalyst for Enhanced Degradation of Cr(VI) Pollution. ACS Sustainable Chemistry and Engineering, 2019, 7, 111-116.	6.7	19

#	Article	IF	CITATIONS
577	Purified highâ€sulfur coal as a fuel for direct carbon solid oxide fuel cells. International Journal of Energy Research, 2019, 43, 2501-2513.	4.5	19
578	Tuning Nitrogen in Graphitic Carbon Nitride Enabling Enhanced Performance for Polysulfide Confinement in Li–S Batteries. Energy & Fuels, 2020, 34, 11557-11564.	5.1	19
579	Achieving Safe and Dendrite-Suppressed Solid-State Li Batteries via a Novel Self-Extinguished Trimethyl Phosphate-Based Wetting Agent. Energy & Fuels, 2020, 34, 11547-11556.	5.1	19
580	Turning Detrimental Effect into Benefits: Enhanced Oxygen Reduction Reaction Activity of Cobalt-Free Perovskites at Intermediate Temperature <i>via</i> CO ₂ -Induced Surface Activation. ACS Applied Materials & Interfaces, 2020, 12, 16417-16425.	8.0	19
581	Modified cellulose adsorption method for the synthesis of conducting perovskite powders for membrane application. Powder Technology, 2002, 122, 26-33.	4.2	18
582	Functional nano-composite oxides synthesized by environmental-friendly auto-combustion within a micro-bioreactor. Materials Research Bulletin, 2008, 43, 2248-2259.	5.2	18
583	Cr doping effect in B-site of La0.75Sr0.25MnO3 on its phase stability and performance as an SOFC anode. Rare Metals, 2009, 28, 361-366.	7.1	18
584	In situ electrochemical creation of cobalt oxide nanosheets with favorable performance as a high tap density anode material for lithium-ion batteries. Electrochimica Acta, 2015, 180, 914-921.	5.2	18
585	An extremely active and durable Mo 2 C/graphene-like carbon based electrocatalyst for hydrogen evolution reaction. Materials Today Energy, 2017, 6, 230-237.	4.7	18
586	An Intrinsically Conductive Phosphorusâ€Doped Perovskite Oxide as a New Cathode for Highâ€Performance Dyeâ€Sensitized Solar Cells by Providing Internal Conducting Pathways. Solar Rrl, 2019, 3, 1900108.	5.8	18
587	A Controllable Dual Interface Engineering Concept for Rational Design of Efficient Bifunctional Electrocatalyst for Zinc–Air Batteries. Small, 2022, 18, e2105604.	10.0	18
588	Probing oxygen reduction and water uptake kinetics of BaCo0.4Fe0.4Zr0.1Y0.1-xZnxO3-δ cathodes for protonic ceramic fuel cells. Separation and Purification Technology, 2022, 297, 121482.	7.9	18
589	Activation of a single-chamber solid oxide fuel cell by a simple catalyst-assisted in-situ process. Electrochemistry Communications, 2009, 11, 1563-1566.	4.7	17
590	Facile Conversion of Commercial Coarse-Type LiCoO ₂ to Nanocomposite-Separated Nanolayer Architectures as a Way for Electrode Performance Enhancement. ACS Applied Materials & Interfaces, 2015, 7, 1787-1794.	8.0	17
591	The preparation of LaSr3Fe3O10Ââ^'Âδ and its electrochemical performance. Journal of Solid State Electrochemistry, 2017, 21, 1343-1348.	2.5	17
592	Direct Power Generation from Low Concentration Coalâ€Bed Gas by a Catalystâ€Modified Solid Oxide Fuel Cell. ChemElectroChem, 2018, 5, 1459-1466.	3.4	17
593	Evaluation of the CO2 tolerant cathode for solid oxide fuel cells: Praseodymium oxysulfates/Ba0.5Sr0.5Co0.8Fe0.2O3-l´. Applied Surface Science, 2019, 472, 10-15.	6.1	17
594	Postsynthesis Oxygen Nonstoichiometric Regulation: A New Strategy for Performance Enhancement of Perovskites in Advanced Oxidation. Industrial & Engineering Chemistry Research, 2020, 59, 99-109.	3.7	17

#	Article	IF	CITATIONS
595	Synthesis of nano-particle and highly porous conducting perovskites from simple in situ sol-gel derived carbon templating process. Bulletin of Materials Science, 2010, 33, 371-376.	1.7	16
596	Sintering and oxygen permeation studies of La0.6Sr0.4Co0.2Fe0.8O3â^î́r ceramic membranes with improved purity. Journal of the European Ceramic Society, 2011, 31, 2931-2938.	5.7	16
597	A Threeâ€Dimensional Highly Interconnected Composite Oxygen Reduction Reaction Electrocatalyst prepared from a Core–shell Precursor. ChemSusChem, 2011, 4, 1582-1586.	6.8	16
598	Rational confinement of molybdenum based nanodots in porous carbon for highly reversible lithium storage. Journal of Materials Chemistry A, 2016, 4, 10403-10408.	10.3	16
599	Process Investigation of a Solid Carbon-Fueled Solid Oxide Fuel Cell Integrated with a CO ₂ -Permeating Membrane and a Sintering-Resistant Reverse Boudouard Reaction Catalyst. Energy & amp; Fuels, 2016, 30, 1841-1848.	5.1	16
600	Direct Operation of Solid Oxide Fuel Cells on Low-Concentration Oxygen-Bearing Coal-Bed Methane with High Stability. Energy & Fuels, 2018, 32, 4547-4558.	5.1	16
601	Rational Design of Superior, Cokingâ€Resistant, Nickelâ€Based Anodes through Tailoring Interfacial Reactions for Solid Oxide Fuel Cells Operated on Methane Fuel. ChemSusChem, 2018, 11, 3112-3119.	6.8	16
602	SrCo0.4Fe0.4Zr0.1Y0.1O3-δ, A new CO2 tolerant cathode for proton-conducting solid oxide fuel cells. Renewable Energy, 2022, 185, 8-16.	8.9	16
603	Protonic ceramic materials for clean and sustainable energy: advantages and challenges. International Materials Reviews, 2023, 68, 272-300.	19.3	16
604	Activation and Deactivation Kinetics of Oxygen Reduction over a La0.8Sr0.2Sc0.1Mn0.9O3 Cathode. Journal of Physical Chemistry C, 2008, 112, 18690-18700.	3.1	15
605	Multifold Nanostructuring and Atomicâ€Scale Modulation of Cobalt Phosphide to Significantly Boost Hydrogen Production. Chemistry - A European Journal, 2018, 24, 13800-13806.	3.3	15
606	Enhanced coking resistance of Ni cermet anodes for solid oxide fuel cells based on methane onâ€cell reforming by a redoxâ€stable doubleâ€perovskite Sr ₂ MoFeO _{6â€Î´} . International Journal of Energy Research, 2019, 43, 2527-2537.	4.5	15
607	Chlorine-Doped Perovskite Oxide: A Platinum-Free Cathode for Dye-Sensitized Solar Cells. ACS Applied Materials & M	8.0	15
608	Efficient Ferrite-Based Perovskite Anode for Solid Oxide Fuel Cells with A-Site and B-Site Co-exsolution. Energy & Fuels, 2020, 34, 10100-10108.	5.1	15
609	In situ growth of nanoflake and nanoflower-like Ni hydrated hydroxide on the surface of Ni foam as a free-standing electrode for high-performance phosphate detection. Journal of Hazardous Materials, 2020, 392, 122313.	12.4	15
610	Effect of fabrication method on properties and performance of bimetallic Ni0.75Fe0.25 anode catalyst for solid oxide fuel cells. International Journal of Hydrogen Energy, 2012, 37, 9287-9297.	7.1	14
611	A new way to increase performance of oxide electrode for oxygen reduction using grain growth inhibitor. Electrochemistry Communications, 2012, 14, 36-38.	4.7	14
612	An Aurivillius Oxide Based Cathode with Excellent CO ₂ Tolerance for Intermediateâ€Temperature Solid Oxide Fuel Cells. Angewandte Chemie, 2016, 128, 9134-9139.	2.0	14

#	Article	IF	CITATIONS
613	Graphene decorated with multiple nanosized active species as dual function electrocatalysts for lithium-oxygen batteries. Electrochimica Acta, 2016, 188, 718-726.	5.2	14
614	Inherently Catalyzed Boudouard Reaction of Bamboo Biochar for Solid Oxide Fuel Cells with Improved Performance. Energy & Fuels, 2018, 32, 4559-4568.	5.1	14
615	Alkaline metal doped strontium cobalt ferrite perovskites as cathodes for intermediate-temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 2018, 43, 13420-13429.	7.1	14
616	Coking-resistant Ce0.8Ni0.2O2-δ internal reforming layer for direct methane solid oxide fuel cells. Electrochimica Acta, 2018, 282, 402-408.	5.2	14
617	Layered Co/Ni-free oxides for sodium-ion battery cathode materials. Current Opinion in Green and Sustainable Chemistry, 2019, 17, 29-34.	5.9	14
618	Enhanced coking resistance of a Ni cermet anode by a chromates protective layer. Journal of Energy Chemistry, 2019, 37, 117-125.	12.9	14
619	Tuning the A-Site Cation Deficiency of La0.8Sr0.2FeO3â~δPerovskite Oxides for High-Efficiency Triiodide Reduction Reaction in Dye-Sensitized Solar Cells. Energy & Fuels, 2020, 34, 11322-11329.	5.1	14
620	Phase and morphology engineering of porous cobalt–copper sulfide as a bifunctional oxygen electrode for rechargeable Zn–air batteries. Journal of Materials Chemistry A, 2021, 9, 18329-18337.	10.3	14
621	A Direct <i>n</i> -Butane Solid Oxide Fuel Cell Using Ba(Zr _{0.1} Ce _{0.7} Y _{0.1} Yb _{0.1}) _{0.9} Ni _{0.05Perovskite as the Reforming Layer. ACS Applied Materials & Interfaces, 2021, 13, 20105-20113.}	ub> &ւ գ sub	>0 1 245
622	Realizing Interfacial Electron/Hole Redistribution and Superhydrophilic Surface through Building Heterostructural 2Ânm Co _{0.85} Seâ€NiSe Nanograins for Efficient Overall Water Splittings. Small Methods, 2022, 6, e2200459.	8.6	14
623	Enhancing the bifunctional activity of CoSe2 nanocubes by surface decoration of CeO2 for advanced zinc-air batteries. Journal of Colloid and Interface Science, 2022, 625, 839-849.	9.4	14
624	Characterization and optimization of La0.8Sr0.2Sc0.1Mn0.9O3â ^{^,} -based composite electrodes for intermediate-temperature solid-oxide fuel cells. Journal of Power Sources, 2008, 185, 641-648.	7.8	13
625	Low-temperature synthesis of La0.6Sr0.4Co0.2Fe0.8O3â^'Î′ perovskite powder via asymmetric sol–gel process and catalytic auto-combustion. Ceramics International, 2009, 35, 2809-2815.	4.8	13
626	Facile auto-combustion synthesis for oxygen separation membrane application. Journal of Membrane Science, 2009, 329, 219-227.	8.2	13
627	Well-crystallized mesoporous samaria-doped ceria from EDTA-citrate complexing process with in situ created NiO as recyclable template. Journal of Alloys and Compounds, 2010, 491, 271-277.	5.5	13
628	Effect of foreign oxides on the phase structure, sintering and transport properties of Ba0.5Sr0.5Co0.8Fe0.2O3â^1´as ceramic membranes for oxygen separation. Separation and Purification Technology, 2011, 81, 384-391.	7.9	13
629	Coke-free direct formic acid solid oxide fuel cells operating at intermediate temperatures. Journal of Power Sources, 2012, 220, 147-152.	7.8	13
630	Microwave-plasma induced reconstruction of silver catalysts for highly efficient oxygen reduction. Journal of Materials Chemistry A, 2013, 1, 13746.	10.3	13

#	Article	IF	CITATIONS
631	Stability of YSZ and SDC in molten carbonate eutectics for hybrid direct carbon fuel cells. RSC Advances, 2013, 4, 2398-2403.	3.6	13
632	Influence of sealing materials on the oxygen permeation fluxes of some typical oxygen ion conducting ceramic membranes. Journal of Membrane Science, 2014, 470, 102-111.	8.2	13
633	Fuel cells: Hydrogen induced insulation. Nature Energy, 2016, 1, .	39.5	13
634	Highly Oxygen Nonâ€Stoichiometric BaSc _{0.25} Co _{0.75} O _{3â€Î´} as a Highâ€Performance Cathode for Intermediateâ€Temperature Solid Oxide Fuel Cells. ChemElectroChem, 2018, 5, 785-792.	3.4	13
635	Robust Anodeâ€Supported Cells with Fast Oxygen Release Channels for Efficient and Stable CO ₂ Electrolysis at Ultrahigh Current Densities. Small, 2021, 17, e2007211.	10.0	13
636	Effects of sintering atmospheres on sintering behavior, electrical conductivity and oxygen permeability of mixed-conducting membranes. Journal of Membrane Science, 2008, 316, 128-136.	8.2	12
637	Samaria-Doped Ceria Electrolyte Supported Direct Carbon Fuel Cell with Molten Antimony as the Anode. Industrial & Engineering Chemistry Research, 2013, 52, 17927-17933.	3.7	12
638	Design and investigation of dual-layer electrodes for proton exchange membrane fuel cells. Solid State Ionics, 2014, 262, 313-318.	2.7	12
639	Flower-like perovskite LaCr0.9Ni0.1O3â^î^–NiO nanostructures: a new candidate for CO2 reforming of methane. RSC Advances, 2014, 4, 21306.	3.6	12
640	Mixed Fuel Strategy for Carbon Deposition Mitigation in Solid Oxide Fuel Cells at Intermediate Temperatures. Environmental Science & Technology, 2014, 48, 7122-7127.	10.0	12
641	One-pot combustion synthesis of Li3VO4-Li4Ti5O12 nanocomposite as anode material of lithium-ion batteries with improved performance. Electrochimica Acta, 2016, 222, 587-595.	5.2	12
642	Yolk–Shellâ€ S tructured Cu/Fe@ ^ĵ 3â€Fe 2 O 3 Nanoparticles Loaded Graphitic Porous Carbon for the Oxygen Reduction Reaction. Particle and Particle Systems Characterization, 2017, 34, 1700158.	2.3	12
643	MnO-Co composite modified Ni-SDC anode for intermediate temperature solid oxide fuel cells. Fuel Processing Technology, 2017, 161, 241-247.	7.2	12
644	Constructing self-standing and non-precious metal heterogeneous nanowire arrays as high-performance oxygen evolution electrocatalysts: Beyond the electronegativity effect of the substrate. Journal of Power Sources, 2018, 396, 421-428.	7.8	12
645	Silver-Perovskite Hybrid Electrocatalysts for Oxygen Reduction Reaction in Alkaline Media. Journal of the Electrochemical Society, 2018, 165, H524-H529.	2.9	12
646	Co 3+ â€Rich Na 1.95 CoP 2 O 7 Phosphates as Efficient Bifunctional Catalysts for Oxygen Evolution and Reduction Reactions in Alkaline Solution. Chemistry - A European Journal, 2019, 25, 11007-11014.	3.3	12
647	Oxide-based precious metal-free electrocatalysts for anion exchange membrane fuel cells: from material design to cell applications. Journal of Materials Chemistry A, 2021, 9, 3151-3179.	10.3	12
648	Novel monoclinic ABO4 oxide with single-crystal structure as next generation electrocatalyst for oxygen evolution reaction. Chemical Engineering Journal, 2021, 420, 130492.	12.7	12

#	Article	IF	CITATIONS
649	Stabilizing Li Anodes in I ₂ Steam to Tackle the Shuttling-Induced Depletion of an Iodide/Triiodide Redox Mediator in Li–O ₂ Batteries with Suppressed Li Dendrite Growth. ACS Applied Materials & Interfaces, 2021, 13, 53859-53867.	8.0	12
650	One Pot-Synthesized Ag/Ag-Doped CeO ₂ Nanocomposite with Rich and Stable 3D Interfaces and Ce ³⁺ for Efficient Carbon Dioxide Electroreduction. ACS Applied Materials & Interfaces, 2021, 13, 59993-60001.	8.0	12
651	Development of high-performance cathodes for IT-SOFCs through beneficial interfacial reactions. Electrochemistry Communications, 2009, 11, 2216-2219.	4.7	11
652	Study on proton-conducting solid oxide fuel cells with a conventional nickel cermet anode operating on dimethyl ether. Journal of Power Sources, 2011, 196, 9246-9253.	7.8	11
653	CO2 and water vapor-tolerant yttria stabilized bismuth oxide (YSB) membranes with external short circuit for oxygen separation with CO2 capture at intermediate temperatures. Journal of Membrane Science, 2013, 427, 168-175.	8.2	11
654	Fabrication and operation of flowâ€ŧhrough tubular SOFCs for electric power and synthesis gas cogeneration from methane. AICHE Journal, 2014, 60, 1036-1044.	3.6	11
655	Lowâ€Temperature Synthesis of Hierarchical Amorphous Basic Nickel Carbonate Particles for Water Oxidation Catalysis. ChemSusChem, 2015, 8, 2193-2197.	6.8	11
656	Organic Photochemistry-Assisted Nanoparticle Segregation on Perovskites. Cell Reports Physical Science, 2020, 1, 100243.	5.6	11
657	Thermal reduction-assisted electronic structure tuning of perovskite oxide as catalyst for efficient advanced oxidation. Composites Part B: Engineering, 2021, 207, 108577.	12.0	11
658	Reducing the operation temperature of a solid oxide fuel cell using a conventional nickel-based cermet anode on dimethyl ether fuel through internal partial oxidation. Journal of Power Sources, 2011, 196, 7601-7608.	7.8	10
659	Single-chamber solid oxide fuel cells with nanocatalyst-modified anodes capable of in situ activation. Journal of Power Sources, 2014, 264, 220-228.	7.8	10
660	Oneâ€pot synthesis of silverâ€modified sulfurâ€ŧolerant anode for SOFCs with an expanded operation temperature window. AICHE Journal, 2017, 63, 4287-4295.	3.6	10
661	Amorphous Ni _{0.75} Fe _{0.25} (OH) ₂ â€Decorated Layered Double Perovskite Pr _{0.5} Ba _{0.5} CoO _{3â€<i>δ</i>} for Highly Efficient and Stable Water Oxidation. ChemElectroChem, 2017, 4, 550-556.	3.4	10
662	Optimization of SnO ₂ Nanoparticles Confined in a Carbon Matrix towards Applications as High apacity Anodes in Sodiumâ€lon Batteries. ChemistrySelect, 2018, 3, 4015-4022.	1.5	10
663	Nitrogen-Doped Graphic Carbon Protected Cu/Co/CoO Nanoparticles for Ultrasensitive and Stable Non-Enzymatic Determination of Clucose and Fructose in Wine. Journal of the Electrochemical Society, 2018, 165, B543-B550.	2.9	10
664	Cobalt nanoparticles encapsulated in iron and nitrogen co-doped urchin-like porous carbons as an efficient bifunctional oxygen reversible catalyst for Zn-air batteries. Chemical Engineering Journal, 2022, 436, 135191.	12.7	10
665	Transition-metal hydroxide nanosheets with peculiar double-layer structures as efficient electrocatalysts. Chem Catalysis, 2022, 2, 867-882.	6.1	10
666	Regulating the Interfacial Electron Density of La _{0.8} Sr _{0.2} Mn _{0.5} Co _{0.5} O ₃ /RuO _{<i>x</i> for Efficient and Low-Cost Bifunctional Oxygen Electrocatalysts and Rechargeable Zn-Air Batteries. ACS Applied Materials & amp; Interfaces, 2021, 13, 61098-61106.}	/syb}	10

#	Article	IF	CITATIONS
667	The significant effect of the phase composition on the oxygen reduction reaction activity of a layered oxide cathode. Journal of Materials Chemistry A, 2013, 1, 11026.	10.3	9
668	A cobalt-free layered oxide as an oxygen reduction catalyst for intermediate-temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 2015, 40, 15578-15584.	7.1	9
669	Synthesis of Highly Porous Metalâ€Free Oxygen Reduction Electrocatalysts in a Selfâ€Sacrificial Bacterial Cellulose Microreactor. Advanced Sustainable Systems, 2017, 1, 1700045.	5.3	9
670	Fast cation exchange of layered sodium transition metal oxides for boosting oxygen evolution activity and enhancing durability. Journal of Materials Chemistry A, 2020, 8, 8075-8083.	10.3	9
671	Alternative perovskite materials as a cathode component for intermediate temperature single-chamber solid oxide fuel cell. Journal of Power Sources, 2010, 195, 4758-4764.	7.8	8
672	The instability of solid oxide fuel cells in an intermediate temperature region. Asia-Pacific Journal of Chemical Engineering, 2011, 6, 199-203.	1.5	8
673	Morphology and Catalytic Performance of Flake-Shaped NiO-Yttria-Stabilized Zirconia (YSZ) Particles with Nanocrystalline YSZ Grains. Industrial & Engineering Chemistry Research, 2012, 51, 6387-6394.	3.7	8
674	Rational Design of Perovskite-Based Anode with Decent Activity for Hydrogen Electro-Oxidation and Beneficial Effect of Sulfur for Promoting Power Generation in Solid Oxide Fuel Cells. ACS Applied Materials & Interfaces, 2018, 10, 41257-41267.	8.0	8
675	Unveiling Lithium Roles in Cobaltâ€Free Cathodes for Efficient Oxygen Reduction Reaction below 600 °C. ChemElectroChem, 2019, 6, 5340-5348.	3.4	8
676	Perowskitoxidâ€Elektroden zur leistungsstarken photoelektrochemischen Wasserspaltung. Angewandte Chemie, 2020, 132, 140-158.	2.0	8
677	New nitrogen-doped graphitic carbon nanosheets with rich structural defects and hierarchical nanopores as efficient metal-free electrocatalysts for oxygen reduction reaction in Zn-Air batteries. Chemical Engineering Science, 2022, 259, 117816.	3.8	8
678	Further performance enhancement of a DME-fueled solid oxide fuel cell by applying anode functional catalyst. International Journal of Hydrogen Energy, 2012, 37, 6844-6852.	7.1	7
679	A steel slag–derived Boudouard reaction catalyst for improved performance of direct carbon solid oxide fuel cells. International Journal of Energy Research, 2019, 43, 6970.	4.5	7
680	Promoted spatial charge separation of plasmon Ag and co-catalyst Co <i> _x </i> P decorated mesoporous g-C ₃ N ₄ nanosheet assembly for unexpected solar-driven photocatalytic performance. Nanotechnology, 2019, 30, 485401.	2.6	7
681	Perovskites: Realizing Ultrafast Oxygen Evolution by Introducing Proton Acceptor into Perovskites (Adv. Energy Mater. 20/2019). Advanced Energy Materials, 2019, 9, 1970071.	19.5	7
682	Spontaneous Formation of Heterodimer Au–Fe ₇ S ₈ Nanoplatelets by a Seeded Growth Approach. Journal of Physical Chemistry C, 2019, 123, 10604-10613.	3.1	7
683	Improvement of solid oxide fuel cell performance by a coreâ€shell structured catalyst using low concentration coal bed methane fuel. International Journal of Energy Research, 2020, 44, 5516-5526.	4.5	7
684	Protective Effect of Blood Cora Polysaccharides on H9c2 Rat Heart Cells Injury Induced by Oxidative Stress by Activating Nrf2/HO-1 Signal Pathway. Frontiers in Nutrition, 2021, 8, 632161.	3.7	7

#	Article	IF	CITATIONS
685	Effects of niobium doping site and concentration on the phase structure and oxygen permeability of Nb-substituted SrCoOx oxides. Ceramics International, 2010, 36, 635-641.	4.8	6
686	Correction: Advances in non-enzymatic glucose sensors based on metal oxides. Journal of Materials Chemistry B, 2017, 5, 1117-1117.	5.8	6
687	Electroless deposition of Co(Mn)/Pd-decorator into Y2O3-stabilized ZrO2 scaffold as cathodes for solid oxide fuel cells. International Journal of Hydrogen Energy, 2018, 43, 53-63.	7.1	6
688	Antiperovskite FeNNi2Co and FeNNi3 nanosheets as a non-enzymatic electrochemical sensor for highly sensitive detection of glucose. Journal of Electroanalytical Chemistry, 2021, 884, 115072.	3.8	6
689	Microscale-decoupled charge-discharge reaction sites for an air electrode with abundant triple-phase boundary and enhanced cycle stability of Zn-Air batteries. Journal of Power Sources, 2022, 525, 231108.	7.8	6
690	Perovskite-Carbon Joint Substrate for Practical Application in Proton Exchange Membrane Fuel Cells under Low-Humidity/High-Temperature Conditions. ACS Applied Materials & Interfaces, 2022, 14, 30872-30880.	8.0	6
691	In situ templating synthesis of conic Ba0·5Sr0·5Co0·8Fe0·2O3â^'δ perovskite at elevated temperature. Bulletin of Materials Science, 2009, 32, 407-412.	1.7	5
692	Electrochemical performance and stability of nano-structured Co/PdO-co-impregnated Y2O3 stabilized ZrO2 cathode for intermediate temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 2017, 42, 6978-6987.	7.1	5
693	Pineâ€Leafâ€Shaped αâ€Fe ₂ O ₃ Micro/Nanostructures with a Preferred Orientation along the (110) Plane for Efficient Reversible Lithium Storage. ChemElectroChem, 2017, 4, 2278-2285.	3.4	5
694	Atomic cerium modulated palladium nanoclusters exsolved ferrite catalysts for lean methane conversion. Exploration, 2022, 2, .	11.0	5
695	A New Sodium-ion-conducting Layered Perovskite Oxide as Highly Active and Sulfur Tolerant Electrocatalyst for Solid Oxide Fuel Cells. Energy Procedia, 2019, 158, 1660-1665.	1.8	4
696	Utilizing the charge-transfer model to design promising electrocatalysts. Current Opinion in Electrochemistry, 2021, 30, 100805.	4.8	4
697	Microwave plasma rapid heating towards robust cathode/electrolyte interface for solid oxide fuel cells. Journal of Colloid and Interface Science, 2022, 607, 53-60.	9.4	4
698	Perovskite Materials in Electrocatalysis. Materials Horizons, 2020, , 209-250.	0.6	4
699	Synthesis of Flakeâ€&haped <scp><scp>NiO</scp></scp> – <scp>YSZ</scp> Particles for Highâ€Porosity Anode of Solid Oxide Fuel Cell. Journal of the American Ceramic Society, 2011, 94, 3666-3670.	3.8	3
700	A Comparative Structure and Performance Study of La[sub 1â^'x]Sr[sub x]CoO[sub 3â^'d] and La[sub 1â^'x]Sr[sub x]Co[sub 0.9]Nb[sub 0.1]O[sub 3â''d] (x=0.5, 0.7, 0.9, and 1.0) Oxygen Permeable Mixed Conductors. Journal of the Electrochemical Society, 2011, 158, H299.	2.9	3
701	Model based evaluation of the electrochemical reaction sites in solid oxide fuel cell electrodes. International Journal of Hydrogen Energy, 2019, 44, 8439-8459.	7.1	3
702	Cathodes for IT-SOFCs. Green Chemistry and Sustainable Technology, 2016, , 59-126.	0.7	2

#	Article	IF	CITATIONS
703	Textured Sr2Sc0.1Nb0.1Co1.5Fe0.3O6â^'2δThin Film Cathodes for IT-SOFCs. Materials, 2019, 12, 777.	2.9	2
704	A strategy to reduce the impact of tar on a Ni ―YSZ anode of solid oxide fuel cells. International Journal of Energy Research, 2019, 43, 3038-3048.	4.5	2
705	A double-layer composite electrode based on SrSc0.2Co0.8O3â [~] î [^] perovskite with improved performance in intermediate temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 2010, 35, 7608-7617.	7.1	1
706	CHAPTER 2. Electrolyte Materials for Solid Oxide Fuel Cells (SOFCs). RSC Energy and Environment Series, 0, , 26-55.	0.5	1
707	Anodes for IT-SOFCs. Green Chemistry and Sustainable Technology, 2016, , 127-175.	0.7	1
708	Perovskite Materials in Photovoltaics. Materials Horizons, 2020, , 175-207.	0.6	1
709	Electrolyte Materials for IT-SOFCs. Green Chemistry and Sustainable Technology, 2016, , 15-57.	0.7	0
710	Frontispiece: New Phosphorus-Doped Perovskite Oxide as an Oxygen Reduction Reaction Electrocatalyst in an Alkaline Solution. Chemistry - A European Journal, 2018, 24, .	3.3	0
711	A Novel Method to Purposely Modify the Anode/Electrolyte Interface in Solid Oxide Fuel Cells. ChemistrySelect, 2019, 4, 13835-13840.	1.5	Ο