
Kilwon Cho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7334509/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Critical assessment of charge mobility extraction in FETs. Nature Materials, 2018, 17, 2-7.	13.3	571
2	Linearly and Highly Pressureâ€Sensitive Electronic Skin Based on a Bioinspired Hierarchical Structural Array. Advanced Materials, 2016, 28, 5300-5306.	11.1	523
3	Super-Hydrophobic PDMS Surface with Ultra-Low Adhesive Force. Macromolecular Rapid Communications, 2005, 26, 1805-1809.	2.0	336
4	Recent Advances in Organic Transistor Printing Processes. ACS Applied Materials & Interfaces, 2013, 5, 2302-2315.	4.0	331
5	Surface-Directed Molecular Assembly of Pentacene on Monolayer Graphene for High-Performance Organic Transistors. Journal of the American Chemical Society, 2011, 133, 4447-4454.	6.6	309
6	UV-Driven Reversible Switching of a Roselike Vanadium Oxide Film between Superhydrophobicity and Superhydrophilicity. Journal of the American Chemical Society, 2007, 129, 4128-4129.	6.6	300
7	Conducting AFM and 2D GIXD Studies on Pentacene Thin Films. Journal of the American Chemical Society, 2005, 127, 11542-11543.	6.6	291
8	Pressure/Temperature Sensing Bimodal Electronic Skin with Stimulus Discriminability and Linear Sensitivity. Advanced Materials, 2018, 30, e1803388.	11.1	271
9	A Highâ€Performance Solutionâ€Processed Organic Photodetector for Nearâ€Infrared Sensing. Advanced Materials, 2020, 32, e1906027.	11.1	270
10	Switchable Transparency and Wetting of Elastomeric Smart Windows. Advanced Materials, 2010, 22, 5013-5017.	11.1	267
11	Enhanced Performance in Polymer Solar Cells by Surface Energy Control. Advanced Functional Materials, 2010, 20, 4381-4387.	7.8	250
12	Work-Function Engineering of Graphene Electrodes by Self-Assembled Monolayers for High-Performance Organic Field-Effect Transistors. Journal of Physical Chemistry Letters, 2011, 2, 841-845.	2.1	237
13	Effect of Annealing Solvent Solubility on the Performance of Poly(3-hexylthiophene)/Methanofullerene Solar Cells. Journal of Physical Chemistry C, 2009, 113, 17579-17584.	1.5	233
14	Side-Chain-Induced Rigid Backbone Organization of Polymer Semiconductors through Semifluoroalkyl Side Chains. Journal of the American Chemical Society, 2016, 138, 3679-3686.	6.6	229
15	Singleâ€Gate Bandgap Opening of Bilayer Graphene by Dual Molecular Doping. Advanced Materials, 2012, 24, 407-411.	11.1	228
16	Liquid-Crystalline Semiconducting Copolymers with Intramolecular Donorâ^'Acceptor Building Blocks for High-Stability Polymer Transistors. Journal of the American Chemical Society, 2009, 131, 6124-6132.	6.6	225
17	Effect of the Phase States of Self-Assembled Monolayers on Pentacene Growth and Thin-Film Transistor Characteristics. Journal of the American Chemical Society, 2008, 130, 10556-10564.	6.6	221
18	Highâ€Efficiency Organic Solar Cells Based on Preformed Poly(3â€hexylthiophene) Nanowires. Advanced Functional Materials, 2011, 21, 480-486.	7.8	216

#	Article	IF	CITATIONS
19	Solubilityâ€Induced Ordered Polythiophene Precursors for Highâ€Performance Organic Thinâ€Film Transistors. Advanced Functional Materials, 2009, 19, 1200-1206.	7.8	214
20	Organic Thinâ€film Transistors Based on Polythiophene Nanowires Embedded in Insulating Polymer. Advanced Materials, 2009, 21, 1349-1353.	11.1	214
21	Versatile Use of Verticalâ€Phaseâ€Separationâ€Induced Bilayer Structures in Organic Thinâ€Film Transistors. Advanced Materials, 2008, 20, 1141-1145.	11.1	209
22	A Nonfullerene Small Molecule Acceptor with 3D Interlocking Geometry Enabling Efficient Organic Solar Cells. Advanced Materials, 2016, 28, 69-76.	11.1	205
23	Three-dimensional monolithic integration in flexible printed organic transistors. Nature Communications, 2019, 10, 54.	5.8	201
24	High efficiency polymer solar cells with wet deposited plasmonic gold nanodots. Organic Electronics, 2009, 10, 416-420.	1.4	200
25	Transparent, Lowâ€Power Pressure Sensor Matrix Based on Coplanarâ€Gate Graphene Transistors. Advanced Materials, 2014, 26, 4735-4740.	11.1	185
26	Side-Chain Engineering of Nonfullerene Acceptors for Near-Infrared Organic Photodetectors and Photovoltaics. ACS Energy Letters, 2019, 4, 1401-1409.	8.8	182
27	Recent Advances in Morphology Optimization for Organic Photovoltaics. Advanced Materials, 2018, 30, e1800453.	11.1	175
28	ZnTe/ZnSe (Core/Shell) Type-II Quantum Dots: Their Optical and Photovoltaic Properties. Chemistry of Materials, 2010, 22, 233-240.	3.2	173
29	Tunable Anisotropic Wettability of Rice Leafâ€Like Wavy Surfaces. Advanced Functional Materials, 2013, 23, 547-553.	7.8	167
30	Highâ€Efficiency Organic Solar Cells Based on Endâ€Functionalâ€Groupâ€Modified Poly(3â€hexylthiophene). Advanced Materials, 2010, 22, 1355-1360.	11.1	164
31	25th Anniversary Article: Microstructure Dependent Bias Stability of Organic Transistors. Advanced Materials, 2014, 26, 1660-1680.	11.1	156
32	Stretchable and Transparent Organic Semiconducting Thin Film with Conjugated Polymer Nanowires Embedded in an Elastomeric Matrix. Advanced Electronic Materials, 2016, 2, 1500250.	2.6	154
33	Control of the Morphology and Structural Development of Solutionâ€Processed Functionalized Acenes for Highâ€Performance Organic Transistors. Advanced Functional Materials, 2009, 19, 1515-1525.	7.8	147
34	Bulk heterojunction solar cells based on preformed polythiophene nanowires via solubility-induced crystallization. Journal of Materials Chemistry, 2010, 20, 7398.	6.7	147
35	Transparent Superhydrophobic/Translucent Superamphiphobic Coatings Based on Silica–Fluoropolymer Hybrid Nanoparticles. Langmuir, 2013, 29, 15051-15057.	1.6	139
36	Control of Graphene Fieldâ€Effect Transistors by Interfacial Hydrophobic Selfâ€Assembled Monolayers. Advanced Materials, 2011, 23, 3460-3464.	11.1	138

#	Article	IF	CITATIONS
37	Enhancing 2D growth of organic semiconductor thin films with macroporous structures via a small-molecule heterointerface. Nature Communications, 2014, 5, 4752.	5.8	138
38	Highly crystalline low-bandgap polymer nanowires towards high-performance thick-film organic solar cells exceeding 10% power conversion efficiency. Energy and Environmental Science, 2017, 10, 247-257.	15.6	131
39	Solvent Vapor-Induced Nanowire Formation in Poly(3-hexylthiophene) Thin Films. Macromolecular Rapid Communications, 2005, 26, 834-839.	2.0	130
40	Low-voltage and high-field-effect mobility organic transistors with a polymer insulator. Applied Physics Letters, 2006, 88, 072101.	1.5	130
41	Synthetic Tailoring of Solid-State Order in Diketopyrrolopyrrole-Based Copolymers via Intramolecular Noncovalent Interactions. Chemistry of Materials, 2015, 27, 829-838.	3.2	125
42	Bandgap Narrowing in Nonâ€Fullerene Acceptors: Single Atom Substitution Leads to High Optoelectronic Response Beyond 1000 nm. Advanced Energy Materials, 2018, 8, 1801212.	10.2	125
43	High Performance Organic Photovoltaic Cells Using Polymerâ€Hybridized ZnO Nanocrystals as a Cathode Interlayer. Advanced Energy Materials, 2011, 1, 690-698.	10.2	123
44	Semiconductorâ€Dielectric Blends: A Facile All Solution Route to Flexible Allâ€Organic Transistors. Advanced Materials, 2009, 21, 4243-4248.	11.1	120
45	Perovskite solar cells with an MoS ₂ electron transport layer. Journal of Materials Chemistry A, 2019, 7, 7151-7158.	5.2	116
46	Quantifying the Nongeminate Recombination Dynamics in Nonfullerene Bulk Heterojunction Organic Solar Cells. Advanced Energy Materials, 2019, 9, 1901438.	10.2	115
47	Superhydrophobic to Superhydrophilic Wetting Transition with Programmable Ionâ€Pairing Interaction. Advanced Materials, 2008, 20, 4438-4441.	11.1	114
48	Three-Dimensional, Inkjet-Printed Organic Transistors and Integrated Circuits with 100% Yield, High Uniformity, and Long-Term Stability. ACS Nano, 2016, 10, 10324-10330.	7.3	112
49	Understanding Solidification of Polythiophene Thin Films during Spin-Coating: Effects of Spin-Coating Time and Processing Additives. Scientific Reports, 2015, 5, 13288.	1.6	111
50	High-mobility low-temperature ZnO transistors with low-voltage operation. Applied Physics Letters, 2010, 96, .	1.5	110
51	An ultrathin conformable vibration-responsive electronic skin for quantitative vocal recognition. Nature Communications, 2019, 10, 2468.	5.8	108
52	Exploiting π–π Stacking for Stretchable Semiconducting Polymers. Macromolecules, 2018, 51, 2572-2579.	2.2	104
53	Workâ€Functionâ€Tuned Reduced Graphene Oxide via Direct Surface Functionalization as Source/Drain Electrodes in Bottom ontact Organic Transistors. Advanced Materials, 2013, 25, 5856-5862.	11.1	102
54	Evaporation-Induced Self-Organization of Inkjet-Printed Organic Semiconductors on Surface-Modified Dielectrics for High-Performance Organic Transistors. Langmuir, 2009, 25, 5404-5410.	1.6	101

#	Article	IF	CITATIONS
55	Extremely Efficient Liquid Exfoliation and Dispersion of Layered Materials by Unusual Acoustic Cavitation. Scientific Reports, 2014, 4, 5133.	1.6	101
56	Organometal Halide Perovskite Solar Cells with Improved Thermal Stability via Grain Boundary Passivation Using a Molecular Additive. Advanced Functional Materials, 2017, 27, 1703546.	7.8	101
57	Inkjetâ€Printed Singleâ€Droplet Organic Transistors Based on Semiconductor Nanowires Embedded in Insulating Polymers. Advanced Functional Materials, 2010, 20, 3292-3297.	7.8	100
58	Hydrolytic degradation behavior of poly(butylene succinate)s with different crystalline morphologies. Journal of Applied Polymer Science, 2001, 79, 1025-1033.	1.3	99
59	Fabrication of a bionic superhydrophobic metal surface by sulfur-induced morphological development. Journal of Materials Chemistry, 2005, 15, 3089.	6.7	98
60	Control of mesoscale and nanoscale ordering of organic semiconductors at the gate dielectric/semiconductor interface for organic transistors. Journal of Materials Chemistry, 2010, 20, 2549.	6.7	97
61	Inkjet-Printed Reduced Graphene Oxide/Poly(Vinyl Alcohol) Composite Electrodes for Flexible Transparent Organic Field-Effect Transistors. Journal of Physical Chemistry C, 2012, 116, 7520-7525.	1.5	95
62	Design of Nonfullerene Acceptors with Nearâ€Infrared Light Absorption Capabilities. Advanced Energy Materials, 2018, 8, 1801209.	10.2	95
63	An ABA triblock copolymer strategy for intrinsically stretchable semiconductors. Journal of Materials Chemistry C, 2015, 3, 3599-3606.	2.7	93
64	The Influence of the Solvent Evaporation Rate on the Phase Separation and Electrical Performances of Soluble Aceneâ€Polymer Blend Semiconductors. Advanced Functional Materials, 2012, 22, 267-281.	7.8	90
65	Dependence of Exciton Diffusion Length on Crystalline Order in Conjugated Polymers. Journal of Physical Chemistry C, 2014, 118, 760-766.	1.5	86
66	A Pseudoâ€Regular Alternating Conjugated Copolymer Using an Asymmetric Monomer: A Highâ€Mobility Organic Transistor in Nonchlorinated Solvents. Advanced Materials, 2015, 27, 3626-3631.	11.1	84
67	Advances in Biodegradable Electronic Skin: Material Progress and Recent Applications in Sensing, Robotics, and Human–Machine Interfaces. Advanced Materials, 2023, 35, .	11.1	82
68	Effective Use of Electrically Insulating Units in Organic Semiconductor Thin Films for Highâ€Performance Organic Transistors. Advanced Electronic Materials, 2017, 3, 1600240.	2.6	80
69	Influence of the dielectric constant of a polyvinyl phenol insulator on the field-effect mobility of a pentacene-based thin-film transistor. Applied Physics Letters, 2005, 87, 152105.	1.5	77
70	Boosting Photon Harvesting in Organic Solar Cells with Highly Oriented Molecular Crystals <i>via</i> Graphene–Organic Heterointerface. ACS Nano, 2015, 9, 8206-8219.	7.3	77
71	An Ultrastable Ionic Chemiresistor Skin with an Intrinsically Stretchable Polymer Electrolyte. Advanced Materials, 2018, 30, e1706851.	11.1	75
72	Hierarchical gecko-inspired nanohairs with a high aspect ratio induced by nanoyielding. Soft Matter, 2012, 8, 4905.	1.2	74

#	Article	IF	CITATIONS
73	Layered Molecular Ordering of Self-Organized Poly(3-hexylthiophene) Thin Films on Hydrophobized Surfaces. Macromolecules, 2006, 39, 5843-5847.	2.2	73
74	Wettingâ€Assisted Crack―and Wrinkleâ€Free Transfer of Waferâ€Scale Graphene onto Arbitrary Substrates over a Wide Range of Surface Energies. Advanced Functional Materials, 2016, 26, 2070-2077.	7.8	73
75	Chirality detection of amino acid enantiomers by organic electrochemical transistor. Biosensors and Bioelectronics, 2018, 105, 121-128.	5.3	73
76	Userâ€Interactive Thermotherapeutic Electronic Skin Based on Stretchable Thermochromic Strain Sensor. Advanced Science, 2020, 7, 2001184.	5.6	73
77	Fingerpadâ€Inspired Multimodal Electronic Skin for Material Discrimination and Texture Recognition. Advanced Science, 2021, 8, 2002606.	5.6	73
78	A bis(2-oxoindolin-3-ylidene)-benzodifuran-dione containing copolymer for high-mobility ambipolar transistors. Chemical Communications, 2014, 50, 3180.	2.2	72
79	Cactusâ€Spineâ€Inspired Sweatâ€Collecting Patch for Fast and Continuous Monitoring of Sweat. Advanced Materials, 2021, 33, e2102740.	11.1	72
80	Negative Transconductance Heterojunction Organic Transistors and their Application to Full‣wing Ternary Circuits. Advanced Materials, 2019, 31, e1808265.	11.1	70
81	Two-Dimensionally Extended π-Conjugation of Donor–Acceptor Copolymers via Oligothienyl Side Chains for Efficient Polymer Solar Cells. Macromolecules, 2015, 48, 1723-1735.	2.2	69
82	Donor–Acceptor Alternating Copolymer Nanowires for Highly Efficient Organic Solar Cells. Advanced Materials, 2014, 26, 6706-6714.	11.1	68
83	Electrical Performance of Organic Solar Cells with Additiveâ€Assisted Vertical Phase Separation in the Photoactive Layer. Advanced Energy Materials, 2014, 4, 1300612.	10.2	67
84	Sideâ€Chain Engineering for Fineâ€Tuning of Energy Levels and Nanoscale Morphology in Polymer Solar Cells. Advanced Energy Materials, 2014, 4, 1400087.	10.2	67
85	Waterâ€Free Transfer Method for CVDâ€Grown Graphene and Its Application to Flexible Airâ€Stable Graphene Transistors. Advanced Materials, 2014, 26, 3213-3217.	11.1	67
86	Polymer blends with semiconducting nanowires for organic electronics. Journal of Materials Chemistry, 2012, 22, 4244.	6.7	66
87	Critical factors governing vertical phase separation in polymer–PCBM blend films for organic solar cells. Journal of Materials Chemistry A, 2016, 4, 15522-15535.	5.2	64
88	Enhancing the power conversion efficiency of perovskite solar cells via the controlled growth of perovskite nanowires. Nano Energy, 2018, 51, 192-198.	8.2	64
89	Biasâ€Stressâ€Induced Charge Trapping at Polymer Chain Ends of Polymer Gateâ€Dielectrics in Organic Transistors. Advanced Functional Materials, 2012, 22, 4833-4839.	7.8	63
90	Conformation-Insensitive Ambipolar Charge Transport in a Diketopyrrolopyrrole-Based Co-polymer Containing Acetylene Linkages. Chemistry of Materials, 2014, 26, 3928-3937.	3.2	63

#	Article	IF	CITATIONS
91	Clean Transfer of Wafer-Scale Graphene <i>via</i> Liquid Phase Removal of Polycyclic Aromatic Hydrocarbons. ACS Nano, 2015, 9, 4726-4733.	7.3	61
92	Controlling Electrostatic Interaction in PEDOT:PSS to Overcome Thermoelectric Tradeoff Relation. Advanced Functional Materials, 2019, 29, 1905590.	7.8	60
93	Solubility-driven polythiophene nanowires and their electrical characteristics. Journal of Materials Chemistry, 2011, 21, 2338-2343.	6.7	59
94	Self-stratified semiconductor/dielectric polymer blends: vertical phase separation for facile fabrication of organic transistors. Journal of Materials Chemistry C, 2013, 1, 3989.	2.7	59
95	Evaporationâ€Induced Selfâ€Alignment and Transfer of Semiconductor Nanowires by Wrinkled Elastomeric Templates. Advanced Materials, 2013, 25, 2162-2166.	11.1	59
96	Recent Advances in the Bias Stress Stability of Organic Transistors. Advanced Functional Materials, 2020, 30, 1904590.	7.8	59
97	Effect of Crystallization Modes in TIPS-pentacene/Insulating Polymer Blends on the Gas Sensing Properties of Organic Field-Effect Transistors. Scientific Reports, 2019, 9, 21.	1.6	58
98	Selfâ€Organization of Inkjetâ€Printed Organic Semiconductor Films Prepared in Inkjetâ€Etched Microwells. Advanced Functional Materials, 2013, 23, 5224-5231.	7.8	55
99	Atomically Thin Epitaxial Template for Organic Crystal Growth Using Graphene with Controlled Surface Wettability. Nano Letters, 2015, 15, 2474-2484.	4.5	55
100	High Electron Mobility in [1]Benzothieno[3,2- <i>b</i>][1]benzothiophene-Based Field-Effect Transistors: Toward n-Type BTBTs. Chemistry of Materials, 2019, 31, 5254-5263.	3.2	55
101	Substrate-Induced Solvent Intercalation for Stable Graphene Doping. ACS Nano, 2013, 7, 1155-1162.	7.3	54
102	Design, Synthesis, and Versatile Processing of Indolo[3,2â€b]indoleâ€Based Ï€â€Conjugated Molecules for Highâ€Performance Organic Fieldâ€Effect Transistors. Advanced Functional Materials, 2016, 26, 2966-2973.	7.8	54
103	Biomimetic Fabrication of Vaterite Film from Amorphous Calcium Carbonate on Polymer Melt:Â Effect of Polymer Chain Mobility and Functionality. Chemistry of Materials, 2005, 17, 136-141.	3.2	53
104	Heterogeneous Solid Carbon Sourceâ€Assisted Growth of Highâ€Quality Graphene via CVD at Low Temperatures. Advanced Functional Materials, 2016, 26, 562-568.	7.8	52
105	Understanding and Countering Illumination-Sensitive Dark Current: Toward Organic Photodetectors with Reliable High Detectivity. ACS Nano, 2021, 15, 1753-1763.	7.3	52
106	Combinatorial Study of Temperatureâ€Dependent Nanostructure and Electrical Conduction of Polymer Semiconductors: Even Bimodal Orientation Can Enhance 3D Charge Transport. Advanced Functional Materials, 2016, 26, 4627-4634.	7.8	51
107	Bar-Coated Ultrathin Semiconductors from Polymer Blend for One-Step Organic Field-Effect Transistors. ACS Applied Materials & Interfaces, 2018, 10, 21510-21517.	4.0	50
108	Design of narrow bandgap non-fullerene acceptors for photovoltaic applications and investigation of non-geminate recombination dynamics. Journal of Materials Chemistry C, 2020, 8, 15175-15182.	2.7	50

#	Article	IF	CITATIONS
109	New Donor–Donor Type Copolymers with Rigid and Coplanar Structures for High-Mobility Organic Field-Effect Transistors. Chemistry of Materials, 2014, 26, 6907-6910.	3.2	49
110	Effect of donor–acceptor molecular orientation on charge photogeneration in organic solar cells. NPG Asia Materials, 2018, 10, 469-481.	3.8	49
111	High field-effect mobility pentacene thin-film transistors with nanoparticle polymer composite/polymer bilayer insulators. Applied Physics Letters, 2009, 94, .	1.5	48
112	Molecular Engineering of Organic Spacer Cations for Efficient and Stable Formamidinium Perovskite Solar Cell. Advanced Energy Materials, 2020, 10, 2001759.	10.2	48
113	Effect of rubbed polyimide layer on the field-effect mobility in pentacene thin-film transistors. Applied Physics Letters, 2008, 92, 052107.	1.5	47
114	Germanium―and Silicon‧ubstituted Donor–Acceptor Type Copolymers: Effect of the Bridging Heteroatom on Molecular Packing and Photovoltaic Device Performance. Advanced Energy Materials, 2014, 4, 1400527.	10.2	46
115	Oligo(ethylene glycol)-incorporated hybrid linear alkyl side chains for n-channel polymer semiconductors and their effect on the thin-film crystalline structure. Chemical Communications, 2015, 51, 1524-1527.	2.2	46
116	Reinforcement of Amorphous and Semicrystalline Polymer Interfaces via in-Situ Reactive Compatibilization. Macromolecules, 1998, 31, 7495-7505.	2.2	45
117	Effect of the microstructure of copper oxide on the adhesion behavior of epoxy/copper leadframe joints. Journal of Adhesion Science and Technology, 2000, 14, 1333-1353.	1.4	45
118	Solubility ontrolled Structural Ordering of Narrow Bandgap Conjugated Polymers. Advanced Energy Materials, 2011, 1, 63-67.	10.2	43
119	Naphthodithiophene-Based Conjugated Polymer with Linear, Planar Backbone Conformation and Strong Intermolecular Packing for Efficient Organic Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 21159-21169.	4.0	43
120	Tailoring Morphology and Structure of Inkjetâ€Printed Liquidâ€Crystalline Semiconductor/Insulating Polymer Blends for Highâ€Stability Organic Transistors. Advanced Functional Materials, 2016, 26, 3003-3011.	7.8	43
121	Direct CVD Growth of a Graphene/MoS ₂ Heterostructure with Interfacial Bonding for Two-Dimensional Electronics. Chemistry of Materials, 2020, 32, 4544-4552.	3.2	42
122	Ultrasensitive N-Channel Graphene Gas Sensors by Nondestructive Molecular Doping. ACS Nano, 2022, 16, 2176-2187.	7.3	42
123	Omnidirectionally and Highly Stretchable Conductive Electrodes Based on Noncoplanar Zigzag Mesh Silver Nanowire Arrays. Advanced Electronic Materials, 2016, 2, 1600158.	2.6	41
124	Roomâ€Temperature Selfâ€Organizing Characteristics of Soluble Acene Fieldâ€Effect Transistors. Advanced Functional Materials, 2008, 18, 560-565.	7.8	40
125	Doping Graphene with an Atomically Thin Two Dimensional Molecular Layer. Advanced Materials, 2014, 26, 8141-8146.	11.1	40
126	Medium-Bandgap Conjugated Polymers Containing Fused Dithienobenzochalcogenadiazoles: Chalcogen Atom Effects on Organic Photovoltaics. Macromolecules, 2016, 49, 9358-9370.	2.2	40

#	Article	IF	CITATIONS
127	Accurate Extraction of Charge Carrier Mobility in 4â€Probe Fieldâ€Effect Transistors. Advanced Functional Materials, 2018, 28, 1707105.	7.8	40
128	Precise Side-Chain Engineering of Thienylenevinylene–Benzotriazole-Based Conjugated Polymers with Coplanar Backbone for Organic Field Effect Transistors and CMOS-like Inverters. ACS Applied Materials & Interfaces, 2017, 9, 2758-2766.	4.0	39
129	One‣tep Solution Phase Growth of Transition Metal Dichalcogenide Thin Films Directly on Solid Substrates. Advanced Materials, 2017, 29, 1700291.	11.1	39
130	Decoupling the Biasâ€Stressâ€Induced Charge Trapping in Semiconductors and Gateâ€Dielectrics of Organic Transistors Using a Double Stretchedâ€Exponential Formula. Advanced Functional Materials, 2013, 23, 690-696.	7.8	38
131	Selfâ€Assembled, Millimeterâ€Sized TIPSâ€Pentacene Spherulites Grown on Partially Crosslinked Polymer Gate Dielectric. Advanced Functional Materials, 2015, 25, 3658-3665.	7.8	38
132	Graphene as a metal passivation layer: Corrosion-accelerator and inhibitor. Carbon, 2017, 116, 232-239.	5.4	38
133	Suppression of Oxidative Degradation of Tin–Lead Hybrid Organometal Halide Perovskite Solar Cells by Ag Doping. ACS Energy Letters, 2020, 5, 3285-3294.	8.8	38
134	Anisotropy of Charge Transport in a Uniaxially Aligned Fused Electronâ€Deficient Polymer Processed by Solution Shear Coating. Advanced Materials, 2020, 32, e2000063.	11.1	38
135	Graphene oxide as a multi-functional p-dopant of transparent single-walled carbon nanotube films for optoelectronic devices. Nanoscale, 2012, 4, 7735.	2.8	37
136	Heat‣inkâ€Free Flexible Organic Thermoelectric Generator Vertically Operating with Chevron Structure. Advanced Materials Technologies, 2018, 3, 1700335.	3.0	37
137	Hall Effect in Polycrystalline Organic Semiconductors: The Effect of Grain Boundaries. Advanced Functional Materials, 2020, 30, 1903617.	7.8	37
138	Bandgap Tailored Nonfullerene Acceptors for Low-Energy-Loss Near-Infrared Organic Photovoltaics. , 2020, 2, 395-402.		37
139	Thermal and mechanical properties of thermoplastic polyurethane elastomers from different polymerization methods. Polymer International, 1993, 31, 329-333.	1.6	36
140	Positional effects of fluorination in conjugated side chains on photovoltaic properties of donor–acceptor copolymers. Chemical Communications, 2017, 53, 1176-1179.	2.2	36
141	Ternary Organic Solar Cells Based on a Wide-Bandgap Polymer with Enhanced Power Conversion Efficiencies. Scientific Reports, 2019, 9, 12081.	1.6	36
142	Ternary Blend Strategy for Achieving Highâ€Efficiency Organic Photovoltaic Devices for Indoor Applications. Chemistry - A European Journal, 2019, 25, 6154-6161.	1.7	36
143	Perovskite Granular Wire Photodetectors with Ultrahigh Photodetectivity. Advanced Materials, 2020, 32, e2002357.	11.1	36
144	Enhancing the Durability and Carrier Selectivity of Perovskite Solar Cells Using a Blend Interlayer. ACS Applied Materials & Interfaces, 2017, 9, 18103-18112.	4.0	35

#	Article	IF	CITATIONS
145	Enhanced Sensitivity of Iontronic Graphene Tactile Sensors Facilitated by Spreading of Ionic Liquid Pinned on Graphene Grid. Advanced Functional Materials, 2020, 30, 1908993.	7.8	35
146	Notch sensitivity of polycarbonate and toughened polycarbonate. Journal of Applied Polymer Science, 2003, 89, 3115-3121.	1.3	34
147	A Novel Thermally Reversible Solubleâ€Insoluble Conjugated Polymer with Semiâ€Fluorinated Alkyl Chains: Enhanced Transistor Performance by Fluorophobic Selfâ€Organization and Orthogonal Hydrophobic Patterning. Advanced Materials, 2013, 25, 6416-6422.	11.1	34
148	Organic Solar Cells Based on Three-Dimensionally Percolated Polythiophene Nanowires with Enhanced Charge Transport. ACS Applied Materials & amp; Interfaces, 2014, 6, 5640-5650.	4.0	34
149	One-Step Interface Engineering for All-Inkjet-Printed, All-Organic Components in Transparent, Flexible Transistors and Inverters: Polymer Binding. ACS Applied Materials & Interfaces, 2017, 9, 8819-8829.	4.0	34
150	18.42% efficiency polymer solar cells enabled by terpolymer donors with optimal miscibility and energy levels. Journal of Materials Chemistry A, 2022, 10, 7878-7887.	5.2	34
151	Surface-Order Mediated Assembly of ï€-Conjugated Molecules on Self-Assembled Monolayers with Controlled Grain Structures. Chemistry of Materials, 2015, 27, 4669-4676.	3.2	33
152	Decoupling Charge Transfer and Transport at Polymeric Hole Transport Layer in Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 6546-6553.	4.0	33
153	Fused Heptacyclic-Based Acceptor–Donor–Acceptor Small Molecules: N-Substitution toward High-Performance Solution-Processable Field-Effect Transistors. Chemistry of Materials, 2019, 31, 2027-2035.	3.2	33
154	Toughening of polycarbonate: Effect of particle size and rubber phase contents of the core-shell impact modifier. Journal of Applied Polymer Science, 2005, 95, 748-755.	1.3	32
155	Bis(2-oxoindolin-3-ylidene)-benzodifuran-dione-based D–A polymers for high-performance n-channel transistors. Polymer Chemistry, 2015, 6, 2531-2540.	1.9	32
156	Tailoring Structure and Field-Effect Characteristics of Ultrathin Conjugated Polymer Films via Phase Separation. ACS Applied Materials & Interfaces, 2018, 10, 9602-9611.	4.0	32
157	Control of Concentration of Nonhydrogen-Bonded Hydroxyl Groups in Polymer Dielectrics for Organic Field-Effect Transistors with Operational Stability. ACS Applied Materials & Interfaces, 2018, 10, 24055-24063.	4.0	32
158	Synthesis and photovoltaic properties of benzo[1,2-b:4,5-bâ€2]dithiophene derivative-based polymers with deep HOMO levels. Journal of Materials Chemistry, 2012, 22, 17709.	6.7	31
159	Facetâ€Mediated Growth of Highâ€Quality Monolayer Graphene on Arbitrarily Rough Copper Surfaces. Advanced Materials, 2016, 28, 2010-2017.	11.1	31
160	Vertically Stacked Complementary Organic Fieldâ€Effect Transistors and Logic Circuits Fabricated by Inkjet Printing. Advanced Electronic Materials, 2016, 2, 1600046.	2.6	31
161	Predicting the Morphology of Perovskite Thin Films Produced by Sequential Deposition Method: A Crystal Growth Dynamics Study. Chemistry of Materials, 2017, 29, 1165-1174.	3.2	31
162	Air-stable inverted structure of hybrid solar cells using a cesium-doped ZnO electron transport layer prepared by a sol–gel process. Journal of Materials Chemistry A, 2013, 1, 11802.	5.2	30

#	Article	IF	CITATIONS
163	Propeller-shaped small molecule acceptors containing a 9,9′-spirobifluorene core with imide-linked perylene diimides for non-fullerene organic solar cells. Journal of Materials Chemistry C, 2016, 4, 10610-10615.	2.7	30
164	Surface-Mediated Solidification of a Semiconducting Polymer during Time-Controlled Spin-Coating. ACS Applied Materials & Interfaces, 2017, 9, 9871-9879.	4.0	30
165	Preparation of Calcite and Aragonite Complex Layer Materials Inspired from Biomineralization. Crystal Growth and Design, 2009, 9, 3095-3099.	1.4	29
166	Organic thin-film transistors with a photo-patternable semiconducting polymer blend. Journal of Materials Chemistry, 2011, 21, 15637.	6.7	29
167	Large-gain low-voltage and wideband organic photodetectors <i>via</i> unbalanced charge transport. Materials Horizons, 2020, 7, 3234-3241.	6.4	29
168	Enhanced Gas Sensing Properties of Graphene Transistor by Reduced Doping with Hydrophobic Polymer Brush as a Surface Modification Layer. ACS Applied Materials & Interfaces, 2020, 12, 55493-55500.	4.0	29
169	Photomultiplicationâ€Type Organic Photodetectors with Fast Response Enabled by the Controlled Charge Trapping Dynamics of Quantum Dot Interlayer. Advanced Functional Materials, 2021, 31, 2102087.	7.8	29
170	Lateral Organic Solar Cells with Selfâ€Assembled Semiconductor Nanowires. Advanced Energy Materials, 2015, 5, 1401317.	10.2	28
171	Enhancement of the Power Conversion Efficiency in Organic Photovoltaics by Unveiling the Appropriate Polymer Backbone Enlargement Approach. Advanced Functional Materials, 2016, 26, 1840-1848.	7.8	28
172	Sheet Size-Induced Evaporation Behaviors of Inkjet-Printed Graphene Oxide for Printed Electronics. ACS Applied Materials & Interfaces, 2016, 8, 3193-3199.	4.0	28
173	Relationship between the dipole moment of self-assembled monolayers incorporated in graphene transistors and device electrical stabilities. RSC Advances, 2017, 7, 27100-27104.	1.7	28
174	Energy-Filtered Acceleration of Charge-Carrier Transport in Organic Thermoelectric Nanocomposites. Chemistry of Materials, 2021, 33, 4853-4862.	3.2	28
175	Viscoelastic effects in cutting of elastomers by a sharp object. Journal of Polymer Science, Part B: Polymer Physics, 1998, 36, 1283-1291.	2.4	27
176	Enhanced device performance of organic solar cells via reduction of the crystallinity in the donor polymer. Journal of Materials Chemistry, 2010, 20, 5860.	6.7	27
177	Grain Boundary Induced Bias Instability in Soluble Acene-Based Thin-Film Transistors. Scientific Reports, 2016, 6, 33224.	1.6	27
178	Nonfullerene/Fullerene Acceptor Blend with a Tunable Energy State for High-Performance Ternary Organic Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 25570-25579.	4.0	27
179	Visualization and Investigation of Charge Transport in Mixedâ€Halide Perovskite via Lateral‣tructured Photovoltaic Devices. Advanced Functional Materials, 2018, 28, 1804067.	7.8	27
180	Solutalâ€Marangoniâ€Flowâ€Mediated Growth of Patterned Highly Crystalline Organic Semiconductor Thin Film Via Gapâ€Controlled Bar Coating. Advanced Functional Materials, 2021, 31, 2100196.	7.8	27

#	Article	IF	CITATIONS
181	A Highâ€Fidelity Skinâ€Attachable Acoustic Sensor for Realizing Auditory Electronic Skin. Advanced Materials, 2022, 34, e2109545.	11.1	27
182	Enzymatic degradation of blends of poly(?-caprolactone) and poly(styrene-co-acrylonitrile) byPseudomonas lipase. Journal of Applied Polymer Science, 2002, 83, 868-879.	1.3	26
183	Inverse Transfer Method Using Polymers with Various Functional Groups for Controllable Graphene Doping. ACS Nano, 2014, 8, 7968-7975.	7.3	26
184	Fully Drawn Allâ€Organic Flexible Transistors Prepared by Capillary Pen Printing on Flexible Planar and Curvilinear Substrates. Advanced Electronic Materials, 2015, 1, 1500301.	2.6	26
185	High Performance of Low Band Gap Polymer-Based Ambipolar Transistor Using Single-Layer Graphene Electrodes. ACS Applied Materials & Interfaces, 2015, 7, 6002-6012.	4.0	26
186	Nanopatched Graphene with Molecular Selfâ€Assembly Toward Graphene–Organic Hybrid Soft Electronics. Advanced Materials, 2018, 30, e1706480.	11.1	26
187	Flexible Pressure-Sensitive Contact Transistors Operating in the Subthreshold Regime. ACS Applied Materials & Interfaces, 2019, 11, 31111-31118.	4.0	26
188	Polarity Engineering of Conjugated Polymers by Variation of Chemical Linkages Connecting Conjugated Backbones. ACS Applied Materials & Interfaces, 2015, 7, 5898-5906.	4.0	25
189	Unraveling the efficiency-limiting morphological issues of the perylene diimide-based non-fullerene organic solar cells. Scientific Reports, 2018, 8, 2849.	1.6	25
190	Synthesis of Atomically Thin Transition Metal Ditelluride Films by Rapid Chemical Transformation in Solution Phase. Chemistry of Materials, 2018, 30, 2463-2473.	3.2	25
191	Realizing Scalable Two-Dimensional MoS ₂ Synaptic Devices for Neuromorphic Computing. Chemistry of Materials, 2020, 32, 10447-10455.	3.2	25
192	Stable Bioelectric Signal Acquisition Using an Enlarged Surface-Area Flexible Skin Electrode. ACS Applied Electronic Materials, 2021, 3, 1842-1851.	2.0	25
193	Chemical Vapor Deposition of Bernalâ€Stacked Graphene on a Cu Surface by Breaking the Carbon Solubility Symmetry in Cu Foils. Advanced Materials, 2017, 29, 1700753.	11.1	24
194	Carrierâ€Selectivityâ€Dependent Charge Recombination Dynamics in Organic Photovoltaic Cells with a Ferroelectric Blend Interlayer. Advanced Energy Materials, 2015, 5, 1500802.	10.2	23
195	Synergistic effects of an alkylthieno[3,2-b]thiophene π-bridging backbone extension on the photovoltaic performances of donor–acceptor copolymers. Journal of Materials Chemistry A, 2017, 5, 10269-10279.	5.2	23
196	Stretchable Polymer Gate Dielectric with Segmented Elastomeric Network for Organic Soft Electronics. Chemistry of Materials, 2018, 30, 6353-6360.	3.2	23
197	Modulating charge transport characteristics of bis-azaisoindigo-based D–A conjugated polymers through energy level regulation and side chain optimization. Journal of Materials Chemistry C, 2019, 7, 7618-7626.	2.7	23
198	Chargeâ€Transferâ€Controlled Growth of Organic Semiconductor Crystals on Graphene. Advanced Science, 2020, 7, 1902315.	5.6	23

#	Article	IF	CITATIONS
199	Surface Stabilization of a Formamidinium Perovskite Solar Cell Using Quaternary Ammonium Salt. ACS Applied Materials & Interfaces, 2021, 13, 37052-37062.	4.0	23
200	Ultrahigh density array of CdSe nanorods for CdSe/polymer hybrid solar cells: enhancement in short-circuit current density. Journal of Materials Chemistry, 2011, 21, 12449.	6.7	22
201	Motion-Programmed Bar-Coating Method with Controlled Gap for High-Speed Scalable Preparation of Highly Crystalline Organic Semiconductor Thin Films. ACS Applied Materials & Interfaces, 2019, 11, 47153-47161.	4.0	22
202	Molecular Weightâ€Induced Structural Transition of Liquidâ€Crystalline Polymer Semiconductor for Highâ€Stability Organic Transistor. Advanced Functional Materials, 2011, 21, 4442-4447.	7.8	21
203	Sequential solvent casting for improving the structural ordering and electrical characteristics of polythiophene thin films. RSC Advances, 2014, 4, 41159-41163.	1.7	21
204	Effects of reactive reinforced interface on the morphology and tensile properties of amorphous polyamide-SAN blends. Journal of Applied Polymer Science, 1998, 68, 1925-1933.	1.3	20
205	Layered Silicate-Induced Enhancement of Fracture Toughness of Epoxy Molding Compounds over a Wide Temperature Range. Macromolecular Materials and Engineering, 2005, 290, 1184-1191.	1.7	20
206	Coral Mineralization Inspired CaCO ₃ Deposition via CO ₂ Sequestration from the Atmosphere. Crystal Growth and Design, 2010, 10, 851-855.	1.4	20
207	Impact of side-chain fluorination on photovoltaic properties: fine tuning of the microstructure and energy levels of 2D-conjugated copolymers. Journal of Materials Chemistry A, 2017, 5, 16702-16711.	5.2	20
208	1D versus 2D Growth of Soluble Acene Crystals from Soluble Acene/Polymer Blends Governed by a Residual Solvent Reservoir in a Phaseâ€Separated Polymer Matrix. Advanced Functional Materials, 2018, 28, 1802875.	7.8	20
209	Tuning the Energy Levels of Aza-Heterocycle-Based Polymers for Long-Term <i>n</i> -Channel Bottom-Gate/Top-Contact Polymer Transistors. Macromolecules, 2018, 51, 5704-5712.	2.2	20
210	Post-deposition dipping method for improving the electronic properties of a narrow bandgap conjugated polymer. Journal of Materials Chemistry, 2012, 22, 11462.	6.7	19
211	Topâ€Splitâ€Gate Ambipolar Organic Thinâ€Film Transistors. Advanced Electronic Materials, 2018, 4, 1700536.	2.6	19
212	Excimer formation effects and trap-assisted charge recombination loss channels in organic solar cells of perylene diimide dimer acceptors. Journal of Materials Chemistry C, 2020, 8, 1686-1696.	2.7	19
213	High absorption coefficient π-conjugation-extended donor-acceptor copolymers for ternary-blend solar cells. Organic Electronics, 2020, 83, 105738.	1.4	19
214	Enhancing Thermoelectric Power Factor of 2D Organometal Halide Perovskites by Suppressing 2D/3D Phase Separation. Advanced Materials, 2021, 33, e2102797.	11.1	19
215	Properties of Waterborne Polyurethanes Based on Polycarbonate Diol Reinforced with Organophilic Clay. Journal of Macromolecular Science - Physics, 2003, 42, 1249-1263.	0.4	18
216	Modulating the Surface via Polymer Brush for Highâ€Performance Inkjetâ€Printed Organic Thinâ€Film Transistors. Advanced Electronic Materials, 2017, 3, 1600402.	2.6	18

#	Article	IF	CITATIONS
217	Direct Growth of Highly Stable Patterned Graphene on Dielectric Insulators using a Surfaceâ€Adhered Solid Carbon Source. Advanced Materials, 2018, 30, e1706569.	11.1	18
218	Direct Growth of Substrate-Adhered Graphene on Flexible Polymer Substrates for Soft Electronics. Chemistry of Materials, 2019, 31, 4451-4459.	3.2	18
219	Evaluation of the weld-line strength of thermoplastics by compact tension test. Polymer Engineering and Science, 1997, 37, 1217-1225.	1.5	17
220	Bis(2-oxo-7-azaindolin-3-ylidene)benzodifuran-dione-based donor–acceptor polymers for high-performance n-type field-effect transistors. Polymer Chemistry, 2017, 8, 2381-2389.	1.9	17
221	Engineering counter-ion-induced disorder of a highly doped conjugated polymer for high thermoelectric performance. Nano Energy, 2021, 90, 106604.	8.2	17
222	Dicyanovinyl-substituted indolo[3,2-b]indole derivatives: low-band-gap π-conjugated molecules for a single-component ambipolar organic field-effect transistor. Journal of Materials Chemistry C, 2016, 4, 9460-9468.	2.7	16
223	Molecular Orientationâ€Dependent Bias Stress Stability in Bottomâ€Gate Organic Transistors Based on an <i>n</i> â€Type Semiconducting Polymer. Advanced Electronic Materials, 2016, 2, 1500380.	2.6	16
224	Polarization-Dependent Photoinduced Bias-Stress Effect in Single-Crystal Organic Field-Effect Transistors. ACS Applied Materials & Interfaces, 2017, 9, 34153-34161.	4.0	16
225	Copperâ€Vaporâ€Assisted Growth and Defectâ€Healing of Graphene on Copper Surfaces. Small, 2018, 14, e1801181.	5.2	16
226	End-on Chain Orientation of Poly(3-alkylthiophene)s on a Substrate by Microphase Separation of Lamellar Forming Amphiphilic Diblock Copolymer. Macromolecules, 2019, 52, 6734-6740.	2.2	16
227	Rational molecular design for isoindigo-based polymer semiconductors with high ductility and high electrical performance. Journal of Materials Chemistry C, 2019, 7, 11639-11649.	2.7	16
228	Universal Route to Impart Orthogonality to Polymer Semiconductors for Subâ€Micrometer Tandem Electronics. Advanced Materials, 2019, 31, e1901400.	11.1	16
229	Linear hybrid siloxane-based side chains for highly soluble isoindigo-based conjugated polymers. Chemical Communications, 2020, 56, 11867-11870.	2.2	16
230	Charge Trapping in a Low-Crystalline High-Mobility Conjugated Polymer and Its Effects on the Operational Stability of Organic Field-Effect Transistors. ACS Applied Materials & Interfaces, 2021, 13, 16722-16731.	4.0	16
231	Positionâ€Induced Efficient Doping for Highly Doped Organic Thermoelectric Materials. Advanced Electronic Materials, 2022, 8, 2101142.	2.6	16
232	Bis(2-oxoindolin-3-ylidene)-benzodifuran-dione and bithiophene-based conjugated polymers for high performance ambipolar organic thin-film transistors: the impact of substitution positions on bithiophene units. Journal of Materials Chemistry C, 2016, 4, 6391-6400.	2.7	15
233	Molecular engineering of perylene-diimide-based polymer acceptors containing heteroacene units for all-polymer solar cells. Organic Electronics, 2018, 58, 222-230.	1.4	15
234	Improved Charge Transport and Reduced Non-Geminate Recombination in Organic Solar Cells by Adding Size-Selected Graphene Oxide Nanosheets. ACS Applied Materials & Interfaces, 2019, 11, 20183-20191.	4.0	15

#	Article	IF	CITATIONS
235	Enhancing air-stability and reproducibility of lead-free formamidinium-based tin perovskite solar cell by chlorine doping. Solar Energy Materials and Solar Cells, 2021, 227, 111072.	3.0	15
236	Transparent carbon nanotube patterns templated by inkjet-printed graphene oxide nanosheets. RSC Advances, 2011, 1, 44.	1.7	14
237	CaCO ₃ Precipitation and Polymorph Forms During CO ₂ Sequestration from the Atmosphere: Effects of the Basic Buffer Components. Crystal Growth and Design, 2015, 15, 610-616.	1.4	14
238	Critical role of silk fibroin secondary structure on the dielectric performances of organic thin-film transistors. RSC Advances, 2016, 6, 5907-5914.	1.7	14
239	Comparative Study of Antimony Doping Effects on the Performance of Solution-Processed ZIO and ZTO Field-Effect Transistors. ACS Applied Materials & amp; Interfaces, 2017, 9, 10904-10913.	4.0	14
240	Azaisoindigo-Based Polymers with a Linear Hybrid Siloxane-Based Side Chain for High-Performance Semiconductors Processable with Nonchlorinated Solvents. ACS Applied Materials & Interfaces, 2020, 12, 41832-41841.	4.0	14
241	Morphology and Rheological Behavior of Amorphous Polyamide/(Styrene-Acrylonitrile/Styrene Maleic) Tj ETQq1 1	0,784314	4 rgBT /Over
242	Interfacial Adhesion Strength between Fibers of Liquid Crystalline Polymer and Thermoplastic Matrix. Polymer Journal, 1997, 29, 904-909.	1.3	13
243	Photoelectric Memory Effect in Graphene Heterostructure Field-Effect Transistors Based on Dual Dielectrics. ACS Photonics, 2018, 5, 329-336.	3.2	13
244	Effects of varying the lengths of the donor units in π-extended thienothiophene isoindigo-based polymer semiconductors. Journal of Materials Chemistry C, 2018, 6, 9972-9980.	2.7	13
245	Fluorine-functionalization of an isoindoline-1,3-dione-based conjugated polymer for organic solar cells. Organic Electronics, 2018, 59, 247-252.	1.4	13
246	Toward near-bulk resistivity of Cu for next-generation nano-interconnects: Graphene-coated Cu. Carbon, 2019, 149, 656-663.	5.4	13
247	Atomically Smooth Grapheneâ€Based Hybrid Template for the Epitaxial Growth of Organic Semiconductor Crystals. Advanced Functional Materials, 2021, 31, 2008813.	7.8	13
248	Ubiquitous Graphene Electronics on Scotch Tape. Scientific Reports, 2015, 5, 12575.	1.6	12
249	Singlet Exciton Delocalization in Gold Nanoparticle-Tethered Poly(3-hexylthiophene) Nanofibers with Enhanced Intrachain Ordering. Macromolecules, 2017, 50, 8487-8496.	2.2	12
250	Electric-Field-Tunable Growth of Organic Semiconductor Crystals on Graphene. Nano Letters, 2019, 19, 1758-1766.	4.5	12
251	Heatâ€Assisted Photoacidic Oxidation Method for Tailoring the Surface Chemistry of Polymer Dielectrics for Lowâ€Power Organic Soft Electronics. Advanced Functional Materials, 2019, 29, 1806030.	7.8	12
252	Open-circuit voltage of organic solar cells: Effect of energetically and spatially nonuniform distribution of molecular energy levels in the photoactive layer. Nano Energy, 2020, 78, 105336.	8.2	12

#	Article	IF	CITATIONS
253	Formation of Large Crystalline Domains in a Semiconducting Polymer with Semi-fluorinated Alkyl Side Chains and Application to High-Performance Thin-Film Transistors. ACS Applied Materials & Interfaces, 2020, 12, 49886-49894.	4.0	12
254	Growth of Multilayer Graphene with a Built-in Vertical Electric Field. Chemistry of Materials, 2020, 32, 5142-5152.	3.2	12
255	Selectively patterned highly conductive poly(3,4-ethylenedioxythiophene)-tosylate electrodes for high performance organic field-effect transistors. Applied Physics Letters, 2009, 95, 233509.	1.5	11
256	Effects of conformational symmetry in conjugated side chains on intermolecular packing of conjugated polymers and photovoltaic properties. RSC Advances, 2015, 5, 106044-106052.	1.7	11
257	Enhancement of the Power-Conversion Efficiency of Organic Solar Cells via Unveiling an Appropriate Rational Design Strategy in Indacenodithiophene-alt-quinoxaline π-Conjugated Polymers. ACS Applied Materials & Interfaces, 2018, 10, 10236-10245.	4.0	11
258	Improved charge transport in fused-ring bridged hemi-isoindigo-based small molecules by incorporating a thiophene unit for solution-processed organic field-effect transistors. Journal of Materials Chemistry C, 2020, 8, 1398-1404.	2.7	11
259	The Origin of Photoinduced Capacitance in Perovskite Solar Cells: Beyond Ionicâ€ŧoâ€Electronic Current Amplification. Advanced Electronic Materials, 2020, 6, 2000030.	2.6	11
260	Improved Chemical Stability of Organometal Halide Perovskite Solar Cells Against Moisture and Heat by Ag Doping. ChemSusChem, 2020, 13, 3261-3268.	3.6	11
261	Elucidating the photoluminescence-enhancement mechanism in a push-pull conjugated polymer induced by hot-electron injection from gold nanoparticles. Photonics Research, 2021, 9, 131.	3.4	11
262	Adhesion behavior of PDMS-containing polyimide to glass. Journal of Adhesion Science and Technology, 1998, 12, 253-269.	1.4	10
263	Effect of curing conditions of a poly(4-vinylphenol)gate dielectric on the performance of a pentacene-based thin film transistor. Macromolecular Research, 2009, 17, 436-440.	1.0	10
264	Protein adhesion regulated by the nanoscale surface conformation. Soft Matter, 2012, 8, 11801.	1.2	10
265	Morphology-performance relationships in polymer/fullerene blends probed by complementary characterisation techniques – effects of nanowire formation and subsequent thermal annealing. Journal of Materials Chemistry C, 2015, 3, 9224-9232.	2.7	10
266	Highly Conductive Flexible Metal–Ceramic Nanolaminate Electrode for High-Performance Soft Electronics. ACS Applied Materials & Interfaces, 2019, 11, 2211-2217.	4.0	10
267	Effects of Hydrogen on the Stacking Orientation of Bilayer Graphene Grown on Copper. Chemistry of Materials, 2020, 32, 10357-10364.	3.2	10
268	Stretchable Meshâ€Patterned Organic Semiconducting Thin Films on Creased Elastomeric Substrates. Advanced Functional Materials, 2021, 31, 2010870.	7.8	10
269	Intrachain Delocalization Effect of Charge Carriers on the Charge-Transfer State Dynamics in Organic Solar Cells. Journal of Physical Chemistry C, 2022, 126, 3171-3179.	1.5	10
270	Charge Recycling Mechanism Through a Triplet Charge-Transfer State in Ternary-Blend Organic Solar Cells Containing a Nonfullerene Acceptor. ACS Energy Letters, 2021, 6, 2610-2618.	8.8	9

#	Article	IF	CITATIONS
271	Organic small-molecule heterointerface for use in transistor-type non-volatile memory. Organic Electronics, 2021, 93, 106107.	1.4	9
272	Effects of particle size on the molecular orientation and birefringence of magnetic nanoparticles/polyimide composites. Journal of Applied Polymer Science, 2006, 99, 3433-3440.	1.3	8
273	Enhanced Organic Solar Cell Stability through the Effective Blocking of Oxygen Diffusion using a Selfâ€Passivating Metal Electrode. ChemSusChem, 2016, 9, 445-454.	3.6	8
274	Cyanothiophene-based low band-gap polymer for organic solar cells. RSC Advances, 2013, 3, 6799.	1.7	7
275	Synthesis, stability and electrical properties of new soluble pentacenes with unsaturated side groups. RSC Advances, 2015, 5, 8070-8076.	1.7	7
276	Omnidirectionally Stretchable Metal Films with Preformed Radial Nanocracks for Soft Electronics. ACS Applied Nano Materials, 2020, 3, 7192-7200.	2.4	7
277	Unraveling the Complex Nanomorphology of Ternary Organic Solar Cells with Multimodal Analytical Transmission Electron Microscopy. Solar Rrl, 2020, 4, 2000114.	3.1	7
278	Graphene Nanoribbon Grids of Sub-10 nm Widths with High Electrical Connectivity. ACS Applied Materials & Interfaces, 2021, 13, 28593-28599.	4.0	7
279	van der Waals Epitaxy of Organic Semiconductor Thin Films on Atomically Thin Graphene Templates for Optoelectronic Applications. Accounts of Chemical Research, 2022, 55, 673-684.	7.6	7
280	Surface modification effects of core–shell rubber particles on the toughening of poly(butylene) Tj ETQq0 0 0 rg	gBT ¦Overle	ock 10 Tf 50
281	Additive-dependent morphogenesis of oriented calcite crystals on mica. CrystEngComm, 2011, 13, 6311.	1.3	6
282	Bistable Solidâ€ s tate Fluorescence Switching in Photoluminescent, Infinite Coordination Polymers. Chemistry - A European Journal, 2017, 23, 10017-10022.	1.7	6
283	Organic Transistors: 25th Anniversary Article: Microstructure Dependent Bias Stability of Organic Transistors (Adv. Mater. 11/2014). Advanced Materials, 2014, 26, 1634-1634.	11.1	5
284	Enhanced sensitivity of a microfabricated resonator using a graphene-polystyrene bilayer membrane. Applied Physics Letters, 2014, 105, 073116.	1.5	5
285	Excitation Intensity Dependent Carrier Dynamics of Chalcogen Heteroatoms in Medium-Bandgap Polymer Solar Cells. Scientific Reports, 2017, 7, 836.	1.6	5
286	Intergrain Connection of Organometal Halide Perovskites: Formation Mechanism and Its Effects on Optoelectrical Properties. ACS Applied Materials & amp; Interfaces, 2019, 11, 7037-7045.	4.0	5

287	Electroceutical Residue-Free Graphene Device for Dopamine Monitoring and Neural Stimulation. ACS Biomaterials Science and Engineering, 2019, 5, 2013-2020.	2.6	5
288	Ï€-Extended donor-acceptor conjugated copolymers for use as hole transporting materials in perovskite solar cells. Organic Electronics, 2020, 87, 105943.	1.4	5

17

#	Article	IF	CITATIONS
289	Perovskite Photodetectors: Perovskite Granular Wire Photodetectors with Ultrahigh Photodetectivity (Adv. Mater. 32/2020). Advanced Materials, 2020, 32, 2070238.	11.1	5
290	Three-Dimensional Tungsten Disulfide Raman Biosensor for Dopamine Detection. ACS Applied Bio Materials, 2020, 3, 7687-7695.	2.3	5
291	Ï€â€Extended Thiazole ontaining Polymer Semiconductor for Balanced Charge–Carrier Mobilities. Macromolecular Rapid Communications, 2021, 42, 2000741.	2.0	5
292	The phase behavior of tetramethyl bisphenol-A polyarylate/aliphatic polyester blends. Journal of Polymer Science, Part B: Polymer Physics, 1998, 36, 201-212.	2.4	4
293	Effect of the physical and mechanical properties of epoxy resins on the adhesion behavior of epoxy/copper leadframe joints. Journal of Adhesion Science and Technology, 2001, 15, 439-456.	1.4	4
294	A Three-Dimensional Transparent Electrode Structure With Al-Doped ZnO Nanorods. IEEE Nanotechnology Magazine, 2011, 10, 1347-1351.	1.1	4
295	Enhanced transparent conducting networks on plastic substrates modified with highly oxidized graphene oxide nanosheets. Nanoscale, 2016, 8, 6693-6699.	2.8	4
296	Coplanar Donor-Acceptor Semiconducting Copolymers to Achieve Better Conjugated Structures: Side-Chain Engineering. Macromolecular Chemistry and Physics, 2017, 218, 1700135.	1.1	4
297	Graphene: Direct Growth of Highly Stable Patterned Graphene on Dielectric Insulators using a Surface-Adhered Solid Carbon Source (Adv. Mater. 15/2018). Advanced Materials, 2018, 30, 1870108.	11.1	4
298	Alkylammonium-Intercalated 2D Mackinawite FeS as Electrode Materials for Rechargeable Batteries. Chemistry of Materials, 2020, 32, 9147-9154.	3.2	4
299	Unidirectional Macroscopic Alignment of Chlorobenzo[<i>c</i>]â€{1,2,5]thiadiazoleâ€Based Semiconducting Copolymers with Controlled Regiochemistry. Advanced Electronic Materials, 2021, 7, 2100551.	2.6	4
300	Effect of Electron-Withdrawing Chlorine Substituent on Morphological and Photovoltaic Properties of All Chlorinated D–A-Type Quinoxaline-Based Polymers. ACS Applied Materials & Interfaces, 2022, 14, 19785-19794.	4.0	4
301	Miscibility of tetramethyl bisphenol-A polyarylate with poly(butylene sebacate). Journal of Polymer Science, Part B: Polymer Physics, 1995, 33, 327-329.	2.4	3
302	Effect of crystalline microstructure near the particle/matrix interface on the toughening of syndiotactic polystyrene/polyamideâ€6 blends. Journal of Applied Polymer Science, 2008, 108, 2734-2747.	1.3	3
303	Biomimetics: Tunable Anisotropic Wettability of Rice Leaf‣ike Wavy Surfaces (Adv. Funct. Mater. 5/2013). Advanced Functional Materials, 2013, 23, 526-526.	7.8	3
304	Effect of Hot-Electron Injection on the Excited-State Dynamics of a Hybrid Plasmonic System Containing Poly(3-hexylthiophene)-Coated Gold Nanoparticles. Journal of Physical Chemistry C, 2019, 123, 26564-26570.	1.5	3
305	Augmented Photoluminescence in a Conjugated Polymer by the Incorporation of CdSe/CdS Quantum Dots. Journal of Physical Chemistry C, 2020, 124, 20605-20613.	1.5	3
306	One-step synthesis of an acceptor–donor–acceptor small molecule based on indacenodithieno[3,2-b]thiophene and benzothiadiazole units for high-performance solution-processed organic field-effect transistors. Journal of Materials Chemistry C, 2020, 8, 14180-14185.	2.7	3

#	Article	IF	CITATIONS
307	Nanoscale Molecular Building Blocks for Layerâ€byâ€Layer Assembly. Advanced Materials Interfaces, 2020, 7, 2000522.	1.9	3
308	lontronic Graphene Tactile Sensors: Enhanced Sensitivity of Iontronic Graphene Tactile Sensors Facilitated by Spreading of Ionic Liquid Pinned on Graphene Grid (Adv. Funct. Mater. 14/2020). Advanced Functional Materials, 2020, 30, 2070089.	7.8	3
309	Cuâ€Phosphorus Eutectic Solid Solution for Growth of Multilayer Graphene with Widely Tunable Doping. Advanced Functional Materials, 2021, 31, 2006499.	7.8	3
310	Organic Semiconductors: Solutalâ€Marangoniâ€Flowâ€Mediated Growth of Patterned Highly Crystalline Organic Semiconductor Thin Film Via Gapâ€Controlled Bar Coating (Adv. Funct. Mater. 28/2021). Advanced Functional Materials, 2021, 31, 2170200.	7.8	3
311	Enhanced Vertical Hole Mobility through End-on Chain Orientation of Poly(3-hexylthiophene)-based Diblock Copolymers by Microphase Separation. Macromolecules, 2022, 55, 6160-6166.	2.2	3
312	Nanomorphology dependence of the environmental stability of organic solar cells. NPG Asia Materials, 2022, 14, .	3.8	3
313	Effect of ionic additives on deformation behavior of bisphenol a polycarbonate. Journal of Polymer Science, Part B: Polymer Physics, 2001, 39, 2635-2643.	2.4	2
314	Energy-Level Alignment at Interfaces between Gold and Poly(3-hexylthiophene) Films with two Different Molecular Structures. AIP Conference Proceedings, 2007, , .	0.3	2
315	Solar Cells: Donor-Acceptor Alternating Copolymer Nanowires for Highly Efficient Organic Solar Cells (Adv. Mater. 39/2014). Advanced Materials, 2014, 26, 6662-6662.	11.1	2
316	Polymer Solar Cells: Side-Chain Engineering for Fine-Tuning of Energy Levels and Nanoscale Morphology in Polymer Solar Cells (Adv. Energy Mater. 10/2014). Advanced Energy Materials, 2014, 4, n/a-n/a.	10.2	2
317	65.2: <i>Invited Paper</i> : Biasâ€6tressâ€Induced Charge Trapping in Flexible Polymer Gate Dielectrics in Organic TFTs. Digest of Technical Papers SID International Symposium, 2015, 46, 966-968.	0.1	2
318	Stretchable electronics: Stretchable and Transparent Organic Semiconducting Thin Film with Conjugated Polymer Nanowires Embedded in an Elastomeric Matrix (Adv. Electron. Mater. 1/2016). Advanced Electronic Materials, 2016, 2, .	2.6	2
319	Solar Cells: Organometal Halide Perovskite Solar Cells with Improved Thermal Stability via Grain Boundary Passivation Using a Molecular Additive (Adv. Funct. Mater. 42/2017). Advanced Functional Materials, 2017, 27, .	7.8	2
320	Controllable Bipolar Doping of Graphene with 2D Molecular Dopants. Small, 2018, 14, e1703697.	5.2	2
321	Organic Soft Electronics: Heatâ€Assisted Photoacidic Oxidation Method for Tailoring the Surface Chemistry of Polymer Dielectrics for Lowâ€Power Organic Soft Electronics (Adv. Funct. Mater. 11/2019). Advanced Functional Materials, 2019, 29, 1970071.	7.8	2
322	Size-Dependent Photovoltaic Performance of CdSe Supraquantum Dot/Polymer Hybrid Solar Cells: "Goldilocks Problem―Resolved by Tuning the Band Alignment Using Surface Ligands. Journal of Physical Chemistry C, 2020, 124, 25775-25783.	1.5	2
323	Acceptor–donor–acceptor molecule processed using polar non-halogenated solvents for organic field-effect transistors. Journal of Materials Chemistry C, 2020, 8, 6496-6502.	2.7	2
324	Graphene: Waterâ€Free Transfer Method for CVDâ€Grown Graphene and Its Application to Flexible Airâ€Stable Graphene Transistors (Adv. Mater. 20/2014). Advanced Materials, 2014, 26, 3166-3166.	11.1	1

#	Article	IF	CITATIONS
325	Hydrolytic degradation behavior of poly(butylene succinate)s with different crystalline morphologies. Journal of Applied Polymer Science, 2001, 79, 1025-1033.	1.3	1
326	Extrapolation method for reliable measurement of Seebeck coefficient of organic thin films. Organic Electronics, 2022, 108, 106582.	1.4	1
327	Effect of Phase State of Self-Assembled Monolayers on Pentacene Growth and Thin Film Transistors Characteristics. AIP Conference Proceedings, 2007, , .	0.3	0
328	The effects of solvent type and aging on structural development in poly(vinyl chloride) thermoreversible gels. Journal of Polymer Science, Part B: Polymer Physics, 2008, 46, 263-271.	2.4	0
329	44.4: <i>Invited Paper</i> : Semiconducting Nanofibers Embedded in Insulating Polymer for Organic Thinâ€Film Transistors. Digest of Technical Papers SID International Symposium, 2009, 40, 664-665.	0.1	0
330	Organic Field Effect Transistors: Directly Drawn Organic Transistors by Capillary Pen: A New Facile Patterning Method using Capillary Action for Soluble Organic Materials (Adv. Mater. 30/2013). Advanced Materials, 2013, 25, 4062-4062.	11.1	0
331	Semiconductor Nanowires: Evaporationâ€Induced Selfâ€Alignment and Transfer of Semiconductor Nanowires by Wrinkled Elastomeric Templates (Adv. Mater. 15/2013). Advanced Materials, 2013, 25, 2106-2106.	11.1	0
332	Graphene: Doping Graphene with an Atomically Thin Two Dimensional Molecular Layer (Adv. Mater.) Tj ETQq0 0 (O rg₿Ţ /Ov	erlock 10 Tf
333	Organic Solar Cells: Carrierâ€Selectivityâ€Dependent Charge Recombination Dynamics in Organic Photovoltaic Cells with a Ferroelectric Blend Interlayer (Adv. Energy Mater. 19/2015). Advanced Energy Materials, 2015, 5, .	10.2	0
334	Organic Transistors: A Pseudoâ€Regular Alternating Conjugated Copolymer Using an Asymmetric Monomer: A Highâ€Mobility Organic Transistor in Nonchlorinated Solvents (Adv. Mater. 24/2015). Advanced Materials, 2015, 27, 3707-3707.	11.1	0
335	Organic Electronics: Self-Assembled, Millimeter-Sized TIPS-Pentacene Spherulites Grown on Partially Crosslinked Polymer Gate Dielectric (Adv. Funct. Mater. 24/2015). Advanced Functional Materials, 2015, 25, 3795-3795.	7.8	0
336	Liquid-Crystalline Semiconductors: Tailoring Morphology and Structure of Inkjet-Printed Liquid-Crystalline Semiconductor/Insulating Polymer Blends for High-Stability Organic Transistors (Adv. Funct. Mater. 18/2016). Advanced Functional Materials, 2016, 26, 3180-3180.	7.8	0
337	Organic Transistors: Molecular Orientation-Dependent Bias Stress Stability in Bottom-Gate Organic Transistors Based on ann-Type Semiconducting Polymer (Adv. Electron. Mater. 3/2016). Advanced Electronic Materials, 2016, 2, .	2.6	0
338	Thin-Film Transistors: Top-Split-Gate Ambipolar Organic Thin-Film Transistors (Adv. Electron. Mater.) Tj ETQq0 0 C	rgBT /Ove	erlock 10 Tf 5
339	Sensors: An Ultrastable Ionic Chemiresistor Skin with an Intrinsically Stretchable Polymer Electrolyte (Adv. Mater. 20/2018). Advanced Materials, 2018, 30, 1870140.	11.1	0
340	Organic Electronics: Universal Route to Impart Orthogonality to Polymer Semiconductors for Subâ€Micrometer Tandem Electronics (Adv. Mater. 28/2019). Advanced Materials, 2019, 31, 1970204.	11.1	0
341	Perovskite Solar Cells: Molecular Engineering of Organic Spacer Cations for Efficient and Stable Formamidinium Perovskite Solar Cell (Adv. Energy Mater. 42/2020). Advanced Energy Materials, 2020, 10, 2070175.	10.2	0

342Organic Semiconductors: Chargeâ€Transferâ€Controlled Growth of Organic Semiconductor Crystals on
Graphene (Adv. Sci. 6/2020). Advanced Science, 2020, 7, 2070031.5.60

#	Article	IF	CITATIONS
343	Structural influence of a dichalcogenopheno-1,3,4-chalcogenodiazole comonomer on the optoelectronic properties of diketopyrrolopyrrole-based conjugated polymers. Polymer Chemistry, 2021, 12, 1758-1767.	1.9	Ο

$Cactus \hat{a} \in \mathbf{S} pine \hat{a} \in \mathbf{S} pi$

345	Solution-Processable Semiconducting Conjugated Planar Network. ACS Applied Materials & Interfaces, 2022, 14, 14588-14595.	4.0	0
346	Structure–property relationships of diketopyrrolopyrrole- and thienoacene-based A–D–A type hole transport materials for efficient perovskite solar cells. New Journal of Chemistry, 0, , .	1.4	0
347	A Highâ€Fidelity Skinâ€Attachable Acoustic Sensor for Realizing Auditory Electronic Skin (Adv. Mater.) Tj ETQu	q1 1 0,7843	14 gBT /Ove