Lingshuai Kong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7332510/publications.pdf Version: 2024-02-01

LINCSHUM KONC

#	Article	IF	CITATIONS
1	The magnetic biochar derived from banana peels as a persulfate activator for organic contaminants degradation. Chemical Engineering Journal, 2019, 372, 294-303.	12.7	266
2	Cobalt doped g-C3N4 activation of peroxymonosulfate for monochlorophenols degradation. Chemical Engineering Journal, 2019, 360, 1213-1222.	12.7	238
3	Mn3O4 nanodots loaded g-C3N4 nanosheets for catalytic membrane degradation of organic contaminants. Journal of Hazardous Materials, 2020, 390, 122146.	12.4	112
4	Efficient activation of persulfate decomposition by Cu2FeSnS4 nanomaterial for bisphenol A degradation: Kinetics, performance and mechanism studies. Applied Catalysis B: Environmental, 2019, 253, 278-285.	20.2	107
5	A novel peroxymonosulfate activation process by periclase for efficient singlet oxygen-mediated degradation of organic pollutants. Chemical Engineering Journal, 2021, 403, 126445.	12.7	87
6	Biomass Schiff base polymer-derived N-doped porous carbon embedded with CoO nanodots for adsorption and catalytic degradation of chlorophenol by peroxymonosulfate. Journal of Hazardous Materials, 2020, 384, 121345.	12.4	80
7	Oxygen vacancies modulation Mn3O4 nanozyme with enhanced oxidase-mimicking performance for l-cysteine detection. Sensors and Actuators B: Chemical, 2021, 333, 129560.	7.8	74
8	Peroxymonosulfate activation by localized electrons of ZnO oxygen vacancies for contaminant degradation. Chemical Engineering Journal, 2021, 416, 128996.	12.7	73
9	Facile synthesis of superparamagnetic β-CD-MnFe2O4 as a peroxymonosulfate activator for efficient removal of 2,4- dichlorophenol: structure, performance, and mechanism. Journal of Hazardous Materials, 2020, 394, 122528.	12.4	64
10	Efficient activation of persulfate by Fe ₃ O ₄ @β-cyclodextrin nanocomposite for removal of bisphenol A. RSC Advances, 2018, 8, 14879-14887.	3.6	49
11	Carbon aerogel from forestry biomass as a peroxymonosulfate activator for organic contaminants degradation. Journal of Hazardous Materials, 2021, 413, 125438.	12.4	48
12	Synergistic Lewis acid-base sites of ultrathin porous Co3O4 nanosheets with enhanced peroxidase-like activity. Nano Research, 2021, 14, 3514-3522.	10.4	45
13	Porous 3D superstructure of nitrogen doped carbon decorated with ultrafine cobalt nanodots as peroxymonosulfate activator for the degradation of sulfonamides. Chemical Engineering Journal, 2022, 428, 131329.	12.7	34
14	Cu2O@β-cyclodextrin as a synergistic catalyst for hydroxyl radical generation and molecular recognitive destruction of aromatic pollutants at neutral pH. Journal of Hazardous Materials, 2018, 357, 109-118.	12.4	30
15	Simple synthesis of porous ZnO nanoplates hyper-doped with low concentration of Pt for efficient acetone sensing. Journal of Alloys and Compounds, 2021, 865, 158890.	5.5	30

2