Jayaprakash P

List of Publications by Citations

Source: https://exaly.com/author-pdf/7334161/jayaprakash-p-publications-by-citations.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

38	559	11	23
papers	citations	h-index	g-index
44	741 ext. citations	4.4	3.94
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
38	Comprehensive Study of DSTATCOM Configurations. <i>IEEE Transactions on Industrial Informatics</i> , 2014 , 10, 854-870	11.9	105
37	A T-Connected Transformer and Three-leg VSC Based DSTATCOM for Power Quality Improvement. <i>IEEE Transactions on Power Electronics</i> , 2008 , 23, 2710-2718	7.2	91
36	New control approach for capacitor supported DSTATCOM in three-phase four wire distribution system under non-ideal supply voltage conditions based on synchronous reference frame theory. <i>International Journal of Electrical Power and Energy Systems</i> , 2011 , 33, 1109-1117	5.1	72
35	Implementation of Neural-Network-Controlled Three-Leg VSC and a Transformer as Three-Phase Four-Wire DSTATCOM. <i>IEEE Transactions on Industry Applications</i> , 2011 , 47, 1892-1901	4.3	62
34	Reduced Rating VSC With a Zig-Zag Transformer for Current Compensation in a Three-Phase Four-Wire Distribution System. <i>IEEE Transactions on Power Delivery</i> , 2009 , 24, 249-259	4.3	57
33	Magnetics for neutral current compensation in three-phase four-wire distribution system 2010,		16
32	Binary Hybrid Multilevel Inverter-Based Grid Integrated Solar Energy Conversion System With Damped SOGI Control. <i>IEEE Access</i> , 2020 , 8, 37214-37228	3.5	15
31	Three-Phase 4-Wire DSTATCOM Based on H-Bridge VSC with a Star/Hexagon Transformer for Power Quality Improvement 2008 ,		15
30	Control of Reduced Rating Dynamic Voltage Restorer with Battery Energy Storage System 2008,		14
29	Three-Leg Voltage Source Converter Integrated with T-connected Transformer as Three-phase Four-wire Distribution Static Compensator for Power Quality Improvement. <i>Electric Power Components and Systems</i> , 2009 , 37, 817-831	1	12
28	Integrated three-leg VSC with a zig-zag transformer based three-phase four-wire DSTATCOM for power quality improvement 2008 ,		12
27	Stand alone wind power generating system employing permanent magnet synchronous generator 2008 ,		9
26	Isolated H-bridge VSC Based 3-phase 4-wire DSTATCOM for power quality improvement 2008 ,		8
25	Multi-Objective Solar Power Conversion System With MGI Control for Grid Integration at Adverse Operating Conditions. <i>IEEE Transactions on Sustainable Energy</i> , 2020 , 11, 2901-2910	8.2	5
24	A robust control algorithm for self supported dynamic voltage restorer (DVR) 2011 ,		5
23	Digital Signal Processor Implementation of Isolated Reduced-rating Voltage Source Converter Using a Zig-zag Transformer for Three-phase Four-wire Distribution Static Compensator. <i>Electric Power Components and Systems</i> , 2011 , 39, 15-30	1	5
22	DSP based implementation of a three-phase four-wire DSTATCOM for voltage regulation and power quality improvement 2009 ,		5

21	DSTATCOM with reduced switches using two-leg VSC and a zig-zag transformer for power quality improvement in three-phase four-wire distribution system 2008 ,		5
20	Realization of Cascaded H-Bridge Multilevel Inverter Based Grid Integrated Solar Energy System With Band Stop Generalized Integral Control. <i>IEEE Transactions on Industry Applications</i> , 2021 , 57, 764-	77 3 3	5
19	Indirect control of capacitor supported DVR for power quality improvement in distribution system 2008 ,		4
18	Reduction in rating of voltage source converter of DSTATCOM using a zig-zag transformer 2012,		3
17	Implementation of an Isolated Three-Leg VSC with Star/Hexagon Transformer Based Three-Phase Four-Wire DSTATCOM 2009 ,		3
16	Frame-Angle Controlled Wavelet Modulated Inverter and Self-Recurrent Wavelet Neural Network-Based Maximum Power Point Tracking for Wind Energy Conversion System. <i>IEEE Access</i> , 2020 , 8, 171373-171386	3.5	3
15	Single-Layer Decoupled Multiple-Order Generalized Integral Control for Single-Stage Solar Energy Grid Integrator With Maximum Power Extraction. <i>IEEE Transactions on Industrial Informatics</i> , 2021 , 17, 100-109	11.9	3
14	Cascaded H-Bridge Multilevel Inverter Based Grid Integration of Solar Power with PQ Improvement 2018 ,		3
13	Isolated wind energy conversion system for three-phase four wire loads employing Adaline based voltage-frequency controller 2012 ,		2
12	Icoslalgorithm based control of zig-zag transformer connected three phase four wire DSTATCOM 2012 ,		2
11	Neural network theory based voltage and frequency controller for standalone wind energy conversion system 2010 ,		2
10	DSOGI with proportional resonance controlled CHB inverter based two-stage exalted photovoltaic integration in power system with power quality enhancement. <i>IET Renewable Power Generation</i> , 2020 , 14, 3126-3137	2.9	2
9	Trinary Hybrid Cascaded H-Bridge Multilevel Inverter-Based Grid-Connected Solar Power Transfer System Supporting Critical Load. <i>IEEE Systems Journal</i> , 2021 , 15, 4116-4125	4.3	2
8	A Cascaded Generalized Integral Control for Multiobjective Grid-Connected Solar Energy Transfer System. <i>IEEE Transactions on Industrial Electronics</i> , 2021 , 68, 12385-12395	8.9	2
7	DRISHTIA gesture controlled text to braille converter 2012 ,		1
6	Voltage- frequency controller for stand alone WECS employing permanent magnet synchronous generator 2009 ,		1
5	Three single-phase voltage source converter based three-phase four wire DSTATCOM 2009,		1
4	Implementation of Neural Network Controlled Three-Leg VSC and a Transformer as Three-Phase Four-Wire DSTATCOM 2009 ,		1

3	Star-hexagon transformer and non-isolated three-leg VSC based three-phase Four-wire DSTATCOM. International Journal of Power and Energy Conversion, 2009, 1, 198	0.4	1	
2	Maximum Power Tracking and Power Sharing in Grid Connected WECS Using Modified PFC Rectifier and PR Controlled Inverter. <i>Electric Power Components and Systems</i> , 2020 , 48, 1584-1597	1	1	
1	Grid integrated solar energy transfer system with a two-layer complex coefficient filter-based control. <i>IET Power Electronics</i> , 2022 , 15, 168-185	2.2	1	