
Laurent M Sachs

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7334864/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Thyroid and Corticosteroid Signaling in Amphibian Metamorphosis. Cells, 2022, 11, 1595.	4.1	14
2	Are paedomorphs actual larvae?. Developmental Dynamics, 2021, 250, 779-787.	1.8	3
3	The invention of aldosterone, how the past resurfaces in pediatric endocrinology. Molecular and Cellular Endocrinology, 2021, 535, 111375.	3.2	3
4	Interdependence of Thyroid and Corticosteroid Signaling in Vertebrate Developmental Transitions. Frontiers in Ecology and Evolution, 2021, 9, .	2.2	5
5	The Chicken and Egg Situation of Thyroid Hormone and Glucocorticoid Signaling during Postembryonic Development. Endocrinology, 2021, 162, .	2.8	0
6	ERGO: Breaking Down the Wall between Human Health and Environmental Testing of Endocrine Disrupters. International Journal of Molecular Sciences, 2020, 21, 2954.	4.1	31
7	Insufficiency of Thyroid Hormone in Frog Metamorphosis and the Role of Glucocorticoids. Frontiers in Endocrinology, 2019, 10, 287.	3.5	46
8	Opposite T3 Response of ACTG1–FOS Subnetwork Differentiate Tailfin Fate in Xenopus Tadpole and Post-hatching Axolotl. Frontiers in Endocrinology, 2019, 10, 194.	3.5	7
9	Chromatin Immunoprecipitation for Chromatin Interaction Analysis Using Paired-End-Tag (ChIA-PET) Sequencing in Tadpole Tissues. Cold Spring Harbor Protocols, 2018, 2018, pdb.prot097725.	0.3	3
10	Chromatin Interaction Analysis Using Paired-End-Tag (ChIA-PET) Sequencing in Tadpole Tissues. Cold Spring Harbor Protocols, 2018, 2018, pdb.prot104620.	0.3	3
11	De Novo Transcriptomic Approach to Study Thyroid Hormone Receptor Action in Non-mammalian Models. Methods in Molecular Biology, 2018, 1801, 265-285.	0.9	4
12	Frogs model man: <i>In vivo</i> thyroid hormone signaling during development. Genesis, 2017, 55, e23000.	1.6	36
13	Implication of thyroid hormone signaling in neural crest cells migration: Evidence from thyroid hormone receptor beta knockdown and NH3 antagonist studies. Molecular and Cellular Endocrinology, 2017, 439, 233-246.	3.2	23
14	Developmental and Thyroid Hormone Regulation of the DNA Methyltransferase 3a Gene in Xenopus Tadpoles. Endocrinology, 2016, 157, 4961-4972.	2.8	18
15	Xenopus tropicalis Genome Re-Scaffolding and Re-Annotation Reach the Resolution Required for In Vivo ChIA-PET Analysis. PLoS ONE, 2015, 10, e0137526.	2.5	21
16	Deciphering the Regulatory Logic of an Ancient, Ultraconserved Nuclear Receptor Enhancer Module. Molecular Endocrinology, 2015, 29, 856-872.	3.7	53
17	CTCF-Mediated Human 3D Genome Architecture Reveals Chromatin Topology for Transcription. Cell, 2015, 163, 1611-1627.	28.9	881
18	Unliganded Thyroid Hormone Receptor Function: Amphibian Metamorphosis Got TALENs. Endocrinology, 2015, 156, 409-410.	2.8	40

LAURENT M SACHS

#	Article	IF	CITATIONS
19	Mechanisms of thyroid hormone receptor action during development: Lessons from amphibian studies. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 3882-3892.	2.4	88
20	High-Throughput Sequencing Will Metamorphose the Analysis of Thyroid Hormone Receptor Function During Amphibian Development. Current Topics in Developmental Biology, 2013, 103, 277-303.	2.2	13
21	Specific Histone Lysine 4 Methylation Patterns Define TR-Binding Capacity and Differentiate Direct T3 Responses. Molecular Endocrinology, 2011, 25, 225-237.	3.7	55
22	Xenopus laevis as a model for studying thyroid hormone signalling: From development to metamorphosis. Molecular and Cellular Endocrinology, 2008, 293, 71-79.	3.2	48
23	Unliganded thyroid hormone receptor is essential for Xenopus laevis eye development. EMBO Journal, 2006, 25, 4943-4951.	7.8	66
24	Corepressor Requirement and Thyroid Hormone Receptor Function During Xenopus Development. Vitamins and Hormones, 2004, 68, 209-230.	1.7	6
25	Implication ofbaxinXenopus laevistail regression at metamorphosis. Developmental Dynamics, 2004, 231, 671-682.	1.8	26
26	Metamorphic T 3 â€response genes have specific coâ€regulator requirements. EMBO Reports, 2003, 4, 883-888.	4.5	59
27	A role for cofactor-cofactor and cofactor-histone interactions in targeting p300, SWI/SNF and Mediator for transcription. EMBO Journal, 2003, 22, 2146-2155.	7.8	174
28	Nuclear Receptor Corepressor Recruitment by Unliganded Thyroid Hormone Receptor in Gene Repression during Xenopus laevis Development. Molecular and Cellular Biology, 2002, 22, 8527-8538.	2.3	91
29	Involvement of histone deacetylase at two distinct steps in gene regulation during intestinal development inXenopus laevis. Developmental Dynamics, 2001, 222, 280-291.	1.8	27
30	Multiple N-CoR Complexes Contain Distinct Histone Deacetylases. Journal of Biological Chemistry, 2001, 276, 8807-8811.	3.4	86
31	An essential role of histone deacetylases in postembryonic organ transformations in Xenopus laevis. International Journal of Molecular Medicine, 2001, 8, 595-601.	4.0	27
32	Targeting of N-CoR and histone deacetylase 3 by the oncoprotein v-ErbA yields a chromatin infrastructure-dependent transcriptional repression pathway. EMBO Journal, 2000, 19, 4074-4090.	7.8	71
33	Dual functions of thyroid hormone receptors during Xenopus development. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2000, 126, 199-211.	1.6	118
34	Transcription from the Thyroid Hormone-dependent Promoter of the Xenopus laevis Thyroid Hormone Receptor βA Gene Requires a Novel Upstream Element and the Initiator, but Not a TATA Box. Journal of Biological Chemistry, 1998, 273, 14186-14193.	3.4	28
35	Apoptosis in <i>Xenopus</i> tadpole tail muscles involves Baxâ€dependent pathways. FASEB Journal, 1997, 11, 801-808.	0.5	45