
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7331782/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Drosophila model of Parkinson's disease. Nature, 2000, 404, 394-398.	27.8	1,927
2	Mitochondrial pathology and apoptotic muscle degeneration in <i>Drosophila parkin</i> mutants. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 4078-4083.	7.1	1,117
3	Sirtuin 2 Inhibitors Rescue α-Synuclein-Mediated Toxicity in Models of Parkinson's Disease. Science, 2007, 317, 516-519.	12.6	995
4	Tauopathy in <i>Drosophila</i> : Neurodegeneration Without Neurofibrillary Tangles. Science, 2001, 293, 711-714.	12.6	868
5	Parkinson's Disease: Genetics and Pathogenesis. Annual Review of Pathology: Mechanisms of Disease, 2011, 6, 193-222.	22.4	654
6	α-Synuclein phosphorylation controls neurotoxicity and inclusion formation in a Drosophila model of Parkinson disease. Nature Neuroscience, 2005, 8, 657-663.	14.8	575
7	α-synuclein acts in the nucleus to inhibit histone acetylation and promote neurotoxicity. Human Molecular Genetics, 2006, 15, 3012-3023.	2.9	486
8	Abnormal bundling and accumulation of F-actin mediates tau-induced neuronal degeneration in vivo. Nature Cell Biology, 2007, 9, 139-148.	10.3	399
9	Aging-related tau astrogliopathy (ARTAG): harmonized evaluation strategy. Acta Neuropathologica, 2016, 131, 87-102.	7.7	380
10	Tau promotes neurodegeneration through global chromatin relaxation. Nature Neuroscience, 2014, 17, 357-366.	14.8	370
11	Tau Promotes Neurodegeneration via DRP1 Mislocalization InÂVivo. Neuron, 2012, 75, 618-632.	8.1	331
12	Neurodegenerative disorders with extensive tau pathology: A comparative study and review. Annals of Neurology, 1996, 40, 139-148.	5.3	301
13	Aggregated Â-Synuclein Mediates Dopaminergic Neurotoxicity In Vivo. Journal of Neuroscience, 2007, 27, 3338-3346.	3.6	271
14	Oxidative stress mediates tau-induced neurodegeneration in Drosophila. Journal of Clinical Investigation, 2007, 117, 236-245.	8.2	262
15	TOR-Mediated Cell-Cycle Activation Causes Neurodegeneration in a Drosophila Tauopathy Model. Current Biology, 2006, 16, 230-241.	3.9	251
16	Genetic Modifiers of Tauopathy in Drosophila. Genetics, 2003, 165, 1233-1242.	2.9	237
17	Cathepsin D expression level affects alpha-synuclein processing, aggregation, and toxicity in vivo. Molecular Brain, 2009, 2, 5.	2.6	232
18	Calpain-Cleavage of α-Synuclein. American Journal of Pathology, 2007, 170, 1725-1738.	3.8	213

#	Article	IF	CITATIONS
19	Alexander Disease. Journal of Neuroscience, 2012, 32, 5017-5023.	3.6	210
20	Lamin Dysfunction Mediates Neurodegeneration in Tauopathies. Current Biology, 2016, 26, 129-136.	3.9	184
21	α-synuclein Induces Mitochondrial Dysfunction through Spectrin and the Actin Cytoskeleton. Neuron, 2018, 97, 108-124.e6.	8.1	181
22	Tau Phosphorylation Sites Work in Concert to Promote Neurotoxicity In Vivo. Molecular Biology of the Cell, 2007, 18, 5060-5068.	2.1	178
23	Tyrosine and serine phosphorylation of α-synuclein have opposing effects on neurotoxicity and soluble oligomer formation. Journal of Clinical Investigation, 2009, 119, 3257-65.	8.2	158
24	Why size matters – balancing mitochondrial dynamics in Alzheimer's disease. Trends in Neurosciences, 2013, 36, 325-335.	8.6	150
25	Functional screening in Drosophila identifies Alzheimer's disease susceptibility genes and implicates Tau-mediated mechanisms. Human Molecular Genetics, 2014, 23, 870-877.	2.9	147
26	Modelling neurodegenerative diseases in Drosophila: a fruitful approach?. Nature Reviews Neuroscience, 2002, 3, 237-243.	10.2	144
27	Lysosomal Dysfunction Promotes Cleavage and Neurotoxicity of Tau In Vivo. PLoS Genetics, 2010, 6, e1001026.	3.5	132
28	Gene expression changes presage neurodegeneration in a Drosophila model of Parkinson's disease. Human Molecular Genetics, 2003, 12, 2457-2466.	2.9	111
29	α-Synuclein S129 Phosphorylation Mutants Do Not Alter Nigrostriatal Toxicity in a Rat Model of Parkinson Disease. Journal of Neuropathology and Experimental Neurology, 2009, 68, 515-524.	1.7	111
30	Parkin. Neuron, 2003, 38, 13-16.	8.1	108
31	S/P and T/P phosphorylation is critical for tau neurotoxicity inDrosophila. Journal of Neuroscience Research, 2007, 85, 1271-1278.	2.9	108
32	Connecting the dots between tau dysfunction and neurodegeneration. Trends in Cell Biology, 2015, 25, 46-53.	7.9	108
33	Comparison of pathways controlling toxicity in the eye and brain in Drosophila models of human neurodegenerative diseases. Human Molecular Genetics, 2004, 13, 2011-2018.	2.9	99
34	Disease-related phenotypes in a Drosophila model of hereditary spastic paraplegia are ameliorated by treatment with vinblastine. Journal of Clinical Investigation, 2005, 115, 3026-3034.	8.2	99
35	From fruit fly to bedside. Current Opinion in Neurology, 2003, 16, 443-449.	3.6	83
36	Functional Screening of Alzheimer Pathology Genome-wide Association Signals in Drosophila. American Journal of Human Genetics, 2011, 88, 232-238.	6.2	81

#	Article	IF	CITATIONS
37	Inactivation of Drosophila Huntingtin affects long-term adult functioning and the pathogenesis of a Huntington's disease model. DMM Disease Models and Mechanisms, 2009, 2, 247-266.	2.4	80
38	The Unfolded Protein Response Protects from Tau Neurotoxicity In Vivo. PLoS ONE, 2010, 5, e13084.	2.5	80
39	Cathepsin D-deficient Drosophila recapitulate the key features of neuronal ceroid lipofuscinoses. Neurobiology of Disease, 2005, 19, 194-199.	4.4	68
40	Protein Misfolding and Oxidative Stress Promote Glial-Mediated Neurodegeneration in an Alexander Disease Model. Journal of Neuroscience, 2011, 31, 2868-2877.	3.6	67
41	p53 prevents neurodegeneration by regulating synaptic genes. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 18055-18060.	7.1	65
42	Glial Fibrillary Tangles and JAK/STAT-Mediated Glial and Neuronal Cell Death in a <i>Drosophila</i> Model of Glial Tauopathy. Journal of Neuroscience, 2010, 30, 16102-16113.	3.6	64
43	The synaptic vesicle protein synaptotagmin promotes formation of filopodia in fibroblasts. Nature, 1993, 364, 537-540.	27.8	63
44	Parkinson's disease: Insights from non-traditional model organisms. Progress in Neurobiology, 2010, 92, 558-571.	5.7	60
45	Accelerated Accumulation of Misfolded Prion Protein and Spongiform Degeneration in a Drosophila Model of Gerstmann-Straussler-Scheinker Syndrome. Journal of Neuroscience, 2006, 26, 12408-12414.	3.6	53
46	Proliferative Potential of Human Astrocytes. Journal of Neuropathology and Experimental Neurology, 2005, 64, 163-169.	1.7	51
47	Defective Phagocytic Corpse Processing Results in Neurodegeneration and Can Be Rescued by TORC1 Activation. Journal of Neuroscience, 2016, 36, 3170-3183.	3.6	50
48	α-synuclein impairs autophagosome maturation through abnormal actin stabilization. PLoS Genetics, 2021, 17, e1009359.	3.5	49
49	A neuroprotective role for the DNA damage checkpoint in tauopathy. Aging Cell, 2012, 11, 360-362.	6.7	47
50	Nitric oxide mediates glial-induced neurodegeneration in Alexander disease. Nature Communications, 2015, 6, 8966.	12.8	44
51	Lrrk promotes tau neurotoxicity through dysregulation of actin and mitochondrial dynamics. PLoS Biology, 2018, 16, e2006265.	5.6	44
52	Tissue and cellular rigidity and mechanosensitive signaling activation in Alexander disease. Nature Communications, 2018, 9, 1899.	12.8	43
53	Polyglutamines Stop Traffic. Neuron, 2003, 40, 1-2.	8.1	39
54	A Conserved Cytoskeletal Signaling Cascade Mediates Neurotoxicity of FTDP-17 Tau Mutations <i>In Vivo</i> . Journal of Neuroscience, 2018, 38, 108-119.	3.6	35

#	Article	IF	CITATIONS
55	Studying Human Neurodegenerative Diseases in Flies and Worms. Journal of Neuropathology and Experimental Neurology, 2000, 59, 847-856.	1.7	34
56	Glia are critical for the neuropathology of complex I deficiency in Drosophila. Human Molecular Genetics, 2014, 23, 4686-4692.	2.9	34
57	An <i>In Vivo</i> Pharmacological Screen Identifies Cholinergic Signaling as a Therapeutic Target in Glial-Based Nervous System Disease. Journal of Neuroscience, 2016, 36, 1445-1455.	3.6	34
58	PARP Inhibitors and Parkinson's Disease. New England Journal of Medicine, 2019, 380, 492-494.	27.0	31
59	Yeast genetics targets lipids in Parkinson's disease. Trends in Genetics, 2004, 20, 273-277.	6.7	29
60	Nortriptyline inhibits aggregation and neurotoxicity of alpha-synuclein by enhancing reconfiguration of the monomeric form. Neurobiology of Disease, 2017, 106, 191-204.	4.4	28
61	Glial αâ€synuclein promotes neurodegeneration characterized by a distinct transcriptional program in vivo. Glia, 2019, 67, 1933-1957.	4.9	27
62	Connecting cell-cycle activation to neurodegeneration in Drosophila. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2007, 1772, 446-456.	3.8	24
63	Post-transcriptional suppression of pathogenic prion protein expression in Drosophila neurons. Journal of Neurochemistry, 2003, 85, 1614-1623.	3.9	23
64	Antisense therapy in a rat model of Alexander disease reverses GFAP pathology, white matter deficits, and motor impairment. Science Translational Medicine, 2021, 13, eabg4711.	12.4	21
65	Title is missing!. Current Opinion in Neurology, 2003, 16, 443-449.	3.6	20
66	Biotin rescues mitochondrial dysfunction and neurotoxicity in a tauopathy model. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 33608-33618.	7.1	20
67	Parkinson's disease risk genes act in glia to control neuronal α-synuclein toxicity. Neurobiology of Disease, 2021, 159, 105482.	4.4	19
68	Comparative proteomic analysis highlights metabolic dysfunction in α-synucleinopathy. Npj Parkinson's Disease, 2020, 6, 40.	5.3	16
69	New Approaches to the Pathology and Genetics of Neurodegeneration. American Journal of Pathology, 2010, 176, 2058-2066.	3.8	15
70	Elevated Oxidative Stress and DNA Damage in Cortical Neurons of Chemotherapy Patients. Journal of Neuropathology and Experimental Neurology, 2021, 80, 705-712.	1.7	9
71	Precision Medicine on the Fly: Using <i>Drosophila</i> to Decipher Gene-Environment Interactions in Parkinson's Disease. Toxicological Sciences, 2021, 182, 159-167.	3.1	8
72	Oligomerization of Lrrk controls actin severing and $\hat{I}\pm$ -synuclein neurotoxicity in vivo. Molecular Neurodegeneration, 2021, 16, 33.	10.8	6

#	Article	IF	CITATIONS
73	latrogenic Neuropathology of Systemic Therapies. Surgical Pathology Clinics, 2020, 13, 331-342.	1.7	4
74	Case Study 1: A 55-Year-Old Woman With Progressive Cognitive, Perceptual, and Motor Impairments. Journal of Neuropsychiatry and Clinical Neurosciences, 2022, 34, 8-15.	1.8	2
75	Anastasis Drives Senescence and Non-Cell Autonomous Neurodegeneration in the Astrogliopathy Alexander Disease. Journal of Neuroscience, 2022, 42, 2584-2597.	3.6	2
76	New-Onset Delusions Heralding an Underlying Neurodegenerative Condition. Journal of Clinical Psychiatry, 2020, 81, .	2.2	1
77	Development of geneâ€environment interaction model in Drosophila for neurodegenerative disease: A step towards personalized medicine. FASEB Journal, 2019, 33, 813.14.	0.5	Ο