Devon L Graham

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7333056/publications.pdf

Version: 2024-02-01

		448610	425179
37	1,445	19	34
papers	citations	h-index	g-index
37	37	37	2328
37	37	37	2320
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Long-term functional alterations following prenatal GLP-1R activation. Neurotoxicology and Teratology, 2021, 87, 106984.	1.2	10
2	Behavioral and Neuroanatomical Consequences of Cell-Type Specific Loss of Dopamine D2 Receptors in the Mouse Cerebral Cortex. Frontiers in Behavioral Neuroscience, 2021, 15, 815713.	1.0	O
3	Developmental opioid exposures: Neurobiological underpinnings, behavioral impacts, and policy implications. Experimental Biology and Medicine, 2020, 245, 131-137.	1.1	10
4	GLP-1R activation alters performance in cognitive tasks in a sex-dependent manner. Neurological Sciences, 2020, 42, 2911-2919.	0.9	4
5	A novel mouse model of glucagonâ€like peptideâ€1 receptor expression: A look at the brain. Journal of Comparative Neurology, 2020, 528, 2445-2470.	0.9	40
6	Cognitive and Behavioral Impact on Children Exposed to Opioids During Pregnancy. Pediatrics, 2019, 144, .	1.0	56
7	Behavioral Phenotyping in Developmental Neurotoxicology—Simple Approaches Using Unconditioned Behaviors in Rodents. , 2018, , 287-308.		4
8	Effects of Neonatal Methamphetamine and Stress on Brain Monoamines and Corticosterone in Preweanling Rats. Neurotoxicity Research, 2017, 31, 269-282.	1.3	5
9	Glucagon-like peptide 1 receptor activation regulates cocaine actions and dopamine homeostasis in the lateral septum by decreasing arachidonic acid levels. Translational Psychiatry, 2016, 6, e809-e809.	2.4	60
10	Developmental stress and lead (Pb): Effects of maternal separation and/or Pb on corticosterone, monoamines, and blood Pb in rats. NeuroToxicology, 2016, 54, 22-33.	1.4	21
11	Cocaineâ€induced neurodevelopmental deficits and underlying mechanisms. Birth Defects Research Part C: Embryo Today Reviews, 2016, 108, 147-173.	3.6	29
12	Deletion of $\langle scp \rangle G \langle scp \rangle \langle sub \rangle \hat{l} \pm q \langle sub \rangle$ in the telencephalon alters specific neurobehavioral outcomes. Synapse, 2015, 69, 434-445.	0.6	10
13	Evidence against dopamine D1/D2 receptor heteromers. Molecular Psychiatry, 2015, 20, 1373-1385.	4.1	100
14	The glucagon-like peptide 1 (GLP-1) receptor agonist exendin-4 reduces cocaine self-administration in mice. Physiology and Behavior, 2015, 149, 262-268.	1.0	94
15	Loss of Dopamine D2 Receptors Increases Parvalbumin-Positive Interneurons in the Anterior Cingulate Cortex. ACS Chemical Neuroscience, 2015, 6, 297-305.	1.7	12
16	Prenatal immune challenge in rats: Effects of polyinosinic–polycytidylic acid on spatial learning, prepulse inhibition, conditioned fear, and responses to MK-801 and amphetamine. Neurotoxicology and Teratology, 2015, 47, 54-65.	1.2	63
17	Developmental Consequences of Fetal Exposure to Drugs: What We Know and What We Still Must Learn. Neuropsychopharmacology, 2015, 40, 61-87.	2.8	303
18	Effects of developmental manganese, stress, and the combination of both on monoamines, growth, and corticosterone. Toxicology Reports, 2014, 1, 1046-1061.	1.6	27

#	Article	IF	CITATIONS
19	Neurobehavioral phenotype of C57BL/6J mice prenatally and neonatally exposed to cigarette smoke. Neurotoxicology and Teratology, 2013, 35, 34-45.	1.2	38
20	GLP-1 analog attenuates cocaine reward. Molecular Psychiatry, 2013, 18, 961-962.	4.1	90
21	Neonatal (+)-methamphetamine exposure in rats alters adult locomotor responses to dopamine D1 and D2 agonists and to a glutamate NMDA receptor antagonist, but not to serotonin agonists. International Journal of Neuropsychopharmacology, 2013, 16, 377-391.	1.0	14
22	Cognitive impairments from developmental exposure to serotonergic drugs: citalopram and MDMA. International Journal of Neuropsychopharmacology, 2013, 16, 1383-1394.	1.0	20
23	Distinct periods of developmental sensitivity to the effects of 3,4-($\hat{A}\pm$)-methylenedioxymethamphetamine (MDMA) on behaviour and monoamines in rats. International Journal of Neuropsychopharmacology, 2012, 15, 811-824.	1.0	6
24	Neonatal Citalopram Treatment Inhibits the 5-HT Depleting Effects of MDMA Exposure in Rats. ACS Chemical Neuroscience, 2012, 3, 12-21.	1.7	4
25	Dorsal striatal dopamine depletion impairs both allocentric and egocentric navigation in rats. Neurobiology of Learning and Memory, 2012, 97, 402-408.	1.0	52
26	Prenatal immune challenge in rats: Altered responses to dopaminergic and glutamatergic agents, prepulse inhibition of acoustic startle, and reduced routeâ€based learning as a function of maternal body weight gain after prenatal exposure to poly IC. Synapse, 2012, 66, 725-737.	0.6	52
27	Electroencephalographic and Convulsive Effects of Binge Doses of $(+)$ - Methamphetamine, 5-methoxydiisopropyltryptamine, and $(\hat{A}\pm)$ -3,4- Methylenedioxymethamphetamine in Rats. The Open Neuropsychopharmacology Journal, 2012, 5, 1-8.	0.3	2
28	Effects of developmental stress and lead (Pb) on corticosterone after chronic and acute stress, brain monoamines, and blood Pb levels in rats. International Journal of Developmental Neuroscience, 2011, 29, 45-55.	0.7	29
29	Effects of periadolescent fluoxetine and paroxetine on elevated plus-maze, acoustic startle, and swimming immobility in rats while on and off-drug. Behavioral and Brain Functions, 2011, 7, 41.	1.4	9
30	Comparison of (+)â€methamphetamine, ±â€Methylenedioxymethamphetamine, (+)â€amphetamine and ±â€fenfluramine in rats on egocentric learning in the Cincinnati water maze. Synapse, 2011, 65, 368-378.	0.6	30
31	Creatine Transporter (CrT; Slc6a8) Knockout Mice as a Model of Human CrT Deficiency. PLoS ONE, 2011, 6, e16187.	1.1	99
32	Neurobehavioral testing for developmental toxicity., 2011,, 346-387.		0
33	Glucose and corticosterone changes in developing and adult rats following exposure to (±)-3,4-methylendioxymethamphetamine or 5-methoxydiisopropyltryptamine. Neurotoxicology and Teratology, 2010, 32, 152-157.	1.2	12
34	Effect of a neurotoxic dose regimen of (+)-methamphetamine on behavior, plasma corticosterone, and brain monoamines in adult C57BL/6 mice. Neurotoxicology and Teratology, 2010, 32, 346-355.	1.2	38
35	Effects of inhibiting neonatal methamphetamineâ€induced corticosterone release in rats by adrenal autotransplantation on later learning, memory, and plasma corticosterone levels. International Journal of Developmental Neuroscience, 2010, 28, 331-342.	0.7	15
36	Effects of (+)â€methamphetamine on path integration and spatial learning, but not locomotor activity or acoustic startle, align with the stress hyporesponsive period in rats. International Journal of Developmental Neuroscience, 2009, 27, 289-298.	0.7	39

#	Article	lF	CITATIONS
37	Differential neurochemical consequences of an escalating dose-binge regimen followed by single-day multiple-dose methamphetamine challenges. Journal of Neurochemistry, 2008, 105, 1873-1885.	2.1	48