Mariana Henriques

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7332602/publications.pdf

Version: 2024-02-01

208 papers 9,887 citations

52 h-index 90 g-index

211 all docs

211 docs citations

times ranked

211

13147 citing authors

#	Article	IF	CITATIONS
1	Microparticles orchestrating cell fate in bottom-up approaches. Current Opinion in Biotechnology, 2022, 73, 276-281.	3.3	8
2	The skin microbiome of infected pressure ulcers: A review and implications for health professionals. European Journal of Clinical Investigation, 2022, 52, e13688.	1.7	8
3	Antisense locked nucleic acid gapmers to control Candida albicans filamentation. Nanomedicine: Nanotechnology, Biology, and Medicine, 2022, 39, 102469.	1.7	1
4	Anti-EFG1 2′-OMethylRNA oligomer inhibits Candida albicans filamentation and attenuates the candidiasis in Galleria mellonella. Molecular Therapy - Nucleic Acids, 2022, 27, 517-523.	2.3	11
5	Comparing the effect of Thymus spp. essential oils on Candida auris. Industrial Crops and Products, 2022, 178, 114667.	2.5	7
6	Antimicrobial TiN-Ag Coatings in Leather Insole for Diabetic Foot. Materials, 2022, 15, 2009.	1.3	3
7	Silver oxide coatings deposited on leathers to prevent diabetic foot infections. Surface and Coatings Technology, 2022, 442, 128338.	2.2	5
8	Metabolic profile of <i>Candida albicans</i> and <i>Candida parapsilosis</i> interactions within dual-species biofilms. FEMS Microbiology Ecology, 2022, 98, .	1.3	1
9	Recent Trends in Protective Textiles against Biological Threats: A Focus on Biological Warfare Agents. Polymers, 2022, 14, 1599.	2.0	13
10	Vulvovaginal candidiasis and asymptomatic vaginal colonization in Portugal: Epidemiology, risk factors and antifungal pattern. Medical Mycology, 2022, 60, .	0.3	7
11	Cationic lipid-based formulations for encapsulation and delivery of anti- <i>EFG1</i> 2′ <i>O</i> MethylRNA oligomer. Medical Mycology, 2022, 60, .	0.3	2
12	Portuguese honeys as antimicrobial agents against Candida species. Journal of Traditional and Complementary Medicine, 2021, 11, 130-136.	1.5	20
13	Revealing Candida glabrata biofilm matrix proteome: global characterization and pH response. Biochemical Journal, 2021, 478, 961-974.	1.7	2
14	Candida Albicans Virulence Factors and Its Pathogenicity. Microorganisms, 2021, 9, 704.	1.6	11
15	Polyamide Microsized Particulate Polyplex Carriers for the 2′-OMethylRNA EFG1 Antisense Oligonucleotide. ACS Applied Bio Materials, 2021, 4, 4607-4617.	2.3	1
16	The combined application of the anti-RAS1 and anti-RIM101 2'-OMethylRNA oligomers enhances Candida albicans filamentation control. Medical Mycology, 2021, 59, 1024-1031.	0.3	0
17	Cu oxidation mechanism on Cu-Zr(O)N coatings: Role on functional properties. Applied Surface Science, 2021, 555, 149704.	3.1	11
18	Candida albicans Antimicrobial and Antibiofilm Activity of Novel Endodontic Solvents. Applied Sciences (Switzerland), 2021, 11, 7748.	1.3	1

#	Article	IF	Citations
19	Exploration of anti EFG1 locked nucleic acid gapmers to control Candida albicans filamentation. Access Microbiology, 2021, 3, .	0.2	O
20	Hormones modulate Candida vaginal isolates biofilm formation and decrease their susceptibility to azoles and hydrogen peroxide. Medical Mycology, 2020, 58, 341-350.	0.3	7
21	Environmental pH modulates biofilm formation and matrix composition in <i>Candida albicans</i> and <i>Candida glabrata</i> Biofouling, 2020, 36, 621-630.	0.8	12
22	Pathogenesis and Virulence of Candida albicans and Candida glabrata. Pathogens, 2020, 9, 752.	1.2	13
23	Aging Effect on Functionalized Silver-Based Nanocoating Braided Coronary Stents. Coatings, 2020, 10, 1234.	1.2	5
24	Antibacterial Effects of Bimetallic Clusters Incorporated in Amorphous Carbon for Stent Application. ACS Applied Materials & Samp; Interfaces, 2020, 12, 24555-24563.	4.0	20
25	Satureja montana L. and Origanum majorana L. Decoctions: Antimicrobial Activity, Mode of Action and Phenolic Characterization. Antibiotics, 2020, 9, 294.	1.5	24
26	Effect of progesterone on Candida albicans biofilm formation under acidic conditions: A transcriptomic analysis. International Journal of Medical Microbiology, 2020, 310, 151414.	1.5	8
27	Surface functionalization of 3D printed structures: Aesthetic and antibiofouling properties. Surface and Coatings Technology, 2020, 386, 125464.	2.2	9
28	Honey as a Strategy to Fight Candida tropicalis in Mixed-Biofilms with Pseudomonas aeruginosa. Antibiotics, 2020, 9, 43.	1.5	16
29	Transcriptional responses of Candida glabrata biofilm cells to fluconazole are modulated by the carbon source. Npj Biofilms and Microbiomes, 2020, 6, 4.	2.9	16
30	Candida albicans Adaptation on Simulated Human Body Fluids under Different pH. Microorganisms, 2020, 8, 511.	1.6	11
31	Application of 2′-OMethylRNA′ Antisense Oligomer to Control Candida albicans EFG1 Virulence Determinant. Molecular Therapy - Nucleic Acids, 2019, 18, 508-517.	2.3	11
32	Phenolic Plant Extracts Versus Penicillin G: In Vitro Susceptibility of Staphylococcus aureus Isolated from Bovine Mastitis. Pharmaceuticals, 2019, 12, 128.	1.7	7
33	Inflammatory Cell Recruitment in Candida glabrata Biofilm Cell-Infected Mice Receiving Antifungal Chemotherapy. Journal of Clinical Medicine, 2019, 8, 142.	1.0	10
34	Editorial: Antibiotic Alternatives and Combinational Therapies for Bacterial Infections. Frontiers in Microbiology, 2019, 9, 3359.	1.5	3
35	Anti-biofilm activity of hydromethanolic plant extracts against Staphylococcus aureus isolates from bovine mastitis. Heliyon, 2019, 5, e01728.	1.4	21
36	Comfort and Infection Control of Chitosan-impregnated Cotton Gauze as Wound Dressing. Fibers and Polymers, 2019, 20, 922-932.	1.1	21

#	Article	IF	CITATIONS
37	Candida sp. Infections in Patients with Diabetes Mellitus. Journal of Clinical Medicine, 2019, 8, 76.	1.0	166
38	Interactions between <i>Candida albicans</i> and <i>Candida glabrata</i> in biofilms: Influence of the strain type, culture medium and glucose supplementation. Mycoses, 2018, 61, 270-278.	1.8	15
39	Plant phenolic extracts as an effective strategy to control Staphylococcus aureus, the dairy industry pathogen. Industrial Crops and Products, 2018, 112, 515-520.	2.5	38
40	Combination of Posaconazole and Amphotericin B in the Treatment of Candida glabrata Biofilms. Microorganisms, 2018, 6, 123.	1.6	13
41	The MNN2 Gene Knockout Modulates the Antifungal Resistance of Biofilms of Candida glabrata. Biomolecules, 2018, 8, 130.	1.8	13
42	Susceptibility of <i>Candida glabrata </i> biofilms to echinocandins: alterations in the matrix composition. Biofouling, 2018, 34, 569-578.	0.8	23
43	The Role of Candida albicans Transcription Factor RLM1 in Response to Carbon Adaptation. Frontiers in Microbiology, 2018, 9, 1127.	1.5	23
44	Portrait of Matrix Gene Expression in Candida glabrata Biofilms with Stress Induced by Different Drugs. Genes, 2018, 9, 205.	1.0	21
45	Oral mucositis caused by <i>Candida glabrata</i> biofilms: failure of the concomitant use of fluconazole and ascorbic acid. Therapeutic Advances in Infectious Disease, 2017, 4, 10-17.	1.1	22
46	The Effectiveness of Voriconazole in Therapy of Candida glabrata's Biofilms Oral Infections and Its Influence on the Matrix Composition and Gene Expression. Mycopathologia, 2017, 182, 653-664.	1.3	24
47	TiO ₂ nanotubes enriched with calcium, phosphorous and zinc: promising bio-selective functional surfaces for osseointegrated titanium implants. RSC Advances, 2017, 7, 49720-49738.	1.7	16
48	The carboxylic acid transporters Jen1 and Jen2 affect the architecture and fluconazole susceptibility of <i>Candida albicans</i> biofilm in the presence of lactate. Biofouling, 2017, 33, 943-954.	0.8	12
49	Susceptibility testing of Candida albicans and Candida glabrata to Glycyrrhiza glabra L Industrial Crops and Products, 2017, 108, 480-484.	2.5	4
50	Portrait of Candida Species Biofilm Regulatory Network Genes. Trends in Microbiology, 2017, 25, 62-75.	3.5	108
51	Candida Species Biofilms' Antifungal Resistance. Journal of Fungi (Basel, Switzerland), 2017, 3, 8.	1.5	184
52	Liposomal and Deoxycholate Amphotericin B Formulations: Effectiveness against Biofilm Infections of Candida spp Pathogens, 2017, 6, 62.	1.2	33
53	Candida glabrata Biofilms: How Far Have We Come?. Journal of Fungi (Basel, Switzerland), 2017, 3, 11.	1.5	80
54	Polymicrobial Ventilator-Associated Pneumonia: Fighting In Vitro Candida albicans-Pseudomonas aeruginosa Biofilms with Antifungal-Antibacterial Combination Therapy. PLoS ONE, 2017, 12, e0170433.	1.1	36

#	Article	IF	Citations
55	Novel strategies to fight <i>Candida</i> species infection. Critical Reviews in Microbiology, 2016, 42, 594-606.	2.7	60
56	<i>Candida glabrata's</i> recurrent infections: biofilm formation during Amphotericin B treatment. Letters in Applied Microbiology, 2016, 63, 77-81.	1.0	17
57	Antibacterial Ag/a-C nanocomposite coatings: The influence of nano-galvanic a-C and Ag couples on Ag ionization rates. Applied Surface Science, 2016, 377, 283-291.	3.1	55
58	Morphology and oxygen incorporation effect on antimicrobial activity of silver thin films. Applied Surface Science, 2016, 371, 1-8.	3.1	26
59	Nano-galvanic coupling for enhanced Ag+ release in ZrCN-Ag films: Antibacterial application. Surface and Coatings Technology, 2016, 298, 1-6.	2.2	22
60	Novel strategy to detect and locate periodontal pathogens: The PNA-FISH technique. Microbiological Research, 2016, 192, 185-191.	2.5	17
61	Discrimination of clinically relevant Candida species by Fourier-transform infrared spectroscopy with attenuated total reflectance (FTIR-ATR). RSC Advances, 2016, 6, 92065-92072.	1.7	7
62	<i>Candida tropicalis</i> biofilm and human epithelium invasion is highly influenced by environmental pH. Pathogens and Disease, 2016, 74, ftw101.	0.8	13
63	Influence of oxygen content on the antibacterial effect of Ag-O coatings deposited by magnetron sputtering. Surface and Coatings Technology, 2016, 305, 1-10.	2,2	28
64	Propolis: a potential natural product to fight <i>Candida</i> species infections. Future Microbiology, 2016, 11, 1035-1046.	1.0	53
65	Bioactive properties and functional constituents of Hypericum androsaemum L.: A focus on the phenolic profile. Food Research International, 2016, 89, 422-431.	2.9	19
66	Disinfectants to Fight Oral Candida Biofilms. Advances in Experimental Medicine and Biology, 2016, 931, 83-93.	0.8	5
67	Effect of Voriconazole on Candida tropicalis Biofilms: Relation with ERG Genes Expression. Mycopathologia, 2016, 181, 643-651.	1.3	11
68	Bovine mastitis disease/pathogenicity: evidence of the potential role of microbial biofilms. Pathogens and Disease, 2016, 74, ftw006.	0.8	119
69	MC3T3-E1 Cell Response to Ti _{1â€"<i>x</i>} Ag _{<i>x</i>} and Ag-TiN _{<i>x</i>} Electrodes Deposited on Piezoelectric Poly(vinylidene fluoride) Substrates for Sensor Applications. ACS Applied Materials & Emp; Interfaces, 2016, 8, 4199-4207.	4.0	10
70	Control of Bovine Mastitis: Old and Recent Therapeutic Approaches. Current Microbiology, 2016, 72, 377-382.	1.0	258
71	Candida tropicalis Biofilms: Biomass, Metabolic Activity and Secreted Aspartyl Proteinase Production. Mycopathologia, 2016, 181, 217-224.	1.3	22
72	In vitro anti-Candida activity of Glycyrrhiza glabra L Industrial Crops and Products, 2016, 83, 81-85.	2.5	25

#	Article	IF	CITATIONS
73	Vulvovaginal candidiasis: Epidemiology, microbiology and risk factors. Critical Reviews in Microbiology, 2016, 42, 905-927.	2.7	399
74	Biofilm formation of Brazilian meticillin-resistant Staphylococcus aureus strains: prevalence of biofilm determinants and clonal profiles. Journal of Medical Microbiology, 2016, 65, 286-297.	0.7	18
75	Antibacterial Activity of Textiles for Wound Treatment. AATCC Journal of Research, 2015, 2, 1-7.	0.3	6
76	Biotribocorrosion (triboâ€electrochemical) characterization of anodized titanium biomaterial containing calcium and phosphorus before and after osteoblastic cell culture. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2015, 103, 661-669.	1.6	20
77	Candida glabrata susceptibility to antifungals and phagocytosis is modulated by acetate. Frontiers in Microbiology, 2015, 6, 919.	1.5	45
78	<i>In Vivo</i> Anti- <i>Candida</i> Activity of Phenolic Extracts and Compounds: Future Perspectives Focusing on Effective Clinical Interventions. BioMed Research International, 2015, 2015, 1-14.	0.9	17
79	Silver activation on thin films of Ag–ZrCN coatings for antimicrobial activity. Materials Science and Engineering C, 2015, 55, 547-555.	3.8	38
80	Activity of phenolic compounds from plant origin against Candida species. Industrial Crops and Products, 2015, 74, 648-670.	2.5	108
81	Silver Nanoparticles to Fight Candida Coinfection in the Oral Cavity. , 2015, , 283-295.		0
82	Combined Influence of Fluoride and Biofilms on the Biotribocorrosion Behavior of Titanium Used for Dental Applications. Journal of Bio- and Tribo-Corrosion, 2015, 1, 1.	1.2	12
83	Plants used in folk medicine: The potential of their hydromethanolic extracts against Candida species. Industrial Crops and Products, 2015, 66, 62-67.	2.5	44
84	Detection and Quantification of Fluconazole Within Candida glabrata Biofilms. Mycopathologia, 2015, 179, 391-395.	1.3	9
85	Candida bracarensis: Evaluation of Virulence Factors and its Tolerance to Amphotericin B and Fluconazole. Mycopathologia, 2015, 180, 305-315.	1.3	8
86	Candida tropicalis biofilm's matrixâ€"involvement on its resistance to amphotericin B. Diagnostic Microbiology and Infectious Disease, 2015, 83, 165-169.	0.8	34
87	Electrochemical vs antibacterial characterization of ZrCN–Ag coatings. Surface and Coatings Technology, 2015, 275, 357-362.	2.2	7
88	Influence of glucose concentration on the structure and quantity of biofilms formed by Candida parapsilosis. FEMS Yeast Research, 2015, 15, fov043.	1.1	21
89	How do titanium and Ti6Al4V corrode in fluoridated medium as found in the oral cavity? An in vitro study. Materials Science and Engineering C, 2015, 47, 384-393.	3.8	119
90	Wear and Corrosion Interactions on Titanium in Oral Environment: Literature Review. Journal of Bioand Tribo-Corrosion, 2015, 1 , 1 .	1.2	109

#	Article	IF	CITATIONS
91	Preparation and crystal structure of U3Fe2C5: An original uranium–iron carbide. Journal of Nuclear Materials, 2015, 464, 299-303.	1.3	0
92	Evaluation of antibacterial activity of caffeic acid encapsulated by $\ensuremath{<} b > \ensuremath{\hat{l}^2} < \slash b > \ensuremath{-} cyclodextrins$. Journal of Microencapsulation, 2015, 32, 804-810.	1.2	51
93	PVD-grown antibacterial Ag-TiN films on piezoelectric PVDF substrates for sensor applications. Surface and Coatings Technology, 2015, 281, 117-124.	2.2	22
94	Murine IL-17+ $\hat{V}^{3}4$ T lymphocytes accumulate in the lungs and play a protective role during severe sepsis. BMC Immunology, 2015, 16, 36.	0.9	27
95	Susceptibility of Candida albicans and Candida glabrata biofilms to silver nanoparticles in intermediate and mature development phases. Journal of Prosthodontic Research, 2015, 59, 42-48.	1.1	50
96	Cyclodextrin modulation of gallic acid in vitro antibacterial activity. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2015, 81, 205-214.	0.9	25
97	Decoction, infusion and hydroalcoholic extract of cultivated thyme: Antioxidant and antibacterial activities, and phenolic characterisation. Food Chemistry, 2015, 167, 131-137.	4.2	128
98	Evaluation of bioactive properties and phenolic compounds in different extracts prepared from Salvia officinalis L Food Chemistry, 2015, 170, 378-385.	4.2	180
99	Influence of culture media on the physical and chemical properties of Ag–TiCN coatings. Journal Physics D: Applied Physics, 2014, 47, 335401.	1.3	3
100	Antibacterial and Antioxidant Activities of Derriobtusone A Isolated from <i>Lonchocarpus obtusus </i> . BioMed Research International, 2014, 2014, 1-9.	0.9	9
101	Effect of Algae and Plant Lectins on Planktonic Growth and Biofilm Formation in Clinically Relevant Bacteria and Yeasts. BioMed Research International, 2014, 2014, 1-9.	0.9	37
102	Antibacterial Potential of Northeastern Portugal Wild Plant Extracts and Respective Phenolic Compounds. BioMed Research International, 2014, 2014, 1-8.	0.9	45
103	Effects of fluconazole on <i>Candida glabrata</i> biofilms and its relationship with ABC transporter gene expression. Biofouling, 2014, 30, 447-457.	0.8	49
104	Effect of a casbane diterpene isolated from Croton nepetaefolius on the prevention and control of biofilms formed by bacteria and Candida species. Industrial Crops and Products, 2014, 61, 499-509.	2.5	16
105	Caffeic acid loading wound dressing: physicochemical and biological characterization. Therapeutic Delivery, 2014, 5, 1063-1075.	1.2	14
106	Cyclodextrin-based hydrogels toward improved wound dressings. Critical Reviews in Biotechnology, 2014, 34, 328-337.	5.1	42
107	Cyclodextrins as encapsulation agents for plant bioactive compounds. Carbohydrate Polymers, 2014, 101, 121-135.	5.1	346
108	Glycosylation: impact, control and improvement during therapeutic protein production. Critical Reviews in Biotechnology, 2014, 34, 281-299.	5.1	125

#	Article	IF	Citations
109	Decoction, infusion and hydroalcoholic extract of Origanum vulgare L.: Different performances regarding bioactivity and phenolic compounds. Food Chemistry, 2014, 158, 73-80.	4.2	101
110	Adhesion of Candida biofilm cells to human epithelial cells and polystyrene after treatment with silver nanoparticles. Colloids and Surfaces B: Biointerfaces, 2014, 114, 410-412.	2.5	17
111	Candida glabrata: a review of its features and resistance. European Journal of Clinical Microbiology and Infectious Diseases, 2014, 33, 673-688.	1.3	216
112	Feed Optimization in Fed-Batch Culture. Methods in Molecular Biology, 2014, 1104, 105-116.	0.4	6
113	Effect of progesterone on Candida albicans vaginal pathogenicity. International Journal of Medical Microbiology, 2014, 304, 1011-1017.	1.5	34
114	Antifungal activity of phenolic compounds identified in flowers from North Eastern Portugal against <i>Candida</i> species. Future Microbiology, 2014, 9, 139-146.	1.0	78
115	Cyclodextrin/cellulose hydrogel with gallic acid to prevent wound infection. Cellulose, 2014, 21, 4519-4530.	2.4	45
116	Silver colloidal nanoparticle stability: influence on Candida biofilms formed on denture acrylic. Medical Mycology, 2014, 52, 627-635.	0.3	22
117	Application of benzo[a]phenoxazinium chlorides in antimicrobial photodynamic therapy of Candida albicans biofilms. Journal of Photochemistry and Photobiology B: Biology, 2014, 141, 93-99.	1.7	29
118	Candidiasis: Predisposing Factors, Prevention, Diagnosis and Alternative Treatment. Mycopathologia, 2014, 177, 223-240.	1.3	168
119	Candida albicans promotes invasion and colonisation of Candida glabrata in a reconstituted human vaginal epithelium. Journal of Infection, 2014, 69, 396-407.	1.7	61
120	Evaluation of Solid and Porous Microcarriers for Cell Growth and Production of Recombinant Proteins. Methods in Molecular Biology, 2014, 1104, 137-147.	0.4	7
121	Development of braided fiber-based stents. Studies in Health Technology and Informatics, 2014, 207, 135-44.	0.2	1
122	Antifungal activity and detailed chemical characterization of Cistus ladanifer phenolic extracts. Industrial Crops and Products, 2013, 41, 41-45.	2.5	89
123	Differential Adherence and Expression of Virulence Traits by Candida albicans and Candida parapsilosis in Mono- and Dual-Species Cultures in Artificial Saliva. Mycopathologia, 2013, 176, 33-40.	1.3	9
124	The impact of microcarrier culture optimization on the glycosylation profile of a monoclonal antibody. SpringerPlus, 2013, 2, 25.	1.2	14
125	Early and late acute lung injury and their association with distal organ damage in murine malaria. Respiratory Physiology and Neurobiology, 2013, 186, 65-72.	0.7	17
126	Characterization of phenolic compounds in wild medicinal flowers from Portugal by HPLC–DAD–ESI/MS and evaluation of antifungal properties. Industrial Crops and Products, 2013, 44, 104-110.	2.5	72

#	Article	IF	Citations
127	Silver colloidal nanoparticles: effect on matrix composition and structure of <i>Candida albicans </i> and <i>Candida glabrata </i> biofilms. Journal of Applied Microbiology, 2013, 114, 1175-1183.	1.4	54
128	Antifungal activity of silver nanoparticles in combination with nystatin and chlorhexidine digluconate against <i><scp>C</scp>andida albicans</i> and <i><scp>C</scp>andida glabrata</i> biofilms. Mycoses, 2013, 56, 672-680.	1.8	83
129	Corrosion behaviour of titanium in the presence of Streptococcus mutans. Journal of Dentistry, 2013, 41, 528-534.	1.7	135
130	Advances and Drawbacks of the Adaptation to Serum-Free Culture of CHO-K1 Cells for Monoclonal Antibody Production. Applied Biochemistry and Biotechnology, 2013, 169, 1279-1291.	1.4	27
131	The impact of cell adaptation to serum-free conditions on the glycosylation profile of a monoclonal antibody produced by Chinese hamster ovary cells. New Biotechnology, 2013, 30, 563-572.	2.4	19
132	The effect of silver nanoparticles and nystatin on mixed biofilms of <i>Candida glabrata </i> and <i>Candida albicans </i> on acrylic. Medical Mycology, 2013, 51, 178-184.	0.3	72
133	Influence of surface features on the adhesion of ⟨i⟩Staphylococcus epidermidis⟨/i⟩ to Ag–TiCN thin films. Science and Technology of Advanced Materials, 2013, 14, 035009.	2.8	27
134	Evaluation of the ability of <i>C. albicans </i> to form biofilm in the presence of phage-resistant phenotypes of <i>P. aeruginosa </i> Biofouling, 2013, 29, 1169-1180.	0.8	7
135	Reciprocal Interference between <i>Lactobacillus</i> spp. and <i>Gardnerella vaginalis </i> Adherence to Epithelial Cells. International Journal of Medical Sciences, 2013, 10, 1193-1198.	1.1	61
136	Evaluation of Macroporous and Microporous Carriers for CHO-K1 Cell Growth and Monoclonal Antibody Production. Journal of Microbiology and Biotechnology, 2013, 23, 1308-1321.	0.9	14
137	Comparison of commercial serum-free media for CHO-K1 cell growth and monoclonal antibody production. International Journal of Pharmaceutics, 2012, 437, 303-305.	2.6	24
138	Endophytic fungi from Combretum leprosum with potential anticancer and antifungal activity. Symbiosis, 2012, 58, 109-117.	1.2	15
139	Silver nanoparticles: influence of stabilizing agent and diameter on antifungal activity against Candida albicans and Candida glabrata biofilms. Letters in Applied Microbiology, 2012, 54, 383-391.	1.0	94
140	Design and synthesis of new (E)-cinnamic N-acylhydrazones as potent antitrypanosomal agents. European Journal of Medicinal Chemistry, 2012, 54, 512-521.	2.6	65
141	Candida tropicalis biofilms: Effect on urinary epithelial cells. Microbial Pathogenesis, 2012, 53, 95-99.	1.3	24
142	Effect of exogenous administration of <i>Candida albicans</i> autoregulatory alcohols in a murine model of hematogenously disseminated candidiasis. Journal of Basic Microbiology, 2012, 52, 487-491.	1.8	18
143	CCL25 induces α ₄ β ₇ integrinâ€dependent migration of ILâ€17 ⁺ γδT lymphocytes during an allergic reaction. European Journal of Immunology, 2012, 42, 1250-1260.	1.6	29
144	Insights into Candida tropicalis nosocomial infections and virulence factors. European Journal of Clinical Microbiology and Infectious Diseases, 2012, 31, 1399-1412.	1.3	88

#	Article	IF	CITATIONS
145	Addition of DNase improves the <i>in vitro</i> activity of antifungal drugs against <i>Candida albicans</i> biofilms. Mycoses, 2012, 55, 80-85.	1.8	146
146	<i>Candida glabrata, Candida parapsilosis</i> and <i>Candida tropicalis</i> biology, epidemiology, pathogenicity and antifungal resistance. FEMS Microbiology Reviews, 2012, 36, 288-305.	3.9	714
147	Evaluation of the OSCARâ,,¢ system for the production of monoclonal antibodies by CHO-K1 cells. International Journal of Pharmaceutics, 2012, 430, 42-46.	2.6	11
148	Wave characterization for mammalian cell culture: residence time distribution. New Biotechnology, 2012, 29, 402-408.	2.4	11
149	Influence of silver content on the tribomechanical behavior on Ag-TiCN bioactive coatings. Surface and Coatings Technology, 2012, 206, 2192-2198.	2.2	46
150	Functionalization of wool with L-cysteine: Process characterization and assessment of antimicrobial activity and cytotoxicity. Journal of Applied Polymer Science, 2012, 124, 1352-1358.	1.3	23
151	Cistus ladanifer as a source of phenolic compounds with antifungal activity. Planta Medica, 2012, 78, .	0.7	0
152	<i>Candida tropicalis</i> biofilms: artificial urine, urinary catheters and flow model. Medical Mycology, 2011, 49, 1-9.	0.3	33
153	Silver colloidal nanoparticles: antifungal effect against adhered cells and biofilms of <i>Candida albicans </i> li>and <i>Candida glabrata </i> li>. Biofouling, 2011, 27, 711-719.	0.8	186
154	Adherence and biofilm formation of non-Candida albicans Candida species. Trends in Microbiology, 2011, 19, 241-247.	3.5	208
155	Casbane Diterpene as a Promising Natural Antimicrobial Agent against Biofilm-Associated Infections. Molecules, 2011, 16, 190-201.	1.7	73
156	The role of secreted aspartyl proteinases in Candida tropicalis invasion and damage of oral mucosa. Clinical Microbiology and Infection, 2011, 17, 264-272.	2.8	47
157	<i>Candida glabrata</i> and <i>Candida albicans</i> coâ€infection of an <i>in vitro</i> oral epithelium. Journal of Oral Pathology and Medicine, 2011, 40, 421-427.	1.4	86
158	Surface characterization of Ti-Si-C-ON coatings for orthopedic devices: XPS and Raman spectroscopy. Solid State Sciences, 2011, 13, 95-100.	1.5	13
159	Efficacy of a Broad Host Range Lytic Bacteriophage Against E. coli Adhered to Urothelium. Current Microbiology, 2011, 62, 1128-1132.	1.0	32
160	Antimicrobial activity assessment of textiles: standard methods comparison. Annals of Microbiology, 2011, 61, 493-498.	1.1	86
161	Preliminary evaluation of microcarrier culture for growth and monoclonal antibody production of CHO-K1 cells. BMC Proceedings, 2011, 5, P111.	1.8	1
162	Strategies for adaptation of mAb-producing CHO cells to serum-free medium. BMC Proceedings, 2011, 5, P112.	1.8	7

#	Article	IF	CITATIONS
163	Mini-review: Antimicrobial central venous catheters – recent advances and strategies. Biofouling, 2011, 27, 609-620.	0.8	60
164	An in vitro evaluation of Candida tropicalis infectivity using human cell monolayers. Journal of Medical Microbiology, 2011, 60, 1270-1275.	0.7	16
165	Effect of antifungal agents on non- <i>Candida albicans Candida</i> species enzymatic activity., 2011,,.		2
166	Technological progresses in monoclonal antibody production systems. Biotechnology Progress, 2010, 26, 332-351.	1.3	77
167	Crystal violet staining to quantify Candida adhesion to epithelial cells. British Journal of Biomedical Science, 2010, 67, 120-125.	1.2	37
168	InÂVitro Biofilm Activity of Non-Candida albicans Candida Species. Current Microbiology, 2010, 61, 534-540.	1.0	82
169	Development of biofunctional textiles by the application of resveratrol to cotton, bamboo, and silk. Fibers and Polymers, 2010, 11, 271-276.	1.1	21
170	Candida clinical species identification: molecular and biochemical methods. Annals of Microbiology, 2010, 60, 105-112.	1.1	10
171	Examination of Potential Virulence Factors of Candida tropicalis Clinical Isolates From Hospitalized Patients. Mycopathologia, 2010, 169, 175-182.	1.3	82
172	Presence of Extracellular DNA in the Candida albicans Biofilm Matrix and its Contribution to Biofilms. Mycopathologia, 2010, 169, 323-331.	1.3	197
173	Oral Candida carriage of patients attending a dental clinic in Braga, Portugal. Revista Iberoamericana De Micologia, 2010, 27, 119-124.	0.4	33
174	Candida albicans virulence and drug-resistance requires the O-acyltransferase Gup1p. BMC Microbiology, 2010, 10, 238.	1.3	33
175	<i>Candida</i> species extracellular alcohols: production and effect in sessile cells. Journal of Basic Microbiology, 2010, 50, S89-97.	1.8	22
176	Influence of the surface morphology and microstructure on the biological properties of Ti–Si–C–N–O coatings. Thin Solid Films, 2010, 518, 5694-5699.	0.8	11
177	Biofilms Inducing Ultra-low Friction on Titanium. Journal of Dental Research, 2010, 89, 1470-1475.	2.5	56
178	Guidelines to cell engineering for monoclonal antibody production. European Journal of Pharmaceutics and Biopharmaceutics, 2010, 74, 127-138.	2.0	166
179	Silicone colonization by non-Candida albicans Candida species in the presence of urine. Journal of Medical Microbiology, 2010, 59, 747-754.	0.7	68
180	Do oral biofilms influence the wear and corrosion behavior of titanium?. Biofouling, 2010, 26, 471-478.	0.8	130

#	Article	IF	Citations
181	MIC Evaluation of Candida Reference Strains and Clinical Isolates by E-Test. Journal of Chemotherapy, 2009, 21, 351-355.	0.7	5
182	Biological Properties of Ti-Si-C-O-N Thin Films. Journal of Nano Research, 2009, 6, 99-114.	0.8	0
183	Correlation between Etest $<$ sup $>$ Â $^{\odot}<$ /sup $>$, disk diffusion, and microdilution methods for antifungal susceptibility testing of $<$ i $>$ Candida $<$ (i $>$) species from infection and colonization. Journal of Clinical Laboratory Analysis, 2009, 23, 324-330.	0.9	30
184	The role of polysaccharide intercellular adhesin (PIA) in Staphylococcus epidermidis adhesion to host tissues and subsequent antibiotic tolerance. European Journal of Clinical Microbiology and Infectious Diseases, 2009, 28, 623-629.	1.3	21
185	Characterization of <i>Candida parapsilosis</i> infection of an <i>in vitro</i> reconstituted human oral epithelium. European Journal of Oral Sciences, 2009, 117, 669-675.	0.7	35
186	Requirement of L-selectin for $\hat{I}^3\hat{I}$ T lymphocyte activation and migration during allergic pleurisy: Co-relation with eosinophil accumulation. International Immunopharmacology, 2009, 9, 303-312.	1.7	14
187	Biofilms of non- <i>Candida albicans Candida</i> species: quantification, structure and matrix composition. Medical Mycology, 2009, 47, 681-689.	0.3	318
188	Relevance of Cell Wall and Extracellular Matrix Proteins to Staphylococcus Epidermidis Adhesion and Biofilm Formation. Journal of Adhesion Science and Technology, 2009, 23, 1657-1671.	1.4	2
189	XRD and FTIR analysis of Ti–Si–C–ON coatings for biomedical applications. Surface and Coatings Technology, 2008, 203, 490-494.	2.2	31
190	Staphylococcus epidermidis glucose uptake in biofilm versus planktonic cells. World Journal of Microbiology and Biotechnology, 2008, 24, 423-426.	1.7	12
191	Structural and Mechanical properties of Ti–Si–C–ON for biomedical applications. Surface and Coatings Technology, 2008, 202, 2403-2407.	2.2	8
192	Mechanisms of T-Lymphocyte Accumulation during Experimental Pleural Infection Induced by Mycobacterium bovis BCG. Infection and Immunity, 2008, 76, 5686-5693.	1.0	14
193	Reduction of <i>Staphylococcus epidermidis</i> procedure. British Journal of Biomedical Science, 2008, 65, 184-190.	1.2	4
194	Morphogenesis Control in <i>Candida albicans</i> and <i>Candida dubliniensis</i> through Signaling Molecules Produced by Planktonic and Biofilm Cells. Eukaryotic Cell, 2007, 6, 2429-2436.	3.4	114
195	The involvement of physico-chemical interactions in the adhesion of Candida albicans and Candida dubliniensis to epithelial cells. Mycoses, 2007, 50, 391-396.	1.8	10
196	Effect of farnesol on Candida dubliniensis morphogenesis. Letters in Applied Microbiology, 2007, 44, 199-205.	1.0	32
197	Comparison of the Adhesion Ability of Different Salmonella Enteritidis Serotypes to Materials Used in Kitchens. Journal of Food Protection, 2006, 69, 2352-2356.	0.8	57
198	Candida albicans and Candida dubliniensis: comparison of biofilm formation in terms of biomass and activity. British Journal of Biomedical Science, 2006, 63, 5-11.	1.2	50

#	Article	IF	CITATIONS
199	Investigations on the anti-inflammatory and anti-allergic activities of the leaves of Uncaria guianensis (Aublet) J. F. Gmelin. Inflammopharmacology, 2006, 14, 48-56.	1.9	25
200	CandidaSpecies Adhesion to Oral Epithelium: Factors Involved and Experimental Methodology Used. Critical Reviews in Microbiology, 2006, 32, 217-226.	2.7	22
201	Adhesion of Pseudomonas aeruginosa and Staphylococcus epidermidis to Silicone???Hydrogel Contact Lenses. Optometry and Vision Science, 2005, 82, 446-450.	0.6	93
202	Influence of Sub-Inhibitory Concentrations of Antimicrobial Agents on Biofilm Formation in Indwelling Medical Devices. International Journal of Artificial Organs, 2005, 28, 1181-1185.	0.7	10
203	Adhesion of Candida albicans and Candida dubliniensis to acrylic and hydroxyapatite. Colloids and Surfaces B: Biointerfaces, 2004, 33, 235-241.	2.5	70
204	Extraction of exopolymers from biofilms: the protective effect of glutaraldehyde. Water Science and Technology, 2003, 47, 175-179.	1.2	63
205	Extraction of exopolymers from biofilms: the protective effect of glutaraldehyde. Water Science and Technology, 2003, 47, 175-9.	1.2	5
206	Expression of a Fungal Hydrophobin in the Saccharomyces cerevisiae Cell Wall: Effect on Cell Surface Properties and Immobilization. Applied and Environmental Microbiology, 2002, 68, 3385-3391.	1.4	32
207	Experimental methodology to quantify Candida albicans cell surface hydrophobicity. Biotechnology Letters, 2002, 24, 1111-1115.	1.1	24
208	Biofilms of non-Candida albicans Candida species: quantification, structure and matrix composition. Medical Mycology, 0 , 1 - 9 .	0.3	11