Henghui Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7332447/publications.pdf

Version: 2024-02-01

70961 76769 5,750 92 41 74 citations h-index g-index papers 92 92 92 7553 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Organophosphorus Hybrid Solid Electrolyte Interphase Layer Based on Li <i>>_x</i> PO ₄ Enables Uniform Lithium Deposition for Highâ€Performance Lithium Metal Batteries. Advanced Functional Materials, 2022, 32, 2107923.	7.8	27
2	Ultrathin Aluminum Nanosheets Grown on Carbon Nanotubes for High Performance Lithium Ion Batteries. Advanced Functional Materials, 2022, 32, 2109112.	7.8	17
3	Toward stable zinc aqueous rechargeable batteries by anode morphology modulation via polyaspartic acid additive. Energy Storage Materials, 2022, 45, 777-785.	9.5	44
4	Designing Anion-Derived Solid Electrolyte Interphase in a Siloxane-Based Electrolyte for Lithium-Metal Batteries. ACS Applied Materials & Electrolyte (27873-27881).	4.0	23
5	Constructing a lithiophilic and mixed conductive interphase layer in electrolyte with dual-anion solvation sheath for stable lithium metal anode. Energy Storage Materials, 2022, 50, 792-801.	9.5	14
6	Advanced electrolyte design for stable lithium metal anode: From liquid to solid. Nano Energy, 2021, 80, 105516.	8.2	111
7	Bulk and surface degradation in layered Ni-rich cathode for Li ions batteries: Defect proliferation via chain reaction mechanism. Energy Storage Materials, 2021, 35, 62-69.	9.5	46
8	From dendritic mesoporous silica microspheres to waxberry-like hierarchical hollow carbon spheres: rational design of carbon host for lithium sulfur batteries. Nanotechnology, 2021, 32, 485405.	1.3	0
9	A mixed ion-electron conducting network derived from a porous CoP film for stable lithium metal anodes. Materials Chemistry Frontiers, 2021, 5, 5486-5496.	3. 2	7
10	Catalytic separators with Co–N–C nanoreactors for high-performance lithium–sulfur batteries. Inorganic Chemistry Frontiers, 2021, 8, 3066-3076.	3.0	29
11	Solid-state electrolytes: Advances and perspectives. Functional Materials Letters, 2021, 14, 2130001.	0.7	11
12	Application of a Modified Porphyrin in a Polymer Electrolyte with Superior Properties for All-Solid-State Lithium Batteries. ACS Applied Materials & Samp; Interfaces, 2021, 13, 48569-48581.	4.0	9
13	Thiolâ€Branched Solid Polymer Electrolyte Featuring High Strength, Toughness, and Lithium Ionic Conductivity for Lithiumâ€Metal Batteries. Advanced Materials, 2020, 32, e2001259.	11.1	139
14	Binderâ€Free TiO ₂ â€Coated Polypropylene Separators for Advanced Lithiumâ€ion Batteries. Energy Technology, 2020, 8, 2000228.	1.8	16
15	An asymmetric quasi-solid electrolyte for high-performance Li metal batteries. Chemical Communications, 2020, 56, 7195-7198.	2.2	14
16	Water-processable liquid metal nanoparticles by single-step polymer encapsulation. Nanoscale, 2020, 12, 13731-13741.	2.8	38
17	Surface-Based Li ⁺ Complex Enables Uniform Lithium Deposition for Stable Lithium Metal Anodes. ACS Applied Energy Materials, 2019, 2, 4602-4608.	2.5	32
18	An Interfacial Layer Based on Polymers of Intrinsic Microporosity to Suppress Dendrite Growth on Li Metal Anodes. Chemistry - A European Journal, 2019, 25, 12052-12057.	1.7	24

#	Article	IF	Citations
19	Dendriteâ€Free Lithium Deposition via a Superfilling Mechanism for Highâ€Performance Liâ€Metal Batteries. Advanced Materials, 2019, 31, e1903248.	11.1	106
20	Failure Mechanism and Interface Engineering for NASICON-Structured All-Solid-State Lithium Metal Batteries. ACS Applied Materials & Samp; Interfaces, 2019, 11, 20895-20904.	4.0	83
21	A new approach for synthesizing bulk-type all-solid-state lithium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 9748-9760.	5.2	23
22	An Entangled Cobalt–Nitrogen–Carbon Nanotube Array Electrode with Synergetic Confinement and Electrocatalysis of Polysulfides for Stable Li–S Batteries. ACS Applied Energy Materials, 2019, 2, 2904-2912.	2.5	28
23	Hierarchical MnO@C Hollow Nanospheres for Advanced Lithium-Ion Battery Anodes. ACS Applied Nano Materials, 2019, 2, 429-439.	2.4	40
24	Quality monitoring methods of initial and terminal manufacture of LiFePO4 based lithium ion batteries by capillary electrophoresis. Talanta, 2018, 179, 822-827.	2.9	7
25	Stable Li metal anode with protected interface for high-performance Li metal batteries. Energy Storage Materials, 2018, 15, 249-256.	9.5	89
26	Synergism of Rare Earth Trihydrides and Graphite in Lithium Storage: Evidence of Hydrogenâ€Enhanced Lithiation. Advanced Materials, 2018, 30, 1704353.	11.1	25
27	Stable interstitial layer to alleviate fatigue fracture of high nickel cathode for lithium-ion batteries. Journal of Power Sources, 2018, 376, 200-206.	4.0	32
28	A high capacity nanocrystalline Sn anode for lithium ion batteries from hydrogenation induced phase segregation of bulk YSn ₂ . Journal of Materials Chemistry A, 2018, 6, 21266-21273.	5.2	8
29	Graphene oxide-polypyrrole composite as sulfur hosts for high-performance lithium-sulfur batteries. Functional Materials Letters, 2018, 11, 1840007.	0.7	17
30	SnO2 quantum dots @ 3D sulfur-doped reduced graphene oxides as active and durable anode for lithium ion batteries. Electrochimica Acta, 2018, 291, 24-30.	2.6	37
31	High-Performance All-Solid-State Polymer Electrolyte with Controllable Conductivity Pathway Formed by Self-Assembly of Reactive Discogen and Immobilized via a Facile Photopolymerization for a Lithium-Ion Battery. ACS Applied Materials & Samp; Interfaces, 2018, 10, 25273-25284.	4.0	53
32	SnO ₂ @PANI Coreâ€"Shell Nanorod Arrays on 3D Graphite Foam: A High-Performance Integrated Electrode for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 9620-9629.	4.0	78
33	A pomegranate-structured sulfur cathode material with triple confinement of lithium polysulfides for high-performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2017, 5, 11788-11793.	5.2	23
34	Ultrathin dendrimer–graphene oxide composite film for stable cycling lithium–sulfur batteries. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 3578-3583.	3.3	90
35	Mg–Ti co-doping behavior of porous LiFePO ₄ microspheres for high-rate lithium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 17021-17028.	5.2	80
36	Understanding the accumulated cycle capacity fade caused by the secondary particle fracture of LiNi1-x-yCoxMnyO2 cathode for lithium ion batteries. Journal of Solid State Electrochemistry, 2017, 21, 673-682.	1.2	29

#	Article	IF	CITATIONS
37	High-performance Li–S battery cathode with catalyst-like carbon nanotube-MoP promoting polysulfide redox. Nano Research, 2017, 10, 3698-3705.	5.8	116
38	Effect of Trace Al Surface Doping on the Structure, Surface Chemistry and Low Temperature Performance of LiNi0.5Co0.2Mn0.3O2 Cathode. Electrochimica Acta, 2016, 212, 399-407.	2.6	97
39	Ferroceneâ€Promoted Long ycle Lithium–Sulfur Batteries. Angewandte Chemie, 2016, 128, 15038-15042.	1.6	11
40	Ferroceneâ€Promoted Longâ€Cycle Lithium–Sulfur Batteries. Angewandte Chemie - International Edition, 2016, 55, 14818-14822.	7.2	46
41	Grape-Like Fe3O4 Agglomerates Grown on Graphene Nanosheets for Ultrafast and Stable Lithium Storage. ACS Applied Materials & Amp; Interfaces, 2016, 8, 17245-17252.	4.0	42
42	Selection of Carbon Sources for Enhancing 3D Conductivity in the Secondary Structure of LiFePO4/C Cathode. Electrochimica Acta, 2016, 193, 206-215.	2.6	34
43	Understanding the trace Ti surface doping on promoting the low temperature performance of LiNi $1/3$ Co $1/3$ Mn $1/3$ O 2 cathode. Journal of Power Sources, 2015, 281, 69-76.	4.0	76
44	Enhanced electrochemical performance of LiFe0.6Mn0.4PO4/C cathode material prepared by ferrocene-assisted calcination process. Journal of Power Sources, 2015, 275, 823-830.	4.0	33
45	Positive Effect of Minor Manganese Doping on the Electrochemical Performance of LiFePO4/C under Extreme Conditions. Electrochimica Acta, 2015, 176, 642-648.	2.6	42
46	Robust α-Fe ₂ O ₃ nanorod arrays with optimized interstices as high-performance 3D anodes for high-rate lithium ion batteries. Journal of Materials Chemistry A, 2015, 3, 13377-13383.	5.2	46
47	Improvement of the cycling performance of LiCoO2 with assistance of cross-linked PAN for lithium ion batteries. Journal of Alloys and Compounds, 2015, 639, 458-464.	2.8	34
48	One-pot high temperature hydrothermal synthesis of Fe3O4@C/graphene nanocomposite as anode for high rate lithium ion battery. Electrochimica Acta, 2015, 180, 1041-1049.	2.6	36
49	Organic solvent-assisted free-standing Li ₂ MnO ₃ Â-LiNi _{1/3} Co _{1/3} Mn _{1/3} O ₂ on 3D graphene as a high energy density cathode. Chemical Communications, 2015, 51, 16381-16384.	2.2	17
50	The Contradiction Between the Half-Cell and Full-Battery Evaluations on the Tungsten-Coating LiNio.5Co0.2Mn0.3O2 Cathode. Electrochimica Acta, 2015, 180, 604-609.	2.6	24
51	Microphase Separation and High Ionic Conductivity at High Temperatures of Lithium Salt-Doped Amphiphilic Alternating Copolymer Brush with Rigid Side Chains. Macromolecules, 2015, 48, 8557-8564.	2.2	18
52	Macroporous free-standing nano-sulfur/reduced graphene oxide paper as stable cathode for lithium-sulfur battery. Nano Energy, 2015, 11, 678-686.	8.2	190
53	Superior performance of nanoscaled Fe ₃ O ₄ as anode material promoted by mosaicking into porous carbon framework. Functional Materials Letters, 2014, 07, 1450005.	0.7	11
54	Li ₄ Ti ₅ O ₁₂ -based anode materials with low working potentials, high rate capabilities and high cyclability for high-power lithium-ion batteries: a synergistic effect of doping, incorporating a conductive phase and reducing the particle size. Journal of Materials Chemistry A, 2014, 2, 9982-9993.	5.2	97

#	Article	IF	CITATIONS
55	Self-supported Li4Ti5O12 nanosheet arrays for lithium ion batteries with excellent rate capability and ultralong cycle life. Energy and Environmental Science, 2014, 7, 1924.	15.6	252
56	Advanced electrochemical performance of Li4Ti5O12-based materials for lithium-ion battery: Synergistic effect of doping and compositing. Journal of Power Sources, 2014, 248, 1034-1041.	4.0	99
57	Tuning the electrochemical performances of anthraquinone organic cathode materials for Li-ion batteries through the sulfonic sodium functional group. RSC Advances, 2014, 4, 19878-19882.	1.7	110
58	Li3.33Cu1.005Ti4.665O12/CuO composite with P4332 space group for Li-ion batteries: synergistic effect of substituting and compositing. RSC Advances, 2014, 4, 31196-31200.	1.7	9
59	High sulfur loading composite wrapped by 3D nitrogen-doped graphene as a cathode material for lithium–sulfur batteries. Journal of Materials Chemistry A, 2014, 2, 5018-5023.	5 . 2	249
60	Branched CNT@SnO ₂ nanorods@carbon hierarchical heterostructures for lithium ion batteries with high reversibility and rate capability. Journal of Materials Chemistry A, 2014, 2, 15582-15589.	5 . 2	83
61	Mesoporous Li ₄ Ti ₅ O _{12â^'x} /C submicrospheres with comprehensively improved electrochemical performances for high-power lithium-ion batteries. Physical Chemistry Chemical Physics, 2014, 16, 24874-24883.	1.3	40
62	Monodispersed mesoporous Li4Ti5O12 submicrospheres as anode materials for lithium-ion batteries: morphology and electrochemical performances. Nanoscale, 2014, 6, 6651.	2.8	76
63	Spinel Li _{4â€"2<i>x</i>} Co _{3<i>x</i>} Ti _{5â€"<i>x</i>} O ₁₂ (0 â9)	‰¤Tj ETQq1 1.5	. 1 0.78431 27
64	Carbon nanotube-loaded mesoporous LiFe0.6Mn0.4PO4/C microspheres as high performance cathodes for lithium-ion batteries. Journal of Power Sources, 2014, 267, 459-468.	4.0	50
65	Recent Development in the Rate Performance of Li4Ti5O12. Applied Science and Convergence Technology, 2014, 23, 72-82.	0.3	1
66	Kinetics-controlled growth of aligned mesocrystalline SnO2 nanorod arrays for lithium-ion batteries with superior rate performance. Nano Research, 2013, 6, 243-252.	5 . 8	93
67	In-situ synthesis of magnetite/expanded graphite composite material as high rate negative electrode for rechargeable lithium batteries. Journal of Power Sources, 2013, 223, 119-124.	4.0	26
68	Highly energy density olivine cathode material synthesized by coprecipitation technique. Electrochimica Acta, 2013, 90, 597-603.	2.6	16
69	Monodisperse Li1.2Mn0.6Ni0.2O2 microspheres with enhanced lithium storage capability. Journal of Materials Chemistry A, 2013, 1, 5301.	5.2	66
70	Fabrication of high tap density LiFe _{0.6} Mn _{0.4} PO ₄ /C microspheres by a double carbon coating–spray drying method for high rate lithium ion batteries. Journal of Materials Chemistry A, 2013, 1, 2411-2417.	5.2	76
71	Enhanced electrochemical performances of 5ÂV spinel LiMn1.58Ni0.42O4 cathode materials by coating with LiAlO2. Journal of Power Sources, 2013, 239, 181-188.	4.0	57
72	Structure and high rate performance of Ni2+ doped Li4Ti5O12 forÂlithium ion battery. Journal of Power Sources, 2013, 244, 272-279.	4.0	98

#	Article	IF	CITATIONS
73	Structural and Electrochemical Characterization of (NH ₄) ₂ HPO ₄ -Treated Lithium-Rich Layered Li _{1.2} Ni _{0.2} Mn _{0.6} O ₂ Cathodes for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2013, 160, A1661-A1667.	1.3	29
74	Improvement of the high-temperature, high-voltage cycling performance of LiNi0.5Co0.2Mn0.3O2 cathode with TiO2 coating. Journal of Alloys and Compounds, 2012, 543, 181-188.	2.8	140
75	Nanotube-based hierarchical titanate microspheres: an improved anode structure for Li-ion batteries. Chemical Communications, 2012, 48, 389-391.	2.2	51
76	Coaxial carbon–silicon–carbon nanotube arrays in porous anodic aluminum oxide templates as anodes for lithium ion batteries. Journal of Materials Chemistry, 2012, 22, 12193.	6.7	36
77	Fe3O4C open hollow sphere assembled by nanocrystals and its application in lithium ion battery. Journal of Alloys and Compounds, 2012, 521, 39-44.	2.8	35
78	Hydrothermal synthesis of TiO2(B) nanowires with ultrahigh surface area and their fast charging and discharging properties in Li-ion batteries. Chemical Communications, 2011, 47, 3439.	2.2	171
79	Nanoporous Anatase TiO ₂ Mesocrystals: Additive-Free Synthesis, Remarkable Crystalline-Phase Stability, and Improved Lithium Insertion Behavior. Journal of the American Chemical Society, 2011, 133, 933-940.	6.6	598
80	High power performance of nano-LiFePO4/C cathode material synthesized via lauric acid-assisted solid-state reaction. Electrochimica Acta, 2011, 56, 2999-3005.	2.6	53
81	HIGH POWER PERFORMANCE OF MULTICOMPONENT OLIVINE CATHODE MATERIAL FOR LITHIUM-ION BATTERIES. Functional Materials Letters, 2011, 04, 299-303.	0.7	11
82	A modified Al2O3 coating process to enhance the electrochemical performance of $Li(Ni1/3Co1/3Mn1/3)O2$ and its comparison with traditional Al2O3 coating process. Journal of Power Sources, 2010, 195, 8267-8274.	4.0	79
83	A modified ZrO2-coating process to improve electrochemical performance of Li(Ni1/3Co1/3Mn1/3)O2. Journal of Power Sources, 2009, 188, 538-545.	4.0	142
84	Pre-irradiation grafting of styrene and maleic anhydride onto PVDF membrane and subsequent sulfonation for application in vanadium redox batteries. Journal of Power Sources, 2008, 177, 617-623.	4.0	61
85	Effect of TiO2-coating on structure and electrochemical performance of LiCo0.2Ni0.4Mn0.4O2. Frontiers of Chemistry in China: Selected Publications From Chinese Universities, 2008, 3, 64-69.	0.4	0
86	Topotactic Transformation of Singleâ€Crystalline Precursor Discs into Discâ€Like Bi ₂ S ₃ Nanorod Networks. Advanced Functional Materials, 2008, 18, 1194-1201.	7.8	203
87	Controllable preparation and properties of composite materials based on ceria nanoparticles and carbon nanotubes. Journal of Solid State Chemistry, 2008, 181, 2620-2625.	1.4	42
88	Improved electrochemical performance of layered LiNi0.4Co0.2Mn0.4O2 via Li2ZrO3 coating. Electrochimica Acta, 2008, 53, 3075-3083.	2.6	111
89	Preparation of ETFE-based anion exchange membrane to reduce permeability of vanadium ions in vanadium redox battery. Journal of Membrane Science, 2007, 297, 174-180.	4.1	107
90	Radiation grafting of styrene and maleic anhydride onto PTFE membranes and sequent sulfonation for applications of vanadium redox battery. Radiation Physics and Chemistry, 2007, 76, 1703-1707.	1.4	27

Henghui Zhou

#	Article	IF	CITATIONS
91	PREPARATION AND ELECTROCHEMICAL PROPERTIES OF NANOSTRUCTURED Li0.8CoO2. International Journal of Nanoscience, 2006, 05, 285-290.	0.4	1
92	3D Copper Foam@FeO $<$ sub $><$ i $>xi></sub> Nanoarrays as a High Areal Capacity and Stable Electrode for Lithium-Ion Batteries. ACS Applied Energy Materials, 0, , .$	2.5	6