Jing Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7334421/publications.pdf

Version: 2024-02-01

16 papers	916 citations	15 h-index	940533 16 g-index
16	16	16	1694
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The effect of the EP3 antagonist DG-041 on male mice with diet-induced obesity. Prostaglandins and Other Lipid Mediators, 2019, 144, 106353.	1.9	11
2	Plasma Periostin Levels Are Increased in Chinese Subjects with Obesity and Type 2 Diabetes and Are Positively Correlated with Glucose and Lipid Parameters. Mediators of Inflammation, 2016, 2016, 1-6.	3.0	31
3	CD70 Exacerbates Blood Pressure Elevation and Renal Damage in Response to Repeated Hypertensive Stimuli. Circulation Research, 2016, 118, 1233-1243.	4.5	128
4	Liver <scp>X</scp> receptor activation increases hepatic fatty acid desaturation by the induction of <scp>SCD1 </scp> expression through an <scp>LXR</scp> αâ€ <scp>SREBP1c</scp> â€dependent mechanism (è,Xå—体æ′»åŒ–å•通过LXRαâ€SREBP1cä¾èµ–的机制è⁻±å⁻¼SCD1è;¨è¾¾æ¥å¢žåŠè,è,,è,,èé…,ä¸é¥±å	1.8 和度). Jo	35 ournal of Dial
5	Thyroid hormone-responsive SPOT 14 homolog promotes hepatic lipogenesis, and its expression is regulated by Liver X receptor $\hat{l}\pm$ through a sterol regulatory element-binding protein 1c-dependent mechanism in mice. Hepatology, 2013, 58, 617-628.	7.3	72
6	Pancreaticâ€derived factor promotes lipogenesis in the mouse liver: Role of the Forkhead box 1 signaling pathway. Hepatology, 2011, 53, 1906-1916.	7.3	53
7	Proteomics analysis reveals diabetic kidney as a ketogenic organ in type 2 diabetes. American Journal of Physiology - Endocrinology and Metabolism, 2011, 300, E287-E295.	3.5	67
8	Peroxisome proliferator-activated receptors and renal diseases. Frontiers in Bioscience - Landmark, 2009, Volume, 995.	3.0	24
9	Induction of MIF expression by oxidized LDL via activation of NF-κB in vascular smooth muscle cells. Atherosclerosis, 2009, 207, 428-433.	0.8	35
10	Klotho is a target gene of PPAR-Î ³ . Kidney International, 2008, 74, 732-739.	5.2	142
11	Expression profiling of hepatic genes associated with lipid metabolism in nephrotic rats. American Journal of Physiology - Renal Physiology, 2008, 295, F662-F671.	2.7	37
12	Peroxisome Proliferator–Activated Receptor α/γ Dual Agonist Tesaglitazar Attenuates Diabetic Nephropathy in <i>db/db</i> Mice. Diabetes, 2007, 56, 2036-2045.	0.6	70
13	Antihypertensive effects of selective prostaglandin E2 receptor subtype 1 targeting. Journal of Clinical Investigation, 2007, 117, 2496-2505.	8.2	94
14	Expression of mouse membrane-associated prostaglandin E2 synthase-2 (mPGES-2) along the urogenital tract. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2006, 1761, 1459-1468.	2.4	27
15	Liver X receptor agonist TO-901317 upregulates SCD1 expression in renal proximal straight tubule. American Journal of Physiology - Renal Physiology, 2006, 290, F1065-F1073.	2.7	42
16	Liver X receptor-α mediates cholesterol efflux in glomerular mesangial cells. American Journal of Physiology - Renal Physiology, 2004, 287, F886-F895.	2.7	48