List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7333070/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Conformationally Stable Acyclic βâ€Hairpin Scaffold Tolerating the Incorporation of Poorly βâ€Sheetâ€Prone Amino Acids. ChemBioChem, 2022, 23, .	1.3	6
2	Controlling the conformational stability of coiled-coil peptides with a single stereogenic center of a peripheral I ² -amino acid residue. RSC Advances, 2022, 12, 4640-4647.	1.7	0
3	Design and Engineering of Miniproteins. ACS Bio & Med Chem Au, 2022, 2, 316-327.	1.7	3
4	Rational Development of Bacterial Ureases Inhibitors. Chemical Record, 2022, 22, e202200026.	2.9	11
5	Miniproteins in medicinal chemistry. Bioorganic and Medicinal Chemistry Letters, 2022, 71, 128806.	1.0	6
6	A computationally designed β-amino acid-containing miniprotein. Chemical Communications, 2021, 57, 6015-6018.	2.2	5
7	Hierarchical approach for the rational construction of helix-containing nanofibrils using α,β-peptides. Nanoscale, 2021, 13, 4000-4015.	2.8	8
8	Towards Foldameric Miniproteins: A Helixâ€Turnâ€Helix Motif. ChemPlusChem, 2021, 86, 646-649.	1.3	4
9	Autofluorescence of Amyloids Determined by Enantiomeric Composition of Peptides. Journal of Physical Chemistry B, 2021, 125, 5502-5510.	1.2	15
10	Constrained beta-amino acid-containing miniproteins. Organic and Biomolecular Chemistry, 2021, 19, 4272-4278.	1.5	5
11	Covalent Inhibition of Bacterial Urease by Bifunctional Catechol-Based Phosphonates and Phosphinates. Journal of Medicinal Chemistry, 2021, 64, 404-416.	2.9	18
12	Systematic â€`foldamerization' of peptide inhibiting p53-MDM2/X interactions by the incorporation of trans- or cis-2-aminocyclopentanecarboxylic acid residues. European Journal of Medicinal Chemistry, 2020, 208, 112814.	2.6	11
13	Covalent and noncovalent constraints yield a figure eight-like conformation of a peptide inhibiting the menin-MLL interaction. European Journal of Medicinal Chemistry, 2020, 207, 112748.	2.6	4
14	Nuclear immunophilin FKBP39 from Drosophila melanogaster drives spontaneous liquid-liquid phase separation. International Journal of Biological Macromolecules, 2020, 163, 108-119.	3.6	3
15	Catechol-based inhibitors of bacterial urease. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 1085-1089.	1.0	12
16	Bisphosphonic acids and related compounds as inhibitors of nucleotide―and polyphosphateâ€processing enzymes: A PPK1 and PPK2 case study. Chemical Biology and Drug Design, 2019, 93, 1197-1206.	1.5	8
17	Structural exploration of cinnamate-based phosphonic acids as inhibitors of bacterial ureases. European Journal of Medicinal Chemistry, 2018, 159, 307-316.	2.6	14
18	Structural Insights into Substrate Selectivity and Activity of Bacterial Polyphosphate Kinases. ACS Catalysis, 2018, 8, 10746-10760.	5.5	48

#	Article	IF	CITATIONS
19	Helix-loop-helix peptide foldamers and their use in the construction of hydrolase mimetics. Bioorganic Chemistry, 2018, 81, 356-361.	2.0	10
20	Phytotoxicity of aminobisphosphonates targeting both <i>î´</i> ¹ -pyrroline-5-carboxylate reductase and glutamine synthetase. Pest Management Science, 2017, 73, 435-443.	1.7	22
21	Controlling the Helix Handedness of ααÎ2â€Peptide Foldamers through Sequence Shifting. Angewandte Chemie - International Edition, 2017, 56, 2087-2091.	7.2	16
22	Potent covalent inhibitors of bacterial urease identified by activity-reactivity profiling. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 1346-1350.	1.0	17
23	Controlling the Helix Handedness of ααβâ€₽eptide Foldamers through Sequence Shifting. Angewandte Chemie, 2017, 129, 2119-2123.	1.6	3
24	Novel organophosphorus scaffolds of urease inhibitors obtained by substitution of Morita-Baylis-Hillman adducts with phosphorus nucleophiles. European Journal of Medicinal Chemistry, 2017, 133, 107-120.	2.6	16
25	Bioactive Macrocyclic Inhibitors of the PDâ€1/PDâ€L1 Immune Checkpoint. Angewandte Chemie, 2017, 129, 13920-13923.	1.6	13
26	Bioactive Macrocyclic Inhibitors of the PDâ€1/PDâ€L1 Immune Checkpoint. Angewandte Chemie - International Edition, 2017, 56, 13732-13735.	7.2	131
27	Discovery of new leads against Mycobacterium tuberculosis using scaffold hopping and shape based similarity. Bioorganic and Medicinal Chemistry, 2017, 25, 4835-4844.	1.4	18
28	Frontispiece: Sequence Engineering to Control the Helix Handedness of Peptide Foldamers. Chemistry - A European Journal, 2017, 23, .	1.7	0
29	Aminophosphinates against Helicobacter pylori ureolysis—Biochemical and whole-cell inhibition characteristics. PLoS ONE, 2017, 12, e0182437.	1.1	9
30	Sequence Engineering to Control the Helix Handedness of Peptide Foldamers. Chemistry - A European Journal, 2017, 23, 14980-14986.	1.7	8
31	1,2-Benzisoselenazol-3(2 <i>H</i>)-one Derivatives As a New Class of Bacterial Urease Inhibitors. Journal of Medicinal Chemistry, 2016, 59, 8125-8133.	2.9	82
32	A structural insight into the P1 S1 binding mode of diaminoethylphosphonic and phosphinic acids, selective inhibitors of alanine aminopeptidases. European Journal of Medicinal Chemistry, 2016, 117, 187-196.	2.6	24
33	Peptide-based inhibitors of protein–protein interactions. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 707-713.	1.0	136
34	Bisphosphonic acids as effective inhibitors of <i>Mycobacterium tuberculosis</i> glutamine synthetase. Journal of Enzyme Inhibition and Medicinal Chemistry, 2016, 31, 931-938.	2.5	15
35	Zwitterionic Phosphorylated Quinines as Chiral Solvating Agents for NMR Spectroscopy. Chirality, 2015, 27, 752-760.	1.3	12
36	Bis(aminomethyl)phosphinic Acid, a Highly Promising Scaffold for the Development of Bacterial Urease Inhibitors. ACS Medicinal Chemistry Letters, 2015, 6, 146-150.	1.3	31

#	Article	IF	CITATIONS
37	A three-component synthesis of aminomethylenebis-H-phosphinates. Tetrahedron Letters, 2014, 55, 219-223.	0.7	12
38	Structure-Guided, Single-Point Modifications in the Phosphinic Dipeptide Structure Yield Highly Potent and Selective Inhibitors of Neutral Aminopeptidases. Journal of Medicinal Chemistry, 2014, 57, 8140-8151.	2.9	49
39	Peptides Containing \hat{l}^2 -Amino Acid Patterns: Challenges and Successes in Medicinal Chemistry. Journal of Medicinal Chemistry, 2014, 57, 9718-9739.	2.9	249
40	An integrated approach to the ligand binding specificity of Neisseria meningitidis M1 alanine aminopeptidase by fluorogenic substrate profiling, inhibitory studies and molecular modeling. Biochimie, 2013, 95, 419-428.	1.3	20
41	The crystal structure of Sporosarcina pasteurii urease in a complex with citrate provides new hints for inhibitor design. Journal of Biological Inorganic Chemistry, 2013, 18, 391-399.	1.1	49
42	Replacement of Thr ³² and Gln ³⁴ in the <i>C</i> -Terminal Neuropeptide Y Fragment 25–36 by <i>cis</i> -Cyclobutane and <i>cis</i> -Cyclopentane β-Amino Acids Shifts Selectivity toward the Y ₄ Receptor. Journal of Medicinal Chemistry, 2013, 56, 8422-8431.	2.9	46
43	Toward very potent, non-covalent organophosphonate inhibitors ofÂcathepsin C and related enzymes by 2-amino-1-hydroxy-alkanephosphonates dipeptides. Biochimie, 2013, 95, 1640-1649.	1.3	8
44	Synthesis and Evaluation of Effective Inhibitors of Plant δ ¹ -Pyrroline-5-carboxylate Reductase. Journal of Agricultural and Food Chemistry, 2013, 61, 6792-6798.	2.4	51
45	Phosphorylation as a method of tuning the enantiodiscrimination potency of quinine—An NMR study. Chirality, 2012, 24, 318-328.	1.3	15
46	N-substituted aminomethanephosphonic and aminomethane-P-methylphosphinic acids as inhibitors of ureases. Amino Acids, 2012, 42, 1937-1945.	1.2	38
47	δ1-Pyrroline-5-carboxylate reductase as a new target for therapeutics: inhibition of the enzyme from Streptococcus pyogenes and effects in vivo. Amino Acids, 2012, 42, 2283-2291.	1.2	18
48	Unique α,β―and α,α,β,βâ€Peptide Foldamers Based on <i>cis</i> â€Î²â€Aminocyclopentanecarboxylic Acid. Chemie - International Edition, 2012, 51, 2208-2212.	Angewand 9.2	lte ₈₀
49	Three component Kabachnik-Fields condensation leading to substituted aminomethane-P-hydroxymethylphosphonic acids as a tool for screening of bacterial urease inhibitors. Arkivoc, 2012, 2012, 33-43.	0.3	6
50	Urease inhibitors as potential drugs for gastric and urinary tract infections: a patent review. Expert Opinion on Therapeutic Patents, 2011, 21, 945-957.	2.4	153
51	Remarkable Potential of the α-Aminophosphonate/Phosphinate Structural Motif in Medicinal Chemistry. Journal of Medicinal Chemistry, 2011, 54, 5955-5980.	2.9	529
52	Computer-Aided Optimization of Phosphinic Inhibitors of Bacterial Ureases. Journal of Medicinal Chemistry, 2010, 53, 5597-5606.	2.9	59
53	Enantiodifferentiation of αâ€hydroxyalkanephosphonic acids in ³¹ P NMR with application of α yclodextrin as chiral discriminating agent. Chirality, 2010, 22, 63-68.	1.3	24
54	Effectiveness and mode of action of phosphonate inhibitors of plant glutamine synthetase. Pest Management Science, 2010, 66, 51-58.	1.7	38

#	Article	IF	CITATIONS
55	Cinchona alkaloids as privileged chiral solvating agents for the enantiodiscrimination of N-protected aminoalkanephosphonates—a comparative NMR study. Tetrahedron: Asymmetry, 2009, 20, 2709-2714.	1.8	21
56	Insight into the mechanism of three component condensation leading to aminomethylenebisphosphonates. Journal of Organometallic Chemistry, 2009, 694, 3806-3813.	0.8	40
57	Design, Synthesis, and Evaluation of Novel Organophosphorus Inhibitors of Bacterial Ureases. Journal of Medicinal Chemistry, 2008, 51, 5736-5744.	2.9	81
58	Tailoring the Structure of Aminobisphosphonates To Target Plant P5C Reductase. Journal of Agricultural and Food Chemistry, 2008, 56, 3193-3199.	2.4	51
59	Inhibitors of Glutamine Synthetase and their Potential Application in Medicine. Mini-Reviews in Medicinal Chemistry, 2008, 8, 869-878.	1.1	52
60	Organophosphorus Supramolecular Chemistry. Part 2. Organophosphorus Receptors. Current Organic Chemistry, 2007, 11, 1593-1609.	0.9	12
61	Plant P5C Reductase as a New Target for Aminomethylenebisphosphonates. Journal of Agricultural and Food Chemistry, 2007, 55, 4340-4347.	2.4	38
62	Analysis of pDâ€Dependent complexation of <i>N</i> â€benzyloxycarbonylaminophosphonic acids by α yclodextrin. Enantiodifferentiation of phosphonic acid p <i>K</i> _a values. Chirality, 2007, 19, 764-768.	1.3	7
63	Chiral discrimination of ethyl and phenyl N-benzyloxycarbonylaminophosphonates by cyclodextrins. Tetrahedron: Asymmetry, 2007, 18, 1579-1584.	1.8	12
64	Enantiodifferentiation of N-benzyloxycarbonylaminophosphonic and phosphinic acids and their esters using cyclodextrins by means of capillary electrophoresis. Journal of Chromatography A, 2007, 1138, 284-290.	1.8	11
65	From Inhibitors of Lap to Inhibitors of Pal. Challenges and Advances in Computational Chemistry and Physics, 2007, , 365-398.	0.6	1
66	Phosphinothricin Analogues as Inhibitors of Plant Glutamine Synthetases. Journal of Agricultural and Food Chemistry, 2006, 54, 796-802.	2.4	20
67	Computer-aided analysis of the interactions of glutamine synthetase with its inhibitors. Bioorganic and Medicinal Chemistry, 2006, 14, 4578-4585.	1.4	13
68	Organophosphorus Supramolecular Chemistry Part 1. Receptors for Organophosphorus Compounds. Current Organic Chemistry, 2006, 10, 2285-2306.	0.9	12
69	Computer-Aided Analysis and Design of Phosphonic and Phosphinic Enzyme Inhibitors as Potential Drugs and Agrochemicals. Current Organic Chemistry, 2005, 9, 1829-1850.	0.9	64
70	Design, Synthesis, and Activity of Analogues of Phosphinothricin as Inhibitors of Glutamine Synthetase. Journal of Medicinal Chemistry, 2005, 48, 6340-6349.	2.9	34
71	Cyclodextrins as NMR probes in the study of the enantiomeric compositions of N-benzyloxycarbonylamino-phosphonic and phosphinic acids. Tetrahedron: Asymmetry, 2004, 15, 1597-1602.	1.8	12
72	Herbicidal Pyridyl Derivatives of Aminomethylene-bisphosphonic Acid Inhibit Plant Glutamine Synthetase. Journal of Agricultural and Food Chemistry, 2004, 52, 3337-3344.	2.4	28

#	Article	IF	CITATIONS
73	Enantiodifferentiation of aminophosphonic and aminophosphinic acids with α- and β-cyclodextrins. Tetrahedron: Asymmetry, 2003, 14, 1535-1539.	1.8	29
74	The use of molecular modelling for comparison of three possible modes of action of herbicidally active derivatives of aminomethylenebisphosphonic acid. Pesticide Biochemistry and Physiology, 2002, 73, 94-103.	1.6	17
75	Phosphinic acid-based enzyme inhibitors. Phosphorus, Sulfur and Silicon and the Related Elements, 0, , 1-6.	0.8	0