Xiaowen Shi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/733190/publications.pdf Version: 2024-02-01

XIAOWEN SHI

#	Article	IF	CITATIONS
1	Effect of aneuploidy of a nonâ€essential chromosome on gene expression in maize. Plant Journal, 2022, 110, 193-211.	5.7	8
2	Dosage-sensitive miRNAs trigger modulation of gene expression during genomic imbalance in maize. Nature Communications, 2022, 13, .	12.8	1
3	Genomic imbalance determines positive and negative modulation of gene expression in diploid maize. Plant Cell, 2021, 33, 917-939.	6.6	22
4	DeepGRN: prediction of transcription factor binding site across cell-types using attention-based deep neural networks. BMC Bioinformatics, 2021, 22, 38.	2.6	35
5	Predominantly inverse modulation of gene expression in genomically unbalanced disomic haploid maize. Plant Cell, 2021, 33, 901-916.	6.6	22
6	Sequence of the supernumerary B chromosome of maize provides insight into its drive mechanism and evolution. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	25
7	GNET2: an R package for constructing gene regulatory networks from transcriptomic data. Bioinformatics, 2020, 37, 2068-2069.	4.1	1
8	An empirical bayesian approach for testing gene expression fold change and its application in detecting global dosage effects. NAR Genomics and Bioinformatics, 2020, 2, Iqaa072.	3.2	0
9	Magnitude of modulation of gene expression in aneuploid maize depends on the extent of genomic imbalance. Journal of Genetics and Genomics, 2020, 47, 93-103.	3.9	15
10	The Gene Balance Hypothesis: Epigenetics and Dosage Effects in Plants. Methods in Molecular Biology, 2020, 2093, 161-171.	0.9	14
11	Global impacts of chromosomal imbalance on gene expression in <i>Arabidopsis</i> and other taxa. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E11321-E11330.	7.1	51
12	ORRM5, an RNA recognition motif-containing protein, has a unique effect on mitochondrial RNA editing. Journal of Experimental Botany, 2017, 68, 2833-2847.	4.8	30
13	Functional diversity of Arabidopsis organelleâ€localized <scp>RNA</scp> â€recognition motifâ€containing proteins. Wiley Interdisciplinary Reviews RNA, 2017, 8, e1420.	6.4	12
14	Whole-transcriptome RNA-seq, gene set enrichment pathway analysis, and exon coverage analysis of two plastid RNA editing mutants. Plant Signaling and Behavior, 2017, 12, e1312242.	2.4	5
15	An Organelle RNA Recognition Motif Protein is Required for Photosynthetic Subunit psbF Transcript Editing. Plant Physiology, 2017, 173, pp.01623.2016.	4.8	33
16	RNA Recognition Motif-Containing Protein ORRM4 Broadly Affects Mitochondrial RNA Editing and Impacts Plant Development and Flowering. Plant Physiology, 2016, 170, 294-309.	4.8	65
17	Organelle RNA recognition motif-containing (ORRM) proteins are plastid and mitochondrial editing factors in Arabidopsis. Plant Signaling and Behavior, 2016, 11, e1167299.	2.4	37
18	A Zinc Finger Motif-Containing Protein Is Essential for Chloroplast RNA Editing. PLoS Genetics, 2015, 11, e1005028.	3.5	99

#	Article	IF	CITATIONS
19	Two RNA recognition motif-containing proteins are plant mitochondrial editing factors. Nucleic Acids Research, 2015, 43, 3814-3825.	14.5	55
20	Protection against Autoimmune Diabetes by Silkworm-Produced GFP-Tagged CTB-Insulin Fusion Protein. Clinical and Developmental Immunology, 2011, 2011, 1-14.	3.3	12