
Amanda G Paulovich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/733287/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 15545-15550.	3.3	38,922
2	Proteogenomics connects somatic mutations to signalling in breast cancer. Nature, 2016, 534, 55-62.	13.7	1,384
3	Multi-site assessment of the precision and reproducibility of multiple reaction monitoring–based measurements of proteins in plasma. Nature Biotechnology, 2009, 27, 633-641.	9.4	958
4	Integrated Proteogenomic Characterization of Human High-Grade Serous Ovarian Cancer. Cell, 2016, 166, 755-765.	13.5	804
5	When Checkpoints Fail. Cell, 1997, 88, 315-321.	13.5	589
6	A checkpoint regulates the rate of progression through S phase in S. cerevisiae in Response to DNA damage. Cell, 1995, 82, 841-847.	13.5	577
7	Repeatability and Reproducibility in Proteomic Identifications by Liquid Chromatographyâ^'Tandem Mass Spectrometry. Journal of Proteome Research, 2010, 9, 761-776.	1.8	505
8	Integrated Proteogenomic Characterization of Clear Cell Renal Cell Carcinoma. Cell, 2019, 179, 964-983.e31.	13.5	430
9	Proteogenomic Characterization Reveals Therapeutic Vulnerabilities in Lung Adenocarcinoma. Cell, 2020, 182, 200-225.e35.	13.5	410
10	A targeted proteomics–based pipeline for verification of biomarkers in plasma. Nature Biotechnology, 2011, 29, 625-634.	9.4	336
11	Proteogenomic and metabolomic characterization of human glioblastoma. Cancer Cell, 2021, 39, 509-528.e20.	7.7	327
12	Ischemia in Tumors Induces Early and Sustained Phosphorylation Changes in Stress Kinase Pathways but Does Not Affect Global Protein Levels. Molecular and Cellular Proteomics, 2014, 13, 1690-1704.	2.5	323
13	Phosphoproteomic analysis of chimeric antigen receptor signaling reveals kinetic and quantitative differences that affect cell function. Science Signaling, 2018, 11, .	1.6	323
14	An Automated and Multiplexed Method for High Throughput Peptide Immunoaffinity Enrichment and Multiple Reaction Monitoring Mass Spectrometry-based Quantification of Protein Biomarkers. Molecular and Cellular Proteomics, 2010, 9, 184-196.	2.5	308
15	Proteogenomic Characterization of Endometrial Carcinoma. Cell, 2020, 180, 729-748.e26.	13.5	296
16	Proteogenomic Landscape of Breast Cancer Tumorigenesis and Targeted Therapy. Cell, 2020, 183, 1436-1456.e31.	13.5	273
17	Antibody-based enrichment of peptides on magnetic beads for mass-spectrometry-based quantification of serum biomarkers. Analytical Biochemistry, 2007, 362, 44-54.	1.1	259
18	Connecting Genomic Alterations to Cancer Biology with Proteomics: The NCI Clinical Proteomic Tumor Analysis Consortium. Cancer Discovery, 2013, 3, 1108-1112.	7.7	243

#	Article	IF	CITATIONS
19	Effect of Collision Energy Optimization on the Measurement of Peptides by Selected Reaction Monitoring (SRM) Mass Spectrometry. Analytical Chemistry, 2010, 82, 10116-10124.	3.2	220
20	Panorama: A Targeted Proteomics Knowledge Base. Journal of Proteome Research, 2014, 13, 4205-4210.	1.8	205
21	Computational Proteomics Analysis System (CPAS):  An Extensible, Open-Source Analytic System for Evaluating and Publishing Proteomic Data and High Throughput Biological Experiments. Journal of Proteome Research, 2006, 5, 112-121.	1.8	204
22	Recommendations for the Generation, Quantification, Storage, and Handling of Peptides Used for Mass Spectrometry–Based Assays. Clinical Chemistry, 2016, 62, 48-69.	1.5	187
23	A Human Proteome Detection and Quantitation Project. Molecular and Cellular Proteomics, 2009, 8, 883-886.	2.5	186
24	Demonstrating the feasibility of large-scale development of standardized assays to quantify human proteins. Nature Methods, 2014, 11, 149-155.	9.0	178
25	Integrated Proteogenomic Characterization across Major Histological Types of Pediatric Brain Cancer. Cell, 2020, 183, 1962-1985.e31.	13.5	177
26	Cancer biomarkers: a systems approach. Nature Biotechnology, 2006, 24, 905-908.	9.4	176
27	Interlaboratory Evaluation of Automated, Multiplexed Peptide Immunoaffinity Enrichment Coupled to Multiple Reaction Monitoring Mass Spectrometry for Quantifying Proteins in Plasma. Molecular and Cellular Proteomics, 2012, 11, M111.013854.	2.5	176
28	Integrated Pipeline for Mass Spectrometry-Based Discovery and Confirmation of Biomarkers Demonstrated in a Mouse Model of Breast Cancer. Journal of Proteome Research, 2007, 6, 3962-3975.	1.8	171
29	Performance Metrics for Liquid Chromatography-Tandem Mass Spectrometry Systems in Proteomics Analyses. Molecular and Cellular Proteomics, 2010, 9, 225-241.	2.5	167
30	Large-Scale Interlaboratory Study to Develop, Analytically Validate and Apply Highly Multiplexed, Quantitative Peptide Assays to Measure Cancer-Relevant Proteins in Plasma. Molecular and Cellular Proteomics, 2015, 14, 2357-2374.	2.5	153
31	Head-to-Head Comparison of Serum Fractionation Techniques. Journal of Proteome Research, 2007, 6, 828-836.	1.8	152
32	CPTAC Assay Portal: a repository of targeted proteomic assays. Nature Methods, 2014, 11, 703-704.	9.0	150
33	Clinical potential of mass spectrometry-based proteogenomics. Nature Reviews Clinical Oncology, 2019, 16, 256-268.	12.5	149
34	Interlaboratory Study Characterizing a Yeast Performance Standard for Benchmarking LC-MS Platform Performance. Molecular and Cellular Proteomics, 2010, 9, 242-254.	2.5	148
35	Evaluation of Large Scale Quantitative Proteomic Assay Development Using Peptide Affinity-based Mass Spectrometry. Molecular and Cellular Proteomics, 2011, 10, M110.005645.	2.5	130
36	Proteome Profiling Outperforms Transcriptome Profiling for Coexpression Based Gene Function Prediction. Molecular and Cellular Proteomics, 2017, 16, 121-134.	2.5	111

Amanda G Paulovich

#	Article	IF	CITATIONS
37	Signal Maps for Mass Spectrometry-based Comparative Proteomics. Molecular and Cellular Proteomics, 2006, 5, 423-432.	2.5	110
38	Assessment of a method to characterize antibody selectivity and specificity for use in immunoprecipitation. Nature Methods, 2015, 12, 725-731.	9.0	109
39	Design, Implementation and Multisite Evaluation of a System Suitability Protocol for the Quantitative Assessment of Instrument Performance in Liquid Chromatography-Multiple Reaction Monitoring-MS (LC-MRM-MS). Molecular and Cellular Proteomics, 2013, 12, 2623-2639.	2.5	100
40	A Platform for Accurate Mass and Time Analyses of Mass Spectrometry Data. Journal of Proteome Research, 2007, 6, 2685-2694.	1.8	76
41	Comparative analysis of TCR and CAR signaling informs CAR designs with superior antigen sensitivity and in vivo function. Science Signaling, 2021, 14, .	1.6	67
42	The evolving role of mass spectrometry in cancer biomarker discovery. Cancer Biology and Therapy, 2009, 8, 1083-1094.	1.5	66
43	Sequential Multiplexed Analyte Quantification Using Peptide Immunoaffinity Enrichment Coupled to Mass Spectrometry. Molecular and Cellular Proteomics, 2012, 11, M111.015347.	2.5	66
44	Peptide Immunoaffinity Enrichment and Targeted Mass Spectrometry Enables Multiplex, Quantitative Pharmacodynamic Studies of Phospho-Signaling. Molecular and Cellular Proteomics, 2015, 14, 2261-2273.	2.5	56
45	Automated screening of monoclonal antibodies for SISCAPA assays using a magnetic bead processor and liquid chromatography-selected reaction monitoring-mass spectrometry. Journal of Immunological Methods, 2010, 353, 49-61.	0.6	55
46	Assessing Bias in Experiment Design for Large Scale Mass Spectrometry-based Quantitative Proteomics. Molecular and Cellular Proteomics, 2007, 6, 1741-1748.	2.5	52
47	Quantification of ATP7B Protein in Dried Blood Spots by Peptide Immuno-SRM as a Potential Screen for Wilson's Disease. Journal of Proteome Research, 2017, 16, 862-871.	1.8	49
48	Immobilized Metal Affinity Chromatography Coupled to Multiple Reaction Monitoring Enables Reproducible Quantification of Phospho-signaling. Molecular and Cellular Proteomics, 2016, 15, 726-739.	2.5	46
49	Multiplexed quantification of estrogen receptor and <scp>HER</scp> 2/ <scp>N</scp> eu in tissue and cell lysates by peptide immunoaffinity enrichment mass spectrometry. Proteomics, 2012, 12, 1253-1260.	1.3	45
50	Normalization regarding non-random missing values in high-throughput mass spectrometry data. Pacific Symposium on Biocomputing Pacific Symposium on Biocomputing, 2006, , 315-26.	0.7	45
51	Rapid Multiplexed Proteomic Screening for Primary Immunodeficiency Disorders From Dried Blood Spots. Frontiers in Immunology, 2018, 9, 2756.	2.2	43
52	Peptide Immunoaffinity Enrichment Coupled with Mass Spectrometry for Peptide and Protein Quantification. Clinics in Laboratory Medicine, 2011, 31, 385-396.	0.7	42
53	The Preference for Error-Free or Error-Prone Postreplication Repair in <i>Saccharomyces cerevisiae</i> Exposed to Low-Dose Methyl Methanesulfonate Is Cell Cycle Dependent. Molecular and Cellular Biology, 2013, 33, 1515-1527.	1.1	42
54	High-Affinity Recombinant Antibody Fragments (Fabs) Can Be Applied in Peptide Enrichment Immuno-MRM Assays. Journal of Proteome Research, 2014, 13, 2187-2196.	1.8	42

#	Article	IF	CITATIONS
55	Optimized Protocol for Quantitative Multiple Reaction Monitoring-Based Proteomic Analysis of Formalin-Fixed, Paraffin-Embedded Tissues. Journal of Proteome Research, 2016, 15, 2717-2728.	1.8	42
56	A highly annotated database of genes associated with platinum resistance in cancer. Oncogene, 2021, 40, 6395-6405.	2.6	41
57	Loss of TGFβ signaling increases alternative end-joining DNA repair that sensitizes to genotoxic therapies across cancer types. Science Translational Medicine, 2021, 13, .	5.8	33
58	Using the CPTAC Assay Portal to Identify and Implement Highly Characterized Targeted Proteomics Assays. Methods in Molecular Biology, 2016, 1410, 223-236.	0.4	33
59	Quality Control Metrics for LCâ MS Feature Detection Tools Demonstrated onSaccharomycescerevisiaeProteomic Profiles. Journal of Proteome Research, 2006, 5, 1527-1534.	1.8	31
60	Anti-Peptide Monoclonal Antibodies Generated for Immuno-Multiple Reaction Monitoring-Mass Spectrometry Assays Have a High Probability of Supporting Western blot and ELISA. Molecular and Cellular Proteomics, 2015, 14, 382-398.	2.5	31
61	Quantification of Human Epidermal Growth Factor Receptor 2 by Immunopeptide Enrichment and Targeted Mass Spectrometry in Formalin-Fixed Paraffin-Embedded and Frozen Breast Cancer Tissues. Clinical Chemistry, 2021, 67, 1008-1018.	1.5	29
62	pRAD50: a novel and clinically applicable pharmacodynamic biomarker of both ATM and ATR inhibition identified using mass spectrometry and immunohistochemistry. British Journal of Cancer, 2018, 119, 1233-1243.	2.9	27
63	Multiomic analysis identifies CPT1A as a potential therapeutic target in platinum-refractory, high-grade serous ovarian cancer. Cell Reports Medicine, 2021, 2, 100471.	3.3	26
64	A Multiplexed Mass Spectrometry-Based Assay for Robust Quantification of Phosphosignaling in Response to DNA Damage. Radiation Research, 2018, 189, 505.	0.7	25
65	Multiplexed Proteomic Analysis for Diagnosis and Screening of Five Primary Immunodeficiency Disorders From Dried Blood Spots. Frontiers in Immunology, 2020, 11, 464.	2.2	24
66	Quantification of Proteins Using Peptide Immunoaffinity Enrichment Coupled with Mass Spectrometry. Journal of Visualized Experiments, 2011, , .	0.2	22
67	The Saccharomyces cerevisiae RAD9, RAD17 and RAD24 genes are required for suppression of mutagenic post-replicative repair during chronic DNA damage. DNA Repair, 2010, 9, 824-834.	1.3	20
68	Lymphatic Endothelial Murine Chloride Channel Calcium-Activated 1 Is a Ligand for Leukocyte LFA-1 and Mac-1. Journal of Immunology, 2010, 185, 5769-5777.	0.4	20
69	Targeted mass spectrometry enables robust quantification of FANCD2 mono-ubiquitination in response to DNA damage. DNA Repair, 2018, 65, 47-53.	1.3	18
70	Commercially available antibodies can be applied in quantitative multiplexed peptide immunoaffinity enrichment targeted mass spectrometry assays. Proteomics, 2016, 16, 2141-2145.	1.3	17
71	Antibody-Coupled Magnetic Beads Can Be Reused in Immuno-MRM Assays To Reduce Cost and Extend Antibody Supply. Journal of Proteome Research, 2015, 14, 4425-4431.	1.8	16
72	Peptide Immunoaffinity Enrichment with Targeted Mass Spectrometry: Application to Quantification of ATM Kinase Phospho-Signaling. Methods in Molecular Biology, 2017, 1599, 197-213.	0.4	15

#	Article	IF	CITATIONS
73	Targeted Mass Spectrometry Enables Multiplexed Quantification of Immunomodulatory Proteins in Clinical Biospecimens. Frontiers in Immunology, 2021, 12, 765898.	2.2	13
74	Internal Standard Triggered-Parallel Reaction Monitoring Mass Spectrometry Enables Multiplexed Quantification of Candidate Biomarkers in Plasma. Analytical Chemistry, 2022, 94, 9540-9547.	3.2	11
75	Targeted mass-spectrometry-based assays enable multiplex quantification of receptor tyrosine kinase, MAP kinase, and AKT signaling. Cell Reports Methods, 2021, 1, 100015.	1.4	10
76	Novel Connections Between DNA Replication, Telomere Homeostasis, and the DNA Damage Response Revealed by a Genome-Wide Screen for TEL1/ATM Interactions in Saccharomyces cerevisiae. Genetics, 2013, 193, 1117-1133.	1.2	8
77	Quantifying the human proteome. Nature Biotechnology, 2016, 34, 1033-1034.	9.4	8
78	Targeted Mass Spectrometry Enables Quantification of Novel Pharmacodynamic Biomarkers of ATM Kinase Inhibition. Cancers, 2021, 13, 3843.	1.7	7
79	Integrative Proteo-genomic Analysis to Construct CNA-protein Regulatory Map in Breast and Ovarian Tumors. Molecular and Cellular Proteomics, 2019, 18, S66-S81.	2.5	6
80	A dataset describing a suite of novel antibody reagents for the RAS signaling network. Scientific Data, 2019, 6, 160.	2.4	4
81	Quantification of Estrogen Receptor, Progesterone Receptor, and Human Epidermal Growth Factor Receptor 2 Protein Expression in Bone Biopsies by Targeted Mass Spectrometry without Acid Decalcification. Clinical Chemistry, 2020, 66, 1459-1461.	1.5	3
82	DNA Replication Stress Phosphoproteome Profiles Reveal Novel Functional Phosphorylation Sites on Xrs2 in <i>Saccharomyces cerevisiae</i> . Genetics, 2016, 203, 353-368.	1.2	2
83	Proteogenomic Characterization of Highly Enriched Viable Leukemic Blasts in Acute Myeloid Leukemia: A SWOG Report. Blood, 2021, 138, 522-522.	0.6	Ο