Ladislav Mucina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7332788/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Morphological and molecular data support recognition of <i>Spergularia quartzicola</i> (<i>Caryophyllaceae</i>) as a new species endemic to South Africa. Plant Biosystems, 2022, 156, 506-514.	1.6	3
2	The biomes of Western Australia: a vegetation-based approach using the zonality/ azonality conceptual framework. New Zealand Journal of Botany, 2022, 60, 354-376.	1,1	13
3	Forest biomes of Southern Africa. New Zealand Journal of Botany, 2022, 60, 377-428.	1.1	13
4	Positive heterospecific interactions can increase longâ€ŧerm diversity of plant communities more than negative conspecific interactions alone. Functional Ecology, 2022, 36, 159-173.	3.6	2
5	Distribution maps of vegetation alliances in Europe. Applied Vegetation Science, 2022, 25, .	1.9	23
6	Global taxonomic and phylogenetic assembly of AM fungi. Mycorrhiza, 2022, 32, 135-144.	2.8	14
7	Global soil microbiomes: A new frontline of biomeâ€ecology research. Global Ecology and Biogeography, 2022, 31, 1120-1132.	5.8	19
8	Dominance, diversity, and niche breadth in arbuscular mycorrhizal fungal communities. Ecology, 2022, 103, e3761.	3.2	11
9	International Code of Phytosociological Nomenclature. 4th edition. Applied Vegetation Science, 2021, 24, e12491.	1.9	188
10	Macroevolutionary patterns in European vegetation. Journal of Vegetation Science, 2021, 32, .	2.2	14
11	Arid Australia as a source of plant diversity: the origin and climatic evolution of. Australian Systematic Botany, 2021, 34, 570-586.	0.9	2
12	Global functional variation in alpine vegetation. Journal of Vegetation Science, 2021, 32, e13000.	2.2	17
13	Taxonomic identity and evolutionary relationships of South African taxa related to the Spergularia media group (Caryophyllaceae). Plant Systematics and Evolution, 2021, 307, 1.	0.9	5
14	Temperature and pH define the realised niche space of arbuscular mycorrhizal fungi. New Phytologist, 2021, 231, 763-776.	7.3	126
15	Patterns and drivers of structure, diversity, and composition in speciesâ€rich shrublands restored after mining. Restoration Ecology, 2021, 29, e13360.	2.9	6
16	sPlotOpen – An environmentally balanced, openâ€access, global dataset of vegetation plots. Global Ecology and Biogeography, 2021, 30, 1740-1764.	5.8	49
17	Phylogenetic structure of alien plant species pools from European donor habitats. Global Ecology and Biogeography, 2021, 30, 2354-2367.	5.8	7
18	New nomenclatural and taxonomic adjustments in Dracaena (Asparagaceae). Phytotaxa, 2021, 524, 293-300.	0.3	1

#	Article	IF	CITATIONS
19	Efficacy of multi-season Sentinel-2 imagery for compositional vegetation classification. International Journal of Applied Earth Observation and Geoinformation, 2020, 85, 101980.	2.8	39
20	TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.	9.5	1,038
21	Plant functional traits are correlated with species persistence in the herb layer of old-growth beech forests. Scientific Reports, 2020, 10, 19253.	3.3	17
22	EUNIS Habitat Classification: Expert system, characteristic species combinations and distribution maps of European habitats. Applied Vegetation Science, 2020, 23, 648-675.	1.9	186
23	Biomes are everybody's kingdom: a platform where ecology and biogeography meet. New Phytologist, 2020, 228, 1463-1466.	7.3	6
24	Environmental pressures on stomatal size may drive plant genome size evolution: evidence from a natural experiment with Cape geophytes. Annals of Botany, 2020, 126, 323-330.	2.9	20
25	Thermophilous oak forests of the steppe and forest-steppe zones of Ukraine and Western Russia. Biologia (Poland), 2020, 75, 337-353.	1.5	16
26	Evolution of Tandem Repeats Is Mirroring Post-polyploid Cladogenesis in Heliophila (Brassicaceae). Frontiers in Plant Science, 2020, 11, 607893.	3.6	13
27	Phylogenetic and morphometric analysis of <i>Plantago</i> section <i>Coronopus</i> (Plantaginaceae). Taxon, 2019, 68, 315-339.	0.7	8
28	A formal classification of the <i>Lygeum spartum</i> vegetation of the Mediterranean Region. Applied Vegetation Science, 2019, 22, 593-608.	1.9	15
29	Trait-based formal definition of plant functional types and functional communities in the multi-species and multi-traits context. Ecological Complexity, 2019, 40, 100787.	2.9	9
30	Limonium dagmarae (Plumbaginaceae), a new species from Namaqualand coast, South Africa. Phytotaxa, 2019, 403, 71.	0.3	3
31	New combinations in the tribe Urgineeae (Asparagaceae subfam. Scilloideae) with comments on contrasting taxonomic treatments. Phytotaxa, 2019, 397, 291.	0.3	5
32	Woody species in resourceâ€rich microrefugia of granite outcrops display unique functional signatures. Austral Ecology, 2019, 44, 575-580.	1.5	7
33	Progress in vegetation science: Trends over the past three decades and new horizons. Journal of Vegetation Science, 2019, 30, 1-4.	2.2	19
34	Composition and ecological drivers of the kwongan scrub and woodlands in the northern Swan Coastal Plain, Western Australia. Austral Ecology, 2019, 44, 906-916.	1.5	6
35	Biome: evolution of a crucial ecological and biogeographical concept. New Phytologist, 2019, 222, 97-114.	7.3	115
36	Decision on Nomenclatural Proposals (1), (16) and (18). Phytocoenologia, 2019, 49, 309-310.	0.5	4

#	Article	IF	CITATIONS
37	Lessons for a Forest Vegetation Survey. Geobotany Studies, 2018, , 227-236.	0.2	о
38	Joint optimization of cluster number and abundance transformation for obtaining effective vegetation classifications. Journal of Vegetation Science, 2018, 29, 336-347.	2.2	13
39	Classifying Subtropical Forests of South Africa: Data Sources and Methods. Geobotany Studies, 2018, , 7-46.	0.2	Ο
40	Vegetation of Brazilian campos rupestres on siliceous substrates and their global analogues. Flora: Morphology, Distribution, Functional Ecology of Plants, 2018, 238, 11-23.	1.2	38
41	Quantifying the effects of ecological constraints on trait expression using novel traitâ€gradient analysis parameters. Ecology and Evolution, 2018, 8, 435-440.	1.9	10
42	David W. Goodall (1914-2018): An ecologist of the century. Community Ecology, 2018, 19, 93-101.	0.9	1
43	Sansevieria (Asparagaceae, Nolinoideae) is a herbaceous clade within Dracaena: inference from non-coding plastid and nuclear DNA sequence data. Phytotaxa, 2018, 376, 254.	0.3	18
44	Syntaxonomy and biogeography of dry grasslands on calcareous substrates in the central and southern Balkans. Applied Vegetation Science, 2018, 21, 488-513.	1.9	9
45	The noble and the exalted: a multidisciplinary approach to resolving a taxonomic controversy within Ptilotus (Amaranthaceae). Australian Systematic Botany, 2018, 31, 262.	0.9	5
46	Towards an eco-evolutionary understanding of endemism hotspots and refugia. Annals of Botany, 2018, 122, 927-934.	2.9	33
47	Community patterns and environmental drivers in hyperâ€diverse kwongan scrub vegetation of Western Australia. Applied Vegetation Science, 2018, 21, 694-722.	1.9	17
48	Impact of ecological redundancy on the performance of machine learning classifiers in vegetation mapping. Ecology and Evolution, 2018, 8, 6728-6737.	1.9	17
49	Vegetation Survey and Classification of Subtropical Forests of Southern Africa. Geobotany Studies, 2018, , .	0.2	9
50	Classifying Subtropical Forests of South Africa: Rationale and Objectives. Geobotany Studies, 2018, , 1-6.	0.2	2
51	Classification of Pondoland Scarp Forests. Geobotany Studies, 2018, , 91-124.	0.2	3
52	Thesium nautimontanum, a new species of Thesiaceae (Santalales) from South Africa. PhytoKeys, 2018, 109, 41-51.	1.0	10
53	Classification of the Eastern Scarp Forests. Geobotany Studies, 2018, , 125-226.	0.2	2
54	Classification of the Albany Coastal Forests. Geobotany Studies, 2018, , 59-90.	0.2	0

#	Article	IF	CITATIONS
55	SaudiVeg ecoinformatics: Aims, current status and perspectives. Saudi Journal of Biological Sciences, 2017, 24, 389-398.	3.8	4
56	Naturalization of European plants on other continents: The role of donor habitats. Proceedings of the United States of America, 2017, 114, 13756-13761.	7.1	57
57	Caroxylon (Chenopodiaceae s.str.) in continental southern Africa and Madagascar: a preliminary nomenclatural synopsis and biogeographical considerations. Phytotaxa, 2017, 312, 151.	0.3	6
58	Syntaxonomic synopsis of the forest and tall scrub vegetation of Northern Algeria. Lazaroa, 2017, 38, .	0.8	6
59	Ecological Restoration in Mediterranean-Type Shrublands and Woodlands. , 2017, , 173-196.		5
60	Vegetation of Europe: hierarchical floristic classification system of vascular plant, bryophyte, lichen, and algal communities. Applied Vegetation Science, 2016, 19, 3-264.	1.9	905
61	Disentangling vegetation diversity from climate–energy and habitat heterogeneity for explaining animal geographic patterns. Ecology and Evolution, 2016, 6, 1515-1526.	1.9	28
62	Soil depth shapes plant functional diversity in granite outcrops vegetation of Southwestern Australia. Plant Ecology and Diversity, 2016, 9, 263-276.	2.4	23
63	Ant biodiversity and its environmental predictors in the North Kimberley region of Australia's seasonal tropics. Biodiversity and Conservation, 2016, 25, 1727-1759.	2.6	9
64	The <i>Drabo corymbosae-Papaveretea dahliani</i> â^' a new vegetation class of the High Arctic polar deserts. Hacquetia, 2016, 15, 5-13.	0.4	13
65	Description and validation of some European forest syntaxa – a supplement to the EuroVegChecklist. Hacquetia, 2016, 15, 15-25.	0.4	14
66	Nomenclatural Notes on Some Alliances of the Halophytic Vegetation of Southern Ural and the Caspian Lowlands. Hacquetia, 2015, 14, 301-306.	0.4	4
67	On the nomenclature of some high-rank syntaxa of European forest vegetation. Phytocoenologia, 2015, 45, 175-181.	0.5	9
68	Validations and Typifications of Some South Europe an Syntaxa. Hacquetia, 2015, 14, 289-299.	0.4	6
69	Nomenclature Adjustments and New Syntaxa of the Arctic, Alpine and Oro-Mediterranean Vegetation. Hacquetia, 2015, 14, 277-288.	0.4	7
70	Vegetation patterns and hydroâ€geological drivers of freshwater rock pool communities in the monsoonâ€ŧropical Kimberley region, Western Australia. Journal of Vegetation Science, 2015, 26, 1184-1197.	2.2	10
71	A comparative framework for broadâ€scale plotâ€based vegetation classification. Applied Vegetation Science, 2015, 18, 543-560.	1.9	126
72	Validations of high-rank syntaxa in Potamogetonetea and Scheuchzerio-Caricetea fuscae. Lazaroa, 2015, 36, .	0.8	0

#	Article	IF	CITATIONS
73	The Tamaricetea arceuthoidis: a new class for the continental riparian thickets of the Middle East, Central Asia and the subarid regions of the Lower Volga valley. Lazaroa, 2015, 36, .	0.8	6
74	Descriptions and validation of the names of some high-rank syntaxa in the European Asplenietea trichomanis and Polypodietea. Lazaroa, 2015, 36, .	0.8	3
75	Nomenclature and syntaxonomic notes on some high-rank syntaxa of the European grassland vegetation. Lazaroa, 2015, 36, .	0.8	9
76	Phylogeny, biogeography and ecological diversification of Sarcocornia (Salicornioideae,) Tj ETQq0 0 0 rgBT /Over	lock 10 Tf	50 622 Td (A
77	63. Validation of names of some syntaxa of the Crimean vegetation. Lazaroa, 2014, 35, .	0.8	5
78	Syntaxonomic And Nomenclatural Notes On The Scree Vegetation Of Caucas Us. Hacquetia, 2014, 13, 279-284.	0.4	3
79	The number of vegetation types in <scp>E</scp> uropean countries: major determinants and extrapolation to other regions. Journal of Vegetation Science, 2014, 25, 863-872.	2.2	18
80	Context-dependent assembly rules and the role of dominating grasses in semi-natural abandoned sub-Mediterranean grasslands. Agriculture, Ecosystems and Environment, 2014, 182, 113-122.	5.3	38
81	Prolonged isolation and persistence of a common endemic on granite outcrops in both mesic and semiâ€arid environments in southâ€western Australia. Journal of Biogeography, 2014, 41, 2032-2044.	3.0	43
82	Ecological and evolutionary significance of genomic GC content diversity in monocots. Proceedings of the United States of America, 2014, 111, E4096-102.	7.1	260
83	The impact of native large herbivores and fire on the vegetation dynamics in the Cape renosterveld shrublands of South Africa: insights from a sixâ€yr field experiment. Applied Vegetation Science, 2014, 17, 456-469.	1.9	22
84	Four new species of Ursinia (Asteraceae, Anthemideae) from South Africa, with an updated key to the genus in Namaqualand. Phytotaxa, 2014, 177, 137.	0.3	6
85	Rapid Characterisation of Vegetation Structure to Predict Refugia and Climate Change Impacts across a Global Biodiversity Hotspot. PLoS ONE, 2014, 9, e82778.	2.5	56
86	<i>Salicornia</i> â€L. (Amaranthaceae) in South Africa and Namibia: rapid spread and ecological diversification of cryptic species. Botanical Journal of the Linnean Society, 2013, 172, 175-186.	1.6	23
87	Europe, Ecosystems of. , 2013, , 333-346.		8
88	The classification conundrum: species fidelity as leading criterion in search of a rigorous method to classify a complex forest data set. Community Ecology, 2013, 14, 121-132.	0.9	21

89	Plant communities along the Eerste River, Western Cape, South Africa: Community descriptions and implications for restoration. Koedoe, 2013, 55, .	0.9	15
90	The South African National Vegetation Database: History, development, applications, problems and future. South African Journal of Science, 2012, 108, .	0.7	23

6

#	Article	IF	CITATIONS
91	WholeÂgenome triplication and species radiation in the southern African tribe Heliophileae (Brassicaceae). Taxon, 2012, 61, 989-1000.	0.7	29
92	Refugia: identifying and understanding safe havens for biodiversity under climate change. Global Ecology and Biogeography, 2012, 21, 393-404.	5.8	786
93	Patterns of plant trait–environment relationships along a forest succession chronosequence. Agriculture, Ecosystems and Environment, 2011, 145, 38-48.	5.3	79
94	The Global Index of Vegetationâ€Plot Databases (GIVD): a new resource for vegetation science. Journal of Vegetation Science, 2011, 22, 582-597.	2.2	251
95	The Great Escarpment of southern Africa: a new frontier for biodiversity exploration. Biodiversity and Conservation, 2011, 20, 2543-2561.	2.6	79
96	Landscape age and soil fertility, climatic stability, and fire regime predictability: beyond the OCBIL framework. Plant and Soil, 2011, 341, 1-23.	3.7	92
97	Patterns of Clonal Growth Modes Along a Chronosequence of Post-Coppice Forest Regeneration in Beech Forests of Central Italy. Folia Geobotanica, 2011, 46, 271-288.	0.9	25
98	Taking the scenic route – the southern Great Escarpment (South Africa) as part of the Cape to Cairo floristic highway. Plant Ecology and Diversity, 2011, 4, 313-328.	2.4	15
99	Revision of <i>Sarcocornia</i> (Chenopodiaceae) in South Africa, Namibia and Mozambique. Systematic Botany, 2010, 35, 390-408.	0.5	25
100	Vegetation patterns and primary succession on sea-born volcanic islands (Santorini archipelago,) Tj ETQq0 0 0 r	gBT /Qverl 0.5	ock 10 Tf 50 3 41
101	Tree cover and biomass increase in a southern African savanna despite growing elephant population. Ecological Applications, 2010, 20, 222-233.	3.8	31
102	A multiâ€locus phylogeny of <i>Euryops</i> (Asteraceae, Senecioneae) augments support for the "Cape to Cairo" hypothesis of floral migrations in Africa. Taxon, 2010, 59, 57-67.	0.7	22
103	Floristic-phytosociological approach, potential natural vegetation, and survival of prejudice. Lazaroa, 2010, 31, 173-182.	0.8	21
104	Notes on phytosociology of Juniperus Excelsa in Macedonia (Southern Balkan Peninsula). Hacquetia, 2010, 9, 161-165.	0.4	7
105	A river runs through it: Land-use and the composition of vegetation along a riparian corridor in the Cape Floristic Region, South Africa. Biological Conservation, 2010, 143, 156-164.	4.1	77
106	The biogeographical influence of the Tankwa Karoo Basin on reptile distribution in south-western South Africa. African Journal of Herpetology, 2010, 59, 53-64.	0.9	11
107	Globally grown, but poorly known: species limits and biogeography of <i>Gazania</i> Gaertn. (Asteraceae) inferred from chloroplast and nuclear DNA sequence data. Taxon, 2009, 58, 871-882.	0.7	18
108	Scaling hierarchy of factors controlling riparian vegetation patterns of the Fynbos Biome at the Western Cape, South Africa. Journal of Vegetation Science, 2009, 20, 17-26.	2.2	16

#	Article	IF	CITATIONS
109	A quick and robust method for biomass estimation in structurally diverse vegetation. Journal of Vegetation Science, 2007, 18, 719-724.	2.2	20
110	A taxonomic nightmare comes true: phylogeny and biogeography of glassworts (<i>Salicornia</i> L.,) Tj ETQq0 0	0rgBT /O	verlock 10 Tf
111	A quick and robust method for biomass estimation in structurally diverse vegetation. Journal of Vegetation Science, 2007, 18, 719.	2.2	0
112	Vegetation of quartz fields in the Little Karoo, Tanqua Karoo and eastern Overberg (Western Cape) Tj ETQq0 0 0	rgBT/Ove	rlock 10 Tf 5 13
113	Phylogeny of Salicornioideae (Chenopodiaceae): diversification, biogeography, and evolutionary trends in leaf and flower morphology. Taxon, 2006, 55, 617-642.	0.7	122
114	Limonium failachicum (Plumbaginaceae) — New and so far the only endemic plant from Kuwait. Folia Geobotanica, 2006, 41, 229-235.	0.9	2
115	Clonal Growth Modes in Plant Communities Along a Stress Gradient in the Central Apennines, Italy. , 2006, , 289-308.		2
116	Patterns of functional clonal traits and clonal growth modes in contrasting grasslands in the central Apennines, Italy. Journal of Vegetation Science, 2005, 16, 29-36.	2.2	25
117	Syntaxonomy and zonation patterns in coastal salt marshes of the Uilkraals Estuary, Western Cape (South Africa). Phytocoenologia, 2003, 33, 309-334.	0.5	3
118	Plant communities in saline environments an introduction to the Festschrift for Sandro Pignatti. Phytocoenologia, 2003, 33, 163-166.	0.5	0
119	Spatial variation in vegetation and abiotic factors related to the occurrence of a ringâ€forming sedge. Journal of Vegetation Science, 2002, 13, 677-684.	2.2	17
120	Europe, Ecosystems of. , 2001, , 635-647.		4
121	Minimum message length clustering: an explication and some applications to vegetation data. Community Ecology, 2001, 2, 231-247.	0.9	11
122	Scale invariant measures of pattern intensity and grain: A simulation experiment. Environmental and Ecological Statistics, 2000, 7, 255-261.	3.5	0
123	Common data standards for recording relevés in field survey for vegetation classification. Journal of Vegetation Science, 2000, 11, 769-772.	2.2	53
124	Vegetation of trampled soil dominated by C4 plants in Europe. Journal of Vegetation Science, 1998, 9, 45-56.	2.2	18
125	The Journal of Vegetation Science in 1997. Journal of Vegetation Science, 1997, 8, 1-4.	2.2	1
126	Classification of vegetation: Past, present and future. Journal of Vegetation Science, 1997, 8, 751-760.	2.2	122

#	Article	IF	CITATIONS
127	Fine-scale spatial population patterns and mobility of winter-annual herbs in a dry grassland. Journal of Vegetation Science, 1997, 8, 209-216.	2.2	22
128	European vegetation survey: The context of the case studies. Folia Geobotanica Et Phytotaxonomica, 1997, 32, 113-115.	0.4	11
129	Conspectus of classes of European vegetation. Folia Geobotanica Et Phytotaxonomica, 1997, 32, 117-172.	0.4	148
130	The vegetation on screes—A synopsis of higher syntaxa in Europe. Folia Geobotanica Et Phytotaxonomica, 1997, 32, 173-192.	0.4	41
131	Vegetation on anthropogenic metalliferous soils in the Eastern Alps. Folia Geobotanica Et Phytotaxonomica, 1997, 32, 283-295.	0.4	20
132	The high-rank syntaxa of the rock-cliff and scree vegetation of the mainland Greece and Crete. Folia Geobotanica Et Phytotaxonomica, 1997, 32, 313-334.	0.4	38
133	Quo vadis Code of Phytosociological Nomenclature?. Folia Geobotanica Et Phytotaxonomica, 1997, 32, 395-400.	0.4	8
134	Nomenclature of vegetation types and the Code: A few concluding remarks. Folia Geobotanica Et Phytotaxonomica, 1997, 32, 421-422.	0.4	5
135	The Journal of Vegetation Science in 1996. Journal of Vegetation Science, 1996, 7, 1-4.	2.2	Ο
136	Vegetation of European springs: High-rank syntaxa of the Montio-Cardaminetea. Journal of Vegetation Science, 1994, 5, 385-402.	2.2	63
137	An analysis of book review criteria and motivation. Journal of Vegetation Science, 1992, 3, 715-718.	2.2	6
138	Vicariance and Clinal Variation in Synanthropic Vegetation. Tasks for Vegetation Science, 1991, , 263-276.	0.6	2
139	Twenty years of numerical syntaxonomy. Plant Ecology, 1989, 81, 1-15.	1.2	67
140	Syntaxonomy of the Onopordum acanthium communities in temperate and continental Europe. Plant Ecology, 1989, 81, 107-115.	1.2	13
141	A coenocline of the high-ranked syntaxa of ruderal vegetation. Plant Ecology, 1989, 81, 117-125.	1.2	8
142	The ruderal vegetation of the northwestern part of the PodunajskÃ; nÞina lowland 5.Malvion neglectae. Folia Geobotanica Et Phytotaxonomica, 1987, 22, 1-23.	0.4	13
143	Communities ofAnthriscus caucalis andAsperugo procumbens in Slovakia. Folia Geobotanica Et Phytotaxonomica, 1986, 21, 1-25.	0.4	4
144	A numerical-taxonomic study of theJuncus bufonius aggregate (Juncaceae) in Slovakia. Plant Systematics and Evolution, 1983, 142, 137-148.	0.9	1

#	ARTICLE	IF	CITATIONS
145	SAMBUCETUM EBULI IN THE NETHERLANDS. Acta Botanica Neerlandica, 1982, 31, 59-63.	0.9	1
146	Die Ruderalvegetation des nördlichen Teils der Donau-Tiefebene 3. Gesellschaften des Verbandes Dauco-Melilotion auf natürlichen Standorten. Folia Geobotanica Et Phytotaxonomica, 1982, 17, 21-47.	0.4	6
147	Die Ruderalvegetation des nördlichen Teils der Donau-Tiefebene 1.Onopordion acanthii-Verband. Folia Geobotanica Et Phytotaxonomica, 1981, 16, 225-263.	0.4	12
148	Die Ruderalvegetation des nĶrdlichen Teils der Donau-Tiefebene 2. Gesellschaften des Dauco-Melilotion-Verbandes auf ruderalen Standorten. Folia Geobotanica Et Phytotaxonomica, 1981, 16, 347-389.	0.4	7
149	Anthriscetum trichospermae im Gebirge Malé Karpaty (Slowakei). Folia Geobotanica Et Phytotaxonomica, 1979, 14, 355-366.	0.4	4
150	Validation of associations, alliances and orders of the Algerian forest and scrub vegetation. Mediterranean Botany, 0, 42, e75352.	0.9	2