Christian Beyer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7333657/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Activation of canonical Wnt signalling is required for TGF-β-mediated fibrosis. Nature Communications, 2012, 3, 735.	5.8	649
2	Orphan nuclear receptor NR4A1 regulates transforming growth factor-β signaling and fibrosis. Nature Medicine, 2015, 21, 150-158.	15.2	267
3	Autophagy regulates TNFα-mediated joint destruction in experimental arthritis. Annals of the Rheumatic Diseases, 2013, 72, 761-768.	0.5	249
4	The role of microparticles in the pathogenesis of rheumatic diseases. Nature Reviews Rheumatology, 2010, 6, 21-29.	3.5	232
5	Platelet-derived serotonin links vascular disease and tissue fibrosis. Journal of Experimental Medicine, 2011, 208, 961-972.	4.2	222
6	β-catenin is a central mediator of pro-fibrotic Wnt signaling in systemic sclerosis. Annals of the Rheumatic Diseases, 2012, 71, 761-767.	0.5	174
7	lgG4 immune response in Churg–Strauss syndrome. Annals of the Rheumatic Diseases, 2012, 71, 390-393.	0.5	171
8	The Wnt antagonists DKK1 and SFRP1 are downregulated by promoter hypermethylation in systemic sclerosis. Annals of the Rheumatic Diseases, 2014, 73, 1232-1239.	0.5	166
9	Nintedanib inhibits fibroblast activation and ameliorates fibrosis in preclinical models of systemic sclerosis. Annals of the Rheumatic Diseases, 2016, 75, 883-890.	0.5	154
10	Nintedanib inhibits macrophage activation and ameliorates vascular and fibrotic manifestations in the Fra2 mouse model of systemic sclerosis. Annals of the Rheumatic Diseases, 2017, 76, 1941-1948.	0.5	149
11	Animal models of systemic sclerosis: Prospects and limitations. Arthritis and Rheumatism, 2010, 62, 2831-2844.	6.7	135
12	PU.1 controls fibroblast polarization and tissue fibrosis. Nature, 2019, 566, 344-349.	13.7	121
13	Notch signalling regulates fibroblast activation and collagen release in systemic sclerosis. Annals of the Rheumatic Diseases, 2011, 70, 1304-1310.	0.5	116
14	JAKâ€2 as a novel mediator of the profibrotic effects of transforming growth factor β in systemic sclerosis. Arthritis and Rheumatism, 2012, 64, 3006-3015.	6.7	115
15	Vitamin D receptor regulates TGF-β signalling in systemic sclerosis. Annals of the Rheumatic Diseases, 2015, 74, e20-e20.	0.5	111
16	Inhibition of Notch signaling prevents experimental fibrosis and induces regression of established fibrosis. Arthritis and Rheumatism, 2011, 63, 1396-1404.	6.7	107
17	Tyrosine kinase signaling in fibrotic disorders. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2013, 1832, 897-904.	1.8	103
18	Hypoxia. Hypoxia in the pathogenesis of systemic sclerosis. Arthritis Research and Therapy, 2009, 11, 220.	1.6	99

CHRISTIAN BEYER

#	Article	IF	CITATIONS
19	Blockade of canonical Wnt signalling ameliorates experimental dermal fibrosis. Annals of the Rheumatic Diseases, 2013, 72, 1255-1258.	0.5	98
20	Inactivation of autophagy ameliorates glucocorticoid-induced and ovariectomy-induced bone loss. Annals of the Rheumatic Diseases, 2016, 75, 1203-1210.	0.5	98
21	Inhibition of glycogen synthase kinase 3Â induces dermal fibrosis by activation of the canonical Wnt pathway. Annals of the Rheumatic Diseases, 2011, 70, 2191-2198.	0.5	96
22	Inhibition of H3K27 histone trimethylation activates fibroblasts and induces fibrosis. Annals of the Rheumatic Diseases, 2013, 72, 614-620.	0.5	93
23	Stimulation of the soluble guanylate cyclase (sGC) inhibits fibrosis by blocking non-canonical TGFβ signalling. Annals of the Rheumatic Diseases, 2015, 74, 1408-1416.	0.5	92
24	The tyrosine phosphatase SHP2 controls TGFÎ ² -induced STAT3 signaling to regulate fibroblast activation and fibrosis. Nature Communications, 2018, 9, 3259.	5.8	89
25	Inhibition of activator protein 1 signaling abrogates transforming growth factor β–mediated activation of fibroblasts and prevents experimental fibrosis. Arthritis and Rheumatism, 2012, 64, 1642-1652.	6.7	81
26	Type 2 innate lymphoid cell counts are increased in patients with systemic sclerosis and correlate with the extent of fibrosis. Annals of the Rheumatic Diseases, 2016, 75, 623-626.	0.5	78
27	Anti-interleukin 6 receptor therapy as rescue treatment for giant cell arteritis. Annals of the Rheumatic Diseases, 2011, 70, 1874-1875.	0.5	77
28	Stimulation of soluble guanylate cyclase reduces experimental dermal fibrosis. Annals of the Rheumatic Diseases, 2012, 71, 1019-1026.	0.5	74
29	Inactivation of the transcription factor STAT-4 prevents inflammation-driven fibrosis in animal models of systemic sclerosis. Arthritis and Rheumatism, 2011, 63, 800-809.	6.7	73
30	Inhibition of hedgehog signalling prevents experimental fibrosis and induces regression of established fibrosis. Annals of the Rheumatic Diseases, 2012, 71, 785-789.	0.5	73
31	Inactivation of tankyrases reduces experimental fibrosis by inhibiting canonical Wnt signalling. Annals of the Rheumatic Diseases, 2013, 72, 1575-1580.	0.5	69
32	Inhibition of phosphodiesterase 4 (PDE4) reduces dermal fibrosis by interfering with the release of interleukin-6 from M2 macrophages. Annals of the Rheumatic Diseases, 2017, 76, 1133-1141.	0.5	66
33	Stimulators of soluble guanylate cyclase (sGC) inhibit experimental skin fibrosis of different aetiologies. Annals of the Rheumatic Diseases, 2015, 74, 1621-1625.	0.5	60
34	The extracellular release of DNA and HMGB1 from Jurkat T cells during <i>inÂvitro</i> necrotic cell death. Innate Immunity, 2012, 18, 727-737.	1.1	55
35	Jun N-terminal kinase as a potential molecular target for prevention and treatment of dermal fibrosis. Annals of the Rheumatic Diseases, 2012, 71, 737-745.	0.5	53
36	Inhibition of hedgehog signaling for the treatment of murine sclerodermatous chronic graft-versus-host disease. Blood, 2012, 120, 2909-2917.	0.6	53

CHRISTIAN BEYER

#	Article	IF	CITATIONS
37	S100A4 amplifies TGF-β-induced fibroblast activation in systemic sclerosis. Annals of the Rheumatic Diseases, 2015, 74, 1748-1755.	0.5	52
38	Innovative antifibrotic therapies in systemic sclerosis. Current Opinion in Rheumatology, 2012, 24, 274-280.	2.0	48
39	Microparticles stimulate angiogenesis by inducing ELR+ CXC-chemokines in synovial fibroblasts. Journal of Cellular and Molecular Medicine, 2011, 15, 756-762.	1.6	45
40	Inhibition of casein kinase II reduces TGFβ induced fibroblast activation and ameliorates experimental fibrosis. Annals of the Rheumatic Diseases, 2015, 74, 936-943.	0.5	45
41	Endothelial progenitor cells: Novel players in the pathogenesis of rheumatic diseases. Arthritis and Rheumatism, 2009, 60, 3168-3179.	6.7	39
42	Liver X receptors orchestrate osteoblast/osteoclast crosstalk and counteract pathologic bone loss. Journal of Bone and Mineral Research, 2012, 27, 2442-2451.	3.1	35
43	Protein kinases G are essential downstream mediators of the antifibrotic effects of sGC stimulators. Annals of the Rheumatic Diseases, 2018, 77, 459-459.	0.5	33
44	Combined inhibition of morphogen pathways demonstrates additive antifibrotic effects and improved tolerability. Annals of the Rheumatic Diseases, 2014, 73, 1264-1268.	0.5	32
45	Pomalidomide is effective for prevention and treatment of experimental skin fibrosis. Annals of the Rheumatic Diseases, 2012, 71, 1895-1899.	0.5	31
46	EUSTAR biobanking: recommendations for the collection, storage and distribution of biospecimens in scleroderma research. Annals of the Rheumatic Diseases, 2011, 70, 1178-1182.	0.5	30
47	Inhibition of Notch1 promotes hedgehog signalling in a HES1-dependent manner in chondrocytes and exacerbates experimental osteoarthritis. Annals of the Rheumatic Diseases, 2016, 75, 2037-2044.	0.5	29
48	Inhibition of sumoylation prevents experimental fibrosis. Annals of the Rheumatic Diseases, 2012, 71, 1904-1908.	0.5	28
49	Activation of liver X receptors inhibits experimental fibrosis by interfering with interleukin-6 release from macrophages. Annals of the Rheumatic Diseases, 2015, 74, 1317-1324.	0.5	28
50	Activating transcription factor 3 regulates canonical TGFÎ ² signalling in systemic sclerosis. Annals of the Rheumatic Diseases, 2016, 75, 586-592.	0.5	28
51	Novel targets in bone and cartilage. Best Practice and Research in Clinical Rheumatology, 2010, 24, 489-496.	1.4	27
52	Inactivation of fatty acid amide hydrolase exacerbates experimental fibrosis by enhanced endocannabinoid-mediated activation of CB1. Annals of the Rheumatic Diseases, 2012, 71, 2051-2054.	0.5	26
53	Inactivation of evenness interrupted (EVI) reduces experimental fibrosis by combined inhibition of canonical and non-canonical Wnt signalling. Annals of the Rheumatic Diseases, 2014, 73, 624-627.	0.5	26
54	Are tyrosine kinase inhibitors promising for the treatment of systemic sclerosis and other fibrotic diseases?. Swiss Medical Weekly, 2010, 140, w13050.	0.8	26

CHRISTIAN BEYER

#	Article	IF	CITATIONS
55	Morphogen pathways as molecular targets for the treatment of fibrosis in systemic sclerosis. Archives of Dermatological Research, 2013, 305, 1-8.	1.1	25
56	Morphogen Pathways in Systemic Sclerosis. Current Rheumatology Reports, 2013, 15, 299.	2.1	23
57	Activation of pregnane X receptor inhibits experimental dermal fibrosis. Annals of the Rheumatic Diseases, 2013, 72, 621-625.	0.5	22
58	Pharmacological inhibition of porcupine induces regression of experimental skin fibrosis by targeting Wnt signalling. Annals of the Rheumatic Diseases, 2017, 76, 773-778.	0.5	22
59	Translational engagement of lysophosphatidic acid receptor 1 in skin fibrosis: from dermal fibroblasts of patients with scleroderma to tight skin 1 mouse. British Journal of Pharmacology, 2020, 177, 4296-4309.	2.7	19
60	Development of three-dimensional prints of arthritic joints for supporting patients' awareness to structural damage. Arthritis Research and Therapy, 2017, 19, 34.	1.6	17
61	Modeling nuclear molecule release during <i>in vitro</i> cell death. Autoimmunity, 2013, 46, 298-301.	1.2	16
62	Educational needs and preferences of young European clinicians and physician researchers working in the field of rheumatology. RMD Open, 2016, 2, e000240.	1.8	14
63	The Nuclear Receptor Constitutive Androstane Receptor/NR113 Enhances the Profibrotic Effects of Transforming Growth Factor β and Contributes to the Development of Experimental Dermal Fibrosis. Arthritis and Rheumatology, 2014, 66, 3140-3150.	2.9	13
64	Elevated serum levels of sonic hedgehog are associated with fibrotic and vascular manifestations in systemic sclerosis. Annals of the Rheumatic Diseases, 2018, 77, 626-628.	0.5	12
65	Changing paradigms in spondylarthritis: The myofibroblast signature. Arthritis and Rheumatism, 2013, 65, 24-27.	6.7	7
66	Deciphering the proâ€fibrotic phenotype of fibroblasts in systemic sclerosis. Experimental Dermatology, 2014, 23, 99-100.	1.4	5
67	The prostaglandin E ₂ system: A toolbox for skeletal repair?. Arthritis and Rheumatism, 2011, 63, 871-873.	6.7	4
68	Strawberry gingivitis. Joint Bone Spine, 2012, 79, 322.	0.8	3
69	The scientific basis for novel treatments of systemic sclerosis. F1000 Medicine Reports, 2009, 1, .	2.9	3
70	Biomarkers of Fibrosis. , 2012, , 283-290.		0
71	A8.3â€Deficit of S100A4 Prevents Joint Destruction and Systemic Bone Loss in hTNFtg Mouse Model. Annals of the Rheumatic Diseases, 2013, 72, A58.1-A58.	O.5	0
72	Reports from the 2015 American College of Rheumatology Congress. Journal of Scleroderma and Related Disorders, 2016, 1, 16-20.	1.0	0