Tetsuya Hayashi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7334507/publications.pdf

Version: 2024-02-01

430754 552653 3,008 100 18 26 citations g-index h-index papers 101 101 101 1133 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Design and fabrication of ultra-low crosstalk and low-loss multi-core fiber. Optics Express, 2011, 19, 16576.	1.7	493
2	$2.15\ Pb/s$ transmission using a 22 core homogeneous single-mode multi-core fiber and wideband optical comb. , 2015, , .		189
3	Characterization of Crosstalk in Ultra-Low-Crosstalk Multi-Core Fiber. Journal of Lightwave Technology, 2012, 30, 583-589.	2.7	170
4	Record-Low Spatial Mode Dispersion and Ultra-Low Loss Coupled Multi-Core Fiber for Ultra-Long-Haul Transmission. Journal of Lightwave Technology, 2017, 35, 450-457.	2.7	126
5	Large Spatial Channel (36-Core $\tilde{A}-3$ mode) Heterogeneous Few-Mode Multicore Fiber. Journal of Lightwave Technology, 2016, 34, 93-103.	2.7	97
6	Space Division Multiplexed Transmission of 109-Tb/s Data Signals Using Homogeneous Seven-Core Fiber. Journal of Lightwave Technology, 2012, 30, 658-665.	2.7	94
7	Realizing a 36-core, 3-mode Fiber with 108 Spatial Channels. , 2015, , .		90
8	Time and Modulation Frequency Dependence of Crosstalk in Homogeneous Multi-Core Fibers. Journal of Lightwave Technology, 2016, 34, 441-447.	2.7	90
9	Physical interpretation of intercore crosstalk in multicore fiber: effects of macrobend, structure fluctuation, and microbend. Optics Express, 2013, 21, 5401.	1.7	87
10	10.16 Peta-bit/s Dense SDM/WDM transmission over Low-DMD 6-Mode 19-Core Fibre Across C+L Band. , $2017, , .$		85
11	10.66 Peta-Bit/s Transmission over a 38-Core-Three-Mode Fiber. , 2020, , .		84
12	$10.16 ext{-Peta-bit/s}$ Dense SDM/WDM Transmission over 6-Mode 19-Core Fiber across the C+L Band. Journal of Lightwave Technology, 2018, , 1-1.	2.7	77
13	Uncoupled multi-core fiber enhancing signal-to-noise ratio. Optics Express, 2012, 20, B94.	1.7	71
14	125-μm-Cladding Eight-Core Multi-Core Fiber Realizing Ultra-High-Density Cable Suitable for O-Band Short-Reach Optical Interconnects. Journal of Lightwave Technology, 2016, 34, 85-92.	2.7	71
15	Crosstalk variation of multi-core fibre due to fibre bend. , 2010, , .		67
16	Space-Division Multiplexed Transmission over 4200-km 3-Core Microstructured Fiber., 2012,,.		67
17	Behavior of Inter-Core Crosstalk as a Noise and Its Effect on <i>Q</i> -Factor in Multi-Core Fiber. IEICE Transactions on Communications, 2014, E97.B, 936-944.	0.4	63
18	Coupled-Core Transmission over 7-Core Fiber. , 2019, , .		58

#	Article	IF	Citations
19	109-Tb/s (7Ã $-$ 97Ã $-$ 172-Gb/s SDM/WDM/PDM) QPSK transmission through 16.8-km homogeneous multi-core fiber. , 2011, , .		49
20	Field-Deployed Multi-Core Fiber Testbed., 2019,,.		44
21	Low-Crosstalk and Low-Loss Multi-Core Fiber Utilizing Fiber Bend. , 2011, , .		37
22	Dispersion Impact on the Crosstalk Amplitude Response of Homogeneous Multi-Core Fibers. IEEE Photonics Technology Letters, 2016, 28, 1858-1861.	1.3	36
23	Long-Haul Transmission over Multi-Core Fibers with Coupled Cores. , 2017, , .		31
24	228-Spatial-Channel Bi-Directional Data Communication System Enabled by 39-Core 3-Mode Fiber. Journal of Lightwave Technology, 2019, 37, 1756-1763.	2.7	31
25	Demonstration of Cladding-Pumped Six-Core Erbium-Doped Fiber Amplifier. Journal of Lightwave Technology, 2016, 34, 1654-1660.	2.7	25
26	Six-Mode 19-Core Fiber With 114 Spatial Modes for Weakly-Coupled Mode-Division-Multiplexed Transmission. Journal of Lightwave Technology, 2017, 35, 748-754.	2.7	25
27	125-µm-cladding Coupled Multi-core Fiber with Ultra-low Loss of 0.158 dB/km and Record-low Spatial Mode Dispersion of 6.1 ps/km1/2. , 2016, , .		25
28	Role of polarization-mode coupling in the crosstalk between cores of weakly-coupled multi-core fibers. Optics Express, 2020, 28, 12847.	1.7	23
29	Coherent 1200-km 6 $\rm \tilde{A}-6$ MIMO Mode-Multiplexed Transmission over 3-core Microstructured Fiber. , 2011, , .		22
30	Highly Spectral Efficient C + L-Band Transmission Over a 38-Core-3-Mode Fiber. Journal of Lightwave Technology, 2021, 39, 1048-1055.	2.7	22
31	Ultra-Low-Crosstalk Multi-Core Fiber Feasible to Ultra-Long-Haul Transmission. , 2011, , .		22
32	Coupled-Core Optical Amplifier. , 2017, , .		22
33	Ultra-Low-Crosstalk Multi-Core Fiber Feasible to Ultra-Long-Haul Transmission. , 2011, , .		20
34	Space-Division Multiplexed Transmission Over $3 ilde{A}-3$ Coupled-Core Multicore Fiber. , $2014, , .$		20
35	Coupled-core multi-core fibers: High-spatial-density optical transmission fibers with low differential modal properties. , 2015, , .		20
36	125-µm-Cladding 8-Core Multi-Core Fiber Realizing Ultra-High-Density Cable Suitable for O-Band Short-Reach Optical Interconnects. , 2015, , .		20

#	Article	IF	CITATIONS
37	Advances in low-loss, large-area, and multicore fibers. , 2020, , 3-50.		20
38	6-mode 19-core Fiber for Weakly-coupled Mode-multiplexed Transmission over Uncoupled Cores. , 2016, , .		18
39	Randomly-Coupled Multi-Core Fiber Technology. Proceedings of the IEEE, 2022, 110, 1786-1803.	16.4	18
40	End-to-End Multi-Core Fibre Transmission Link Enabled by Silicon Photonics Transceiver with Grating Coupler Array. , 2017 , , .		17
41	Low-Loss Uncoupled Two-Core Fiber for Power Efficient Practical Submarine Transmission. , 2019, , .		17
42	Multi-Core Fibers for High Capacity Transmission. , 2012, , .		16
43	MIMO-based Signal Processing of Spatially Multiplexed 112-Gb/s PDM-QPSK Signals using Strongly-Coupled 3-Core Fiber. , 2011, , .		13
44	Uncoupled Multi-core Fiber Design for Practical Bidirectional Optical Communications. , 2022, , .		13
45	Propagation Characteristics of Seven-core Fiber for Spatial and Wavelength Division Multiplexed 10-Gbit/s Channels. , 2011, , .		12
46	Minimizing the Modal Delay Spread in Coupled-Core Two-Core Fiber. , 2016, , .		12
47	World first mode/spatial division multiplexing in multi-core fiber using Laguerre-Gaussian mode. , 2011, , .		11
48	Transmission over Randomly-Coupled 4-Core Fiber in Field-Deployed Multi-Core Fiber Cable. , 2020, , .		10
49	Multi-Core Optical Fibers. , 2013, , 321-352.		9
50	Spatial-Spectral-Efficiency-enhanced Multi-Core Fiber. , 2015, , .		9
51	Characterization of interconnect multi-core fiber cable: Mechanical/thermal characteristics and inter-core crosstalk of the straightened cable. , 2016 , , .		8
52	MCF-SMF Hybrid Low-Latency Circuit-Switched Optical Network for Disaggregated Data Centers. Journal of Lightwave Technology, 2019, 37, 4017-4029.	2.7	8
53	Characterization and stability measurement of deployed multicore fibers for quantum applications. Photonics Research, 2021, 9, 1992.	3.4	8
54	Experimental Investigation of Static and Dynamic Crosstalk in Trench-Assisted Multi-Core Fiber. , 2019, , .		8

#	Article	IF	CITATIONS
55	Design strategy of uncoupled multicore fiber enabling high spatial capacity transmission., 2013,,.		7
56	Effective area measurement of few-mode fiber using far field scan technique with Hankel transform generalized for circularly-asymmetric mode. Optics Express, 2018, 26, 11137.	1.7	7
57	Low-Loss and Large-Aeff Multi-core Fiber for SNR Enhancement. , 2012, , .		7
58	Multi-core optical fibers realizing high-density/-capacity transmissions. , 2016, , .		6
59	Multi-Core Fibre with Concaved Double-D Shape Cross Section. , 2017, , .		6
60	Simple-structure low-loss multi-core fiber LC connector using an align-by-contact method. Optics Express, 2021, 29, 9157.	1.7	6
61	MCF-enabled Ultra-High-Density 256-core MT Connector and 96-core Physical-Contact MPO Connector. , 2017, , .		6
62	Spatial Mode Dispersion Suppressed Randomly-Coupled Multi-Core Fiber in Straightened Loose-Tube Cable. , $2019, \ldots$		6
63	Microbending-induced Crosstalk Increase in Heterogeneous Multi-Core Fiber. , 2011, , .		5
64	Transmission over coupled six-core fiber with two in-line cladding-pumped six-core EDFAs., 2015,,.		5
65	Experimental Evaluation of the Time and Frequency Crosstalk Dependency in a 7-Core Multi-Core Fiber. , 2015, , .		5
66	Coupled multicore fiber for space-division multiplexed transmission. Proceedings of SPIE, 2017, , .	0.8	5
67	Random Polarization-Mode Coupling Explains Inter-Core Crosstalk in Uncoupled Multi-Core Fibers. , 2020, , .		5
68	Stable Measurement of Effective Area in Coupled Multi-core Fiber. , 2018, , .		5
69	Evaluation of Dynamic Skew on Spooled and Deployed Multicore Fibers Using O-Band Signals. , 2020, , .		5
70	Transfer Matrix Characterization of Field-Deployed MCFs., 2020,,.		5
71	High-speed interrogation of multiplexed fiber Bragg grating sensors with similar Bragg wavelength by synthesis of optical coherence function. , 2005, 6004, 65.		4
72	Ultra-Low-Crosstalk Multi-Core Fiber Realizing Space-Division Multiplexed Ultra-Long-Haul Transmission. , $2012, , .$		4

#	Article	IF	CITATIONS
73	Dependence of Crosstalk Increase due to Tight Bend on Core Layout of Multi-Core Fiber. , 2014, , .		4
74	Multi-Span Transmission over 65 km 38-Core 3-Mode Fiber. , 2020, , .		4
75	Simple-Structure LC-Type Multi-Core Fiber Connector with Low Insertion Loss. , 2020, , .		4
76	Bandwidth density as a figure of merit for few-mode multi-core fibers. Optics Express, 2017, 25, 24983.	1.7	3
77	Ultra-High-Density MCF Connector Technology. , 2018, , .		3
78	Multi-core Fibers for Space Division Multiplexing. , 2019, , 99-145.		3
79	Multiplexed FBG Sensor System by Synthesis of Optical Coherence Function with Active Beat Compensation., 2006,,.		3
80	Modal Dynamics in Spatially Multiplexed Links. , 2019, , .		3
81	Transfer Matrix Characterization and Mode-Dependent Loss Optimization of Packaged 7-Core Coupled-Core EDFA. , 2021, , .		3
82	Characterisation of a Coupled-Core Fiber Using Dual-Comb Swept-Wavelength Interferometry., 2021,,.		3
83	Accuracy of analytical expressions for Rayleigh backscattered crosstalk in bidirectional multi-core fiber transmissions. Optics Express, 2022, 30, 23943.	1.7	3
84	Propagation of Laguerre-Gaussian mode light through multi-core fiber at telecom wavelength. , 2011, , .		2
85	Multi-core Fibers for Space Division Multiplexing. , 2018, , 1-46.		2
86	Measurement of Mode Dependent Loss of Randomly-Coupled Multi-Core Fiber using Scrambling Method., 2021,,.		2
87	Effective Area Measurement of Few-Mode Fiber Using Far Field Scan Technique with Hankel Transform Generalized for Circularly-Asymmetric Mode. , 2016, , .		2
88	Low Loss Splicing Between Coupled Multi-Core Fibers with Thermally Expanded Cores. , 2018, , .		2
89	Physical-contact 256-core MPO Connector with Flat Polished Multi-core Fibers. , 2018, , .		2
90	Multi-core fibers and their crosstalk characteristics. , 2012, , .		1

#	Article	IF	CITATIONS
91	Multi-core Fibers for Space Division Multiplexing. , 2018, , 1-46.		1
92	Design of Multi-Core and Coupled-Core Fibers. , 2018, , .		1
93	Stable Measurement of Near/Far Field Profiles of Coupled Multi-Core Fiber. , 2019, , .		1
94	Characterization of Coupled-Core Fiber Amplifiers Using Swept-Wavelength Interferometer. , 2019, , .		1
95	Relation between Fiber Parameters and Polarization Changes due to Mechanical Vibrations. , 2009, , .		0
96	Crosstalk Increase in Tightly Bent Multi-Core Fiber Due to Power Coupling Mediated by Cladding Modes. , 2013, , .		0
97	Ultra-low loss fiber for practicable trans-oceanic high capacity transmission. , 2016, , .		O
98	Accurate Passive Rotational Alignment of Multi-Core Fibre with Double-D-Shape Cladding on V Groove. , 2018, , .		0
99	Cladding-Pumped Coupled-Core EDFA. , 2018, , .		0
100	Multi-core Fibers for Space Division Multiplexing. , 2019, , 1-47.		0