Chi-Yun Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7332626/publications.pdf

Version: 2024-02-01

28 papers

1,483 citations

279701 23 h-index 501076 28 g-index

28 all docs 28 docs citations

times ranked

28

2686 citing authors

#	Article	IF	CITATIONS
1	Phosphorylation of PDHA by AMPK Drives TCA Cycle to Promote Cancer Metastasis. Molecular Cell, 2020, 80, 263-278.e7.	4.5	120
2	The critical role of AMPK in driving Akt activation under stress, tumorigenesis and drug resistance. Nature Communications, 2018, 9, 4728.	5.8	125
3	H3 ubiquitination by NEDD4 regulates H3 acetylation and tumorigenesis. Nature Communications, 2017, 8, 14799.	5.8	34
4	Skp2-Mediated RagA Ubiquitination Elicits a Negative Feedback to Prevent Amino-Acid-Dependent mTORC1 Hyperactivation by Recruiting GATOR1. Molecular Cell, 2015, 58, 989-1000.	4.5	69
5	Annexin A2: Its Molecular Regulation and Cellular Expression in Cancer Development. Disease Markers, 2014, 2014, 1-10.	0.6	110
6	Reactive oxygen species-regulated glycogen synthase kinase- $3\hat{l}^2$ activation contributes to all-trans retinoic acid-induced apoptosis in granulocyte-differentiated HL60 cells. Biochemical Pharmacology, 2014, 88, 86-94.	2.0	28
7	Autophagy facilitates cytokine-induced ICAM-1 expression. Innate Immunity, 2014, 20, 200-213.	1.1	17
8	Glycogen synthase kinase- $3\hat{l}^2$ inactivation is an intracellular marker and regulator for endotoxemic neutrophilia. Journal of Molecular Medicine, 2013, 91, 207-217.	1.7	7
9	Annexin A2 Silencing Induces G2 Arrest of Non-small Cell Lung Cancer Cells through p53-dependent and -independent Mechanisms. Journal of Biological Chemistry, 2012, 287, 32512-32524.	1.6	64
10	Anesthetic Propofol Causes Glycogen Synthase Kinase- $3\hat{l}^2$ -regulated Lysosomal/Mitochondrial Apoptosis in Macrophages. Anesthesiology, 2012, 116, 868-881.	1.3	40
11	Regulation of SHP2 by PTEN/AKT/GSK- $3\hat{l}^2$ signaling facilitates IFN- \hat{l}^3 resistance in hyperproliferating gastric cancer. Immunobiology, 2012, 217, 926-934.	0.8	38
12	Vinca alkaloids cause aberrant ROS-mediated JNK activation, Mcl-1 downregulation, DNA damage, mitochondrial dysfunction, and apoptosis in lung adenocarcinoma cells. Biochemical Pharmacology, 2012, 83, 1159-1171.	2.0	90
13	Interferonâ $\hat{\in}\hat{i}^3$ stimulates p11â $\hat{\in}$ dependent surface expression of annexin A2 in lung epithelial cells to enhance phagocytosis. Journal of Cellular Physiology, 2012, 227, 2775-2787.	2.0	42
14	Increased galectin-3 facilitates leukemia cell survival from apoptotic stimuli. Biochemical and Biophysical Research Communications, 2011, 412, 334-340.	1.0	32
15	Autophagy facilitates an IFN- \hat{l}^3 response and signal transduction. Microbes and Infection, 2011, 13, 888-894.	1.0	14
16	Glucosylceramide synthase inhibitor PDMP sensitizes chronic myeloid leukemia T315I mutant to Bcrâ€Abl inhibitor and cooperatively induces glycogen synthase kinaseâ€3â€regulated apoptosis. FASEB Journal, 2011, 25, 3661-3673.	0.2	38
17	Anesthetic Propofol Reduces Endotoxic Inflammation by Inhibiting Reactive Oxygen Species-regulated Akt/IKKβ/NF-κB Signaling. PLoS ONE, 2011, 6, e17598.	1.1	84
18	Nucleophosmin in the pathogenesis of arsenic-related bladder carcinogenesis revealed by quantitative proteomics. Toxicology and Applied Pharmacology, 2010, 242, 126-135.	1.3	21

#	Article	IF	CITATIONS
19	Macrophage migration inhibitory factor regulates interleukin-6 production by facilitating nuclear factor-kappa B activation during Vibrio vulnificus infection. BMC Immunology, 2010, 11, 50.	0.9	35
20	Different Types of Cell Death Induced by Enterotoxins. Toxins, 2010, 2, 2158-2176.	1.5	28
21	Autophagy Facilitates IFN- \hat{I}^3 -induced Jak2-STAT1 Activation and Cellular Inflammation. Journal of Biological Chemistry, 2010, 285, 28715-28722.	1.6	78
22	Autocrine IL-6 regulates GRO-α production in thymic epithelial cells. Cytokine, 2010, 51, 195-201.	1.4	15
23	Glycogen Synthase Kinase- $3\hat{1}^2$ Facilitates IFN- $\hat{1}^3$ -Induced STAT1 Activation by Regulating Src Homology-2 Domain-Containing Phosphatase 2. Journal of Immunology, 2009, 183, 856-864.	0.4	71
24	Glycogen Synthase Kinase-3 and Omi/HtrA2 Induce Annexin A2 Cleavage followed by Cell Cycle Inhibition and Apoptosis. Molecular Biology of the Cell, 2009, 20, 4153-4161.	0.9	34
25	Glycogen Synthase Kinase- $3\hat{l}^2$ Mediates Endoplasmic Reticulum Stress-Induced Lysosomal Apoptosis in Leukemia. Journal of Pharmacology and Experimental Therapeutics, 2009, 329, 524-531.	1.3	52
26	<i>Staphylococcus aureus</i> Induces Microglial Inflammation via a Glycogen Synthase Kinase 3β-Regulated Pathway. Infection and Immunity, 2009, 77, 4002-4008.	1.0	41
27	Glycogen synthase kinaseâ€3 negatively regulates antiâ€inflammatory interleukinâ€10 for lipopolysaccharideâ€induced iNOS/NO biosynthesis and RANTES production in microglial cells. Immunology, 2009, 128, e275-86.	2.0	113
28	IFNâ€Î³ synergizes with LPS to induce nitric oxide biosynthesis through glycogen synthase kinaseâ€3â€inhibited ILâ€10. Journal of Cellular Biochemistry, 2008, 105, 746-755.	1.2	43