Joris Sprakel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/733189/publications.pdf

Version: 2024-02-01

		126708	143772
119	4,008	33	57
papers	citations	h-index	g-index
122	122	122	4615
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Molecular sensors reveal the mechano-chemical response of Phytophthora infestans walls and membranes to mechanical and chemical stress. Cell Surface, 2022, 8, 100071.	1.5	7
2	Single-Molecule Force Spectroscopy of a Tetraaryl Succinonitrile Mechanophore. Journal of Physical Chemistry C, 2022, 126, 1215-1221.	1.5	6
3	DNA dynamics in complex coacervate droplets and micelles. Soft Matter, 2022, 18, 2012-2027.	1.2	5
4	An actin mechanostat ensures hyphal tip sharpness in <i>Phytophthora infestans</i> to achieve host penetration. Science Advances, 2022, 8, .	4.7	7
5	Complex coacervation and metal–ligand bonding as synergistic design elements for aqueous viscoelastic materials. Soft Matter, 2021, 17, 3294-3305.	1.2	6
6	The <i> Arabidopsis </i> embryo as a quantifiable model for studying pattern formation. Quantitative Plant Biology, 2021, 2, .	0.8	5
7	A slicing mechanism facilitates host entry by plant-pathogenic Phytophthora. Nature Microbiology, 2021, 6, 1000-1006.	5 . 9	28
8	High-speed laser speckle imaging to unravel picoliter drop-on-demand to substrate interaction. Review of Scientific Instruments, 2021, 92, 083906.	0.6	3
9	The contribution of colloidal aggregates to the clogging dynamics at the pore scale. Journal of Membrane Science, 2021, 635, 119509.	4.1	20
10	FRET-Based Determination of the Exchange Dynamics of Complex Coacervate Core Micelles. Macromolecules, 2021, 54, 398-411.	2.2	21
11	Understanding and optimizing Evolon \hat{A}^{\otimes} CR for varnish removal from oil paintings. Heritage Science, 2021, 9, .	1.0	6
12	Plant cell polarity as the nexus of tissue mechanics and morphogenesis. Nature Plants, 2021, 7, 1548-1559.	4.7	21
13	Complete microviscosity maps of living plant cells and tissues with a toolbox of targeting mechanoprobes. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 18110-18118.	3.3	46
14	Quantifying solvent action in oil paint using portable laser speckle imaging. Scientific Reports, 2020, 10, 10574.	1.6	16
15	Chemical Feedback in Templated Reaction-Assembly Networks. Macromolecules, 2020, 53, 10675-10685.	2.2	5
16	Cephalopodâ€Inspired High Dynamic Range Mechanoâ€Imaging in Polymeric Materials. Advanced Functional Materials, 2020, 30, 2002716.	7.8	31
17	Propagation and attenuation of mechanical signals in ultrasoft 2D solids. Science Advances, 2020, 6, .	4.7	3
18	Chemical Stability of αâ€Tocopherol in Colloidal Lipid Particles with Various Morphologies. European Journal of Lipid Science and Technology, 2020, 122, 2000012.	1.0	9

#	Article	IF	CITATIONS
19	Pickering particles as interfacial reservoirs of antioxidants. Journal of Colloid and Interface Science, 2020, 575, 489-498.	5.0	33
20	Electroplasticization of Liquid Crystal Polymer Networks. ACS Applied Materials & Distribution (12, 19927-19937).	4.0	15
21	Chain length-dependent luminescence in acceptor-doped conjugated polymers. Scientific Reports, 2019, 9, 11217.	1.6	3
22	Morphing of liquid crystal surfaces by emergent collectivity. Nature Communications, 2019, 10, 3501.	5.8	19
23	Plasticity in colloidal gel strands. Soft Matter, 2019, 15, 6447-6454.	1.2	12
24	Gel Trapping Enables Optical Spectroscopy of Single Solvated Conjugated Polymers in Equilibrium. ACS Nano, 2019, 13, 13185-13195.	7.3	6
25	Langevin Dynamics Simulations of the Exchange of Complex Coacervate Core Micelles: The Role of Nonelectrostatic Attraction and Polyelectrolyte Length. Macromolecules, 2019, 52, 8923-8931.	2.2	13
26	Rigidochromic conjugated polymers carrying main-chain molecular rotors. Chemical Communications, 2019, 55, 11559-11562.	2.2	2
27	Fourier transforms for fast and quantitative Laser Speckle Imaging. Scientific Reports, 2019, 9, 13279.	1.6	9
28	Two-dimensional crystals of star polymers: a tale of tails. Soft Matter, 2019, 15, 615-622.	1.2	9
29	Photonic Paints: Structural Pigments Combined with Waterâ€Based Polymeric Filmâ€Formers for Structurally Colored Coatings. Advanced Optical Materials, 2019, 7, 1900218.	3.6	16
30	Can we prevent lipid oxidation in emulsions by using fat-based Pickering particles?. Food Research International, 2019, 120, 352-363.	2.9	42
31	Diffusion Decoupling in Binary Colloidal Systems Observed with Contrast Variation Multispeckle Diffusing Wave Spectroscopy. Langmuir, 2019, 35, 5793-5801.	1.6	7
32	Allosteric pathway selection in templated assembly. Science Advances, 2019, 5, eaaw3353.	4.7	4
33	Stochastic buckling of self-assembled colloidal structures. Physical Review Research, 2019, 1, .	1.3	13
34	Coalescence stability of Pickering emulsions produced with lipid particles: A microfluidic study. Journal of Food Engineering, 2018, 234, 63-72.	2.7	92
35	From cooperative to uncorrelated clogging in cross-flow microfluidic membranes. Scientific Reports, 2018, 8, 5687.	1.6	34
36	Light from Within: Sensing Weak Strains and FemtoNewton Forces in Single Molecules. CheM, 2018, 4, 269-284.	5.8	29

#	Article	IF	CITATIONS
37	Dissipative disassembly of colloidal microgel crystals driven by a coupled cyclic reaction network. Soft Matter, 2018, 14, 910-915.	1.2	27
38	Linking slow dynamics and microscopic connectivity in dense suspensions of charged colloids. Soft Matter, 2018, 14, 780-788.	1.2	10
39	Laser Speckle Strain Imaging reveals the origin of delayed fracture in a soft solid. Science Advances, 2018, 4, eaar1926.	4.7	38
40	Apparent strength versus universality in glasses of soft compressible colloids. Scientific Reports, 2018, 8, 16817.	1.6	6
41	Controlling the Hierarchical Assembly of Ï€â€Conjugated Oligoelectrolytes. Macromolecular Rapid Communications, 2018, 39, e1800284.	2.0	2
42	Strand Plasticity Governs Fatigue in Colloidal Gels. Physical Review Letters, 2018, 120, 208005.	2.9	30
43	De Novo Designed Proteins for Colloidal Stabilization and Improvement of Cellular Uptake. Biophysical Journal, 2018, 114, 362a.	0.2	1
44	Direct Observation of Entropic Stabilization of bcc Crystals Near Melting. Physical Review Letters, 2017, 118, 088003.	2.9	27
45	Programmable Phase Transitions in a Photonic Microgel System: Linking Soft Interactions to a Temporal pH Gradient. Langmuir, 2017, 33, 2011-2016.	1.6	20
46	Imaging the Molecular Motions of Autonomous Repair in a Selfâ€Healing Polymer. Advanced Materials, 2017, 29, 1701017.	11.1	55
47	Illuminating the Reaction Pathways of Viromimetic Assembly. Journal of the American Chemical Society, 2017, 139, 4962-4968.	6.6	22
48	Tailored microstructure of colloidal lipid particles for Pickering emulsions with tunable properties. Soft Matter, 2017, 13, 3190-3198.	1.2	46
49	Doping colloidal bcc crystals — interstitial solids and meta-stable clusters. Scientific Reports, 2017, 7, 12634.	1.6	8
50	Allâ€Aqueous Synthesis of Silicaâ€Encapsulated Quantum Dots with Functional Shells. European Journal of Inorganic Chemistry, 2017, 2017, 5152-5157.	1.0	2
51	Deswelling and deformation of microgels in concentrated packings. Scientific Reports, 2017, 7, 10223.	1.6	66
52	Criticality and mechanical enhancement in composite fiber networks. Physical Review E, 2017, 95, 042503.	0.8	12
53	Spatial blurring in laser speckle imaging in inhomogeneous turbid media. Scientific Reports, 2017, 7, 16879.	1.6	5
54	Recombinant Protein Polymers for Colloidal Stabilization and Improvement of Cellular Uptake of Diamond Nanosensors. Analytical Chemistry, 2017, 89, 12812-12820.	3.2	29

#	Article	IF	CITATIONS
55	Fragility and Strength in Nanoparticle Glasses. ACS Nano, 2017, 11, 6755-6763.	7.3	64
56	Linking Particle Dynamics to Local Connectivity in Colloidal Gels. Physical Review Letters, 2017, 118, 188001.	2.9	26
57	Complex coacervates formed across liquid interfaces: A self-consistent field analysis. Advances in Colloid and Interface Science, 2017, 239, 17-30.	7.0	5
58	Temperature-Triggered Colloidal Gelation through Well-Defined Grafted Polymeric Surfaces. Gels, 2017, 3, 21.	2.1	5
59	Probing Nanoscale Coassembly with Dual Mechanochromic Sensors. Advanced Functional Materials, 2016, 26, 1420-1427.	7.8	17
60	Anomalous dynamics of interstitial dopants in soft crystals. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 13660-13665.	3.3	13
61	Transition-state theory predicts clogging at the microscale. Scientific Reports, 2016, 6, 28450.	1.6	34
62	Discontinuous nature of the repulsive-to-attractive colloidal glass transition. Scientific Reports, 2016, 6, 22725.	1.6	18
63	Multiple relaxation modes in associative polymer networks with varying connectivity. Physical Review E, 2016, 94, 032507.	0.8	13
64	Quantitative imaging of heterogeneous dynamics in drying and aging paints. Scientific Reports, 2016, 6, 34383.	1.6	44
65	A mechanistic view of drying suspension droplets. Soft Matter, 2016, 12, 2858-2867.	1.2	40
66	Mechanics at the glass-to-gel transition of thermoresponsive microgel suspensions. Soft Matter, 2016, 12, 2515-2522.	1.2	33
67	Cooperativity and segregation in confined flows of soft binary glasses. Physical Review E, 2015, 92, 022308.	0.8	9
68	Hydrodynamic model for drying emulsions. Physical Review E, 2015, 92, 023011.	0.8	12
69	Precise colloids with tunable interactions for confocal microscopy. Scientific Reports, 2015, 5, 14635.	1.6	41
70	Temperature Controlled Sequential Gelation in Composite Microgel Suspensions. Particle and Particle Systems Characterization, 2015, 32, 764-770.	1.2	22
71	Watching paint dry; more exciting than it seems. Soft Matter, 2015, 11, 6353-6359.	1.2	53
72	Monitoring Protein Capsid Assembly with a Conjugated Polymer Strain Sensor. Journal of the American Chemical Society, 2015, 137, 9800-9803.	6.6	35

#	Article	IF	CITATIONS
73	Manipulating and quantifying temperature-triggered coalescence with microcentrifugation. Lab on A Chip, 2015, 15, 188-194.	3.1	21
74	Coalescence, Cracking, and Crack Healing in Drying Dispersion Droplets. Langmuir, 2015, 31, 4419-4428.	1.6	24
75	Dynamical heterogeneities and defects in two-dimensional soft colloidal crystals. Soft Matter, 2015, 11, 9385-9392.	1.2	16
76	Reentrant Stabilization of Grafted Nanoparticles in Polymer Solutions. Journal of Physical Chemistry B, 2015, 119, 12938-12946.	1.2	3
77	Equivalent Pathways in Melting and Gelation of Well-Defined Biopolymer Networks. Biomacromolecules, 2015, 16, 304-310.	2.6	9
78	Enhanced adhesion of bioinspired nanopatterned elastomers via colloidal surface assembly. Journal of the Royal Society Interface, 2015, 12, 20141061.	1.5	21
79	Conjugated Polymer Shells on Colloidal Templates by Seeded Suzuki–Miyaura Dispersion Polymerization. Small, 2014, 10, 957-963.	5.2	12
80	Ultrastrong Anchoring Yet Barrierâ€Free Adsorption of Composite Microgels at Liquid Interfaces. Advanced Materials Interfaces, 2014, 1, 1300121.	1.9	54
81	Highly cooperative stress relaxation in two-dimensional soft colloidal crystals. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15356-15361.	3.3	25
82	Supramolecular Assembly of Selfâ€Healing Nanocomposite Hydrogels. Macromolecular Rapid Communications, 2014, 35, 2065-2070.	2.0	22
83	Programmable co-assembly of oppositely charged microgels. Soft Matter, 2014, 10, 8060-8065.	1.2	40
84	Facile Oneâ€Step Synthesis of Monodisperse Micronâ€Sized Latex Particles with Highly Carboxylated Surfaces. Macromolecular Rapid Communications, 2013, 34, 1284-1288.	2.0	22
85	Charge-driven co-assembly of polyelectrolytes across oil–water interfaces. Soft Matter, 2013, 9, 11270.	1.2	27
86	Two modes of phase inversion in a drying emulsion. Soft Matter, 2013, 9, 2810.	1.2	24
87	Well-defined temperature-sensitive surfactants for controlled emulsion coalescence. Polymer Chemistry, 2013, 4, 1842.	1.9	35
88	Substitutional impurity-induced vitrification in microgel crystals. Soft Matter, 2013, 9, 5372.	1.2	23
89	A physical cross-linking process of cellulose nanofibril gels with shear-controlled fibril orientation. Soft Matter, 2013, 9, 1852-1863.	1.2	81
90	Capillarity-induced ordering of spherical colloids on an interface with anisotropic curvature. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9220-9224.	3.3	109

#	Article	IF	CITATIONS
91	Thermosensitive Molecular, Colloidal, and Bulk Interactions Using a Simple Surfactant. Advanced Functional Materials, 2013, 23, 475-482.	7.8	22
92	Structures, stresses, and fluctuations in the delayed failure of colloidal gels. Soft Matter, 2012, 8, 3657.	1.2	89
93	Monodisperse conjugated polymer particles by Suzuki–Miyaura dispersion polymerization. Nature Communications, 2012, 3, 1088.	5.8	84
94	Colloidal gelation of oppositely charged particles. Soft Matter, 2012, 8, 8697.	1.2	36
95	Does size matter? Elasticity of compressed suspensions of colloidal- and granular-scale microgels. Soft Matter, 2012, 8, 156-164.	1.2	108
96	Physical chemistry of supramolecular polymer networks. Chemical Society Reviews, 2012, 41, 909-930.	18.7	455
97	Crystallization and intermittent dynamics in constricted microfluidic flows of dense suspensions. Soft Matter, 2011, 7, 3889.	1.2	41
98	Reversible assembly of oppositely charged hairy colloids in water. Soft Matter, 2011, 7, 8281.	1.2	46
99	Direct visualization of pH-dependent evolution of structure and dynamics in microgel suspensions. Journal of Physics Condensed Matter, 2011, 23, 505101.	0.7	9
100	Transient forces and non-equilibrium states in sheared polymer networks. Europhysics Letters, 2011, 93, 58003.	0.7	21
101	Stress Enhancement in the Delayed Yielding of Colloidal Gels. Physical Review Letters, 2011, 106, 248303.	2.9	130
102	Interfacial tension between a complex coacervate phase and its coexisting aqueous phase. Soft Matter, 2010, 6, 172-178.	1.2	160
103	Relaxation Dynamics at Different Time Scales in Electrostatic Complexes: Time-Salt Superposition. Physical Review Letters, 2010, 105, 208301.	2.9	171
104	Fracture and Self-Healing in a Well-Defined Self-Assembled Polymer Network. Macromolecules, 2010, 43, 3542-3548.	2.2	121
105	Intermittent dynamics in transient polymer networks under shear: Signs of self-organized criticality. Physical Review E, 2009, 79, 056306.	0.8	15
106	Hierarchical Adsorption of Network-Forming Associative Polymers. Langmuir, 2009, 25, 6923-6928.	1.6	2
107	Precision Gels from Collagen-Inspired Triblock Copolymers. Biomacromolecules, 2009, 10, 1106-1113.	2.6	66
108	Failure-mode transition in transient polymer networks with particle-based simulations. Soft Matter, 2009, 5, 4748.	1.2	49

#	Article	IF	CITATIONS
109	Phase behavior of flowerlike micelles in a SCF cell model. European Physical Journal E, 2008, 25, 163-173.	0.7	23
110	Comprehensive theory for star-like polymer micelles; combining classical nucleation and polymer brush theory. Physical Chemistry Chemical Physics, 2008, 10, 5308.	1.3	7
111	Shear banding and rheochaos in associative polymer networks. Soft Matter, 2008, 4, 1696.	1.2	62
112	Capillary Adhesion in the Limit of Saturation:  Thermodynamics, Self-Consistent Field Modeling and Experiment. Langmuir, 2008, 24, 1308-1317.	1.6	22
113	Brownian particles in transient polymer networks. Physical Review E, 2008, 77, 061502.	0.8	50
114	Dynamics of polymer bridge formation and disruption. Physical Review E, 2008, 78, 040802.	0.8	10
115	Rouse Dynamics of Colloids Bound to Polymer Networks. Physical Review Letters, 2007, 99, 208301.	2.9	43
116	On the curvature dependence of the interfacial tension in a symmetric three-component interface. Physical Chemistry Chemical Physics, 2007, 9, 167-179.	1.3	5
117	Equilibrium Capillary Forces with Atomic Force Microscopy. Physical Review Letters, 2007, 99, 104504.	2.9	31
118	Micellization of Telechelic Associative Polymers:Â Self-Consistent Field Modeling and Comparison with Scaling Concepts. Journal of Physical Chemistry B, 2007, 111, 2903-2909.	1.2	7
119	Effect of Interfacial Permeability on Droplet Relaxation in Biopolymer-Based Water-in-Water Emulsions. Biomacromolecules, 2006, 7, 339-346.	2.6	32