François Boudreau

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/733266/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The transcription factor hepatocyte nuclear factor 4A acts in the intestine to promote white adipose tissue energy storage. Nature Communications, 2022, 13, 224.	12.8	15
2	A novel class of inhibitors that target SRSF10 and promote p53-mediated cytotoxicity on human colorectal cancer cells. NAR Cancer, 2021, 3, zcab019.	3.1	17
3	Organoids and Their Use in Modeling Gut Epithelial Cell Lineage Differentiation and Barrier Properties During Intestinal Diseases. Frontiers in Cell and Developmental Biology, 2021, 9, 732137.	3.7	8
4	NCOR1 Sustains Colorectal Cancer Cell Growth and Protects against Cellular Senescence. Cancers, 2021, 13, 4414.	3.7	5
5	A Novel Organoid Model of Damage and Repair Identifies HNF4α as a Critical Regulator of Intestinal Epithelial Regeneration. Cellular and Molecular Gastroenterology and Hepatology, 2020, 10, 209-223.	4.5	23
6	Human Hepatocyte Nuclear Factor 4-α Encodes Isoforms with Distinct Transcriptional Functions. Molecular and Cellular Proteomics, 2020, 19, 808-827.	3.8	31
7	Loss of PTEN SignalingÂinÂFoxl1+ Mesenchymal Telocytes Initiates Spontaneous Colonic Neoplasia in Mice. Cellular and Molecular Gastroenterology and Hepatology, 2019, 8, 530-533.e5.	4.5	5
8	Quantitative Proteomics Identifies DNA Repair as a Novel Biological Function for Hepatocyte Nuclear Factor 41± in Colorectal Cancer Cells. Cancers, 2019, 11, 626.	3.7	13
9	HNF4α is a novel regulator of intestinal glucose-dependent insulinotropic polypeptide. Scientific Reports, 2019, 9, 4200.	3.3	7
10	The G protein-coupled P2Y6 receptor promotes colorectal cancer tumorigenesis by inhibiting apoptosis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 1539-1551.	3.8	38
11	P1 promoter-driven HNF4α isoforms are specifically repressed by β-catenin signaling in colorectal cancer cells. Journal of Cell Science, 2018, 131, .	2.0	22
12	Epithelial Src homology region 2 domain–containing phosphataseâ€1 restrains intestinal growth, secretory cell differentiation, and tumorigenesis. FASEB Journal, 2017, 31, 3512-3526.	0.5	6
13	Transcription factor CUX1 is required for intestinal epithelial wound healing and targets the VAV2-RAC1 Signalling complex. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 2347-2355.	4.1	4
14	Phenotypic Analysis of Organoids by Proteomics. Proteomics, 2017, 17, 1700023.	2.2	29
15	HNF1α defect influences post-prandial lipid regulation. PLoS ONE, 2017, 12, e0177110.	2.5	10
16	Bmp signaling in colonic mesenchyme regulates stromal microenvironment and protects from polyposis initiation. International Journal of Cancer, 2016, 138, 2700-2712.	5.1	22
17	Distinct Roles for Intestinal Epithelial Cellâ€Specific Hdac1 and Hdac2 in the Regulation of Murine Intestinal Homeostasis. Journal of Cellular Physiology, 2016, 231, 436-448.	4.1	21
18	Gata4 is critical to maintain gut barrier function and mucosal integrity following epithelial injury. Scientific Reports, 2016, 6, 36776.	3.3	16

François Boudreau

#	Article	IF	CITATIONS
19	A SILAC-Based Method for Quantitative Proteomic Analysis of Intestinal Organoids. Scientific Reports, 2016, 6, 38195.	3.3	24
20	Cathepsin B promotes colorectal tumorigenesis, cell invasion, and metastasis. Molecular Carcinogenesis, 2016, 55, 671-687.	2.7	120
21	Subcellular proteomics analysis of different stages of colorectal cancer cell lines. Proteomics, 2016, 16, 3009-3018.	2.2	11
22	SHPâ€2 Phosphatase Prevents Colonic Inflammation by Controlling Secretory Cell Differentiation and Maintaining Hostâ€Microbiota Homeostasis. Journal of Cellular Physiology, 2016, 231, 2529-2540.	4.1	21
23	Loss of mesenchymal bone morphogenetic protein signaling leads to development of reactive stroma and initiation of the gastric neoplastic cascade. Scientific Reports, 2016, 6, 32759.	3.3	14
24	Hepatocyte Nuclear Factor 4 Alpha Polymorphisms and the Metabolic Syndrome in French-Canadian Youth. PLoS ONE, 2015, 10, e0117238.	2.5	19
25	Ghrelin Inhibition Restores Glucose Homeostasis in Hepatocyte Nuclear Factor-1α (MODY3)–Deficient Mice. Diabetes, 2015, 64, 3314-3320.	0.6	22
26	Identification of GATA-4 as a novel transcriptional regulatory component of regenerating islet-derived family members. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2015, 1849, 1411-1422.	1.9	7
27	Loss of Sonic Hedgehog Leads to Alterations in Intestinal Secretory Cell Maturation and Autophagy. PLoS ONE, 2014, 9, e98751.	2.5	29
28	Hepatocyte nuclear factor 4-alpha involvement in liver and intestinal inflammatory networks. World Journal of Gastroenterology, 2014, 20, 22.	3.3	158
29	Identification of a novel promyelocytic leukemia zincâ€finger isoform required for colorectal cancer cell growth and survival. International Journal of Cancer, 2013, 133, 58-66.	5.1	10
30	Epithelial Tyrosine Phosphatase SHP-2 Protects against Intestinal Inflammation in Mice. Molecular and Cellular Biology, 2013, 33, 2275-2284.	2.3	38
31	HDAC1 and HDAC2 Restrain the Intestinal Inflammatory Response by Regulating Intestinal Epithelial Cell Differentiation. PLoS ONE, 2013, 8, e73785.	2.5	84
32	Loss of Smad5 leads to the disassembly of the apical junctional complex and increased susceptibility to experimental colitis. American Journal of Physiology - Renal Physiology, 2011, 300, G586-G597.	3.4	24
33	Cux1 transcription factor is induced in inflammatory bowel disease and protects against experimental colitisâ€. Inflammatory Bowel Diseases, 2010, 16, 1739-1750.	1.9	13
34	The <i>Promyelocytic Leukemia Zinc Finger</i> (<i>PLZF </i>) gene is a novel transcriptional target of the CCAATâ€Ðisplacementâ€Protein (CUX1) repressor. FEBS Journal, 2010, 277, 4241-4253.	4.7	9
35	Loss of Hepatocyte-Nuclear-Factor-1α Impacts on Adult Mouse Intestinal Epithelial Cell Growth and Cell Lineages Differentiation. PLoS ONE, 2010, 5, e12378.	2.5	24
36	The PTEN Phosphatase Controls Intestinal Epithelial Cell Polarity and Barrier Function: Role in Colorectal Cancer Progression. PLoS ONE, 2010, 5, e15742.	2.5	59

François Boudreau

#	Article	IF	CITATIONS
37	Hepatocyte Nuclear Factor-4α Promotes Gut Neoplasia in Mice and Protects against the Production of Reactive Oxygen Species. Cancer Research, 2010, 70, 9423-9433.	0.9	89
38	Modification in Oxidative Stress, Inflammation, and Lipoprotein Assembly in Response to Hepatocyte Nuclear Factor 4α Knockdown in Intestinal Epithelial Cells. Journal of Biological Chemistry, 2010, 285, 40448-40460.	3.4	52
39	Hnfl $\hat{1}\pm$ is required for proper gut epithelial endocrine cell specification and controls the mTOR signalling pathway in mice. FASEB Journal, 2010, 24, 1007.5.	0.5	0
40	MITOCHONDRIAL DYSFUNCTIONS INDUCED BY OXIDATIVE STRESS IN CACOâ€2CELLS. FASEB Journal, 2010, 24, 482.1.	0.5	0
41	Loss of Hepatocyte-Nuclear-Factor-4α Affects Colonic Ion Transport and Causes Chronic Inflammation Resembling Inflammatory Bowel Disease in Mice. PLoS ONE, 2009, 4, e7609.	2.5	110
42	Nuclear Receptor Co-repressor Is Required to Maintain Proliferation of Normal Intestinal Epithelial Cells in Culture and Down-modulates the Expression of Pigment Epithelium-derived Factor. Journal of Biological Chemistry, 2009, 284, 25220-25229.	3.4	13
43	Hepatocyte nuclear factor 4α contributes to an intestinal epithelial phenotype in vitro and plays a partial role in mouse intestinal epithelium differentiation. American Journal of Physiology - Renal Physiology, 2009, 297, G124-G134.	3.4	80
44	Epithelial phosphatase and tensin homolog regulates intestinal architecture and secretory cell commitment and acts as a modifier gene in neoplasia. FASEB Journal, 2009, 23, 1835-1844.	0.5	29
45	Hepatocyte nuclear factor-4α promotes differentiation of intestinal epithelial cells in a coculture system. American Journal of Physiology - Renal Physiology, 2008, 294, G418-G428.	3.4	36
46	Loss of cathepsin L activity promotes claudinâ€1 overexpression and intestinal neoplasia. FASEB Journal, 2007, 21, 3853-3865.	0.5	62
47	Hepatocyte nuclear factor 4alpha (HNFâ€4α) promotes polarization and activates vectorial transport in intestinal epithelial cell. FASEB Journal, 2007, 21, A542.	0.5	0
48	Cdk2-dependent Phosphorylation of Homeobox Transcription Factor CDX2 Regulates Its Nuclear Translocation and Proteasome-mediated Degradation in Human Intestinal Epithelial Cells. Journal of Biological Chemistry, 2005, 280, 18095-18107.	3.4	52
49	Complex regulation of the lactase-phlorizin hydrolase promoter by GATA-4. American Journal of Physiology - Renal Physiology, 2004, 287, G899-G909.	3.4	50
50	A Novel Colonic Repressor Element Regulates Intestinal Gene Expression by Interacting with Cux/CDP. Molecular and Cellular Biology, 2002, 22, 5467-5478.	2.3	29
51	Physical Interaction between GATA-5 and Hepatocyte Nuclear Factor-11± Results in Synergistic Activation of the Human Lactase-Phlorizin Hydrolase Promoter. Journal of Biological Chemistry, 2002, 277, 27659-27667.	3.4	71
52	Hepatocyte Nuclear Factor-1α, GATA-4, and Caudal Related Homeodomain Protein Cdx2 Interact Functionally to Modulate Intestinal Gene Transcription. Journal of Biological Chemistry, 2002, 277, 31909-31917.	3.4	221
53	Phenotypic analysis of human fetal renal cells transformed by the SV40 large T antigen. In Vitro Cellular and Developmental Biology - Animal, 1997, 33, 598-601.	1.5	0