
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7331422/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	At Long Last: Olefin Metathesis Macrocyclization at High Concentration. Journal of the American Chemical Society, 2018, 140, 8895-8901.	6.6	64
2	Batchwise and Continuous Nanofiltration of POSSâ€Tagged Grubbs–Hoveydaâ€Type Olefin Metathesis Catalysts. ChemSusChem, 2013, 6, 182-192.	3.6	61
3	Specialized Ruthenium Olefin Metathesis Catalysts Bearing Bulky Unsymmetrical NHC Ligands: Computations, Synthesis, and Application. ACS Catalysis, 2019, 9, 587-598.	5.5	50
4	Carbonic anhydrase II as host protein for the creation of a biocompatible artificial metathesase. Organic and Biomolecular Chemistry, 2015, 13, 5652-5655.	1.5	47
5	Nitro and Other Electron Withdrawing Group Activated Ruthenium Catalysts for Olefin Metathesis Reactions. Angewandte Chemie - International Edition, 2021, 60, 13738-13756.	7.2	44
6	Hoveyda–Grubbs-Type Precatalysts with UnsymmetricalN-Heterocyclic Carbenes as Effective Catalysts in Olefin Metathesis. Organometallics, 2017, 36, 2153-2166.	1.1	38
7	Metathesis of renewable raw materials—influence of ligands in the indenylidene type catalysts on self-metathesis of methyl oleate and cross-metathesis of methyl oleate with (Z)-2-butene-1,4-diol diacetate. Green Chemistry, 2014, 16, 1579.	4.6	30
8	Biotinylated Metathesis Catalysts: Synthesis and Performance in Ring Closing Metathesis. Catalysis Letters, 2014, 144, 373-379.	1.4	29
9	Nonâ€Glovebox Ethenolysis of Ethyl Oleate and FAME at Larger Scale Utilizing a Cyclic (Alkyl)(Amino)Carbene Ruthenium Catalyst. European Journal of Lipid Science and Technology, 2020, 122, 1900263.	1.0	29
10	Looking for the Noncyclic(amino)(alkyl)carbene Ruthenium Catalyst for Ethenolysis of Ethyl Oleate: Selectivity Is on Target. ACS Omega, 2018, 3, 18481-18488.	1.6	27
11	Preparation of Muskâ€&melling Macrocyclic Lactones from Biomass: Looking for the Optimal Substrate Combination. ChemSusChem, 2018, 11, 3157-3166.	3.6	27
12	Ruthenium Complexes Bearing Thiopheneâ€Based Unsymmetrical <i>N</i> â€Heterocyclic Carbene Ligands as Selective Catalysts for Olefin Metathesis in Toluene and Environmentally Friendly 2â€Methyltetrahydrofuran. Chemistry - A European Journal, 2018, 24, 15372-15379.	1.7	26
13	Noncovalent Immobilization of Cationic Ruthenium Complex in a Metal–Organic Framework by Ion Exchange Leading to a Heterogeneous Olefin Metathesis Catalyst for Use in Green Solvents. Organometallics, 2019, 38, 3397-3405.	1.1	23
14	Fishing for the right catalyst for the cross-metathesis reaction of methyl oleate with 2-methyl-2-butene. Catalysis Science and Technology, 2017, 7, 1284-1296.	2.1	21
15	Ruthenium-Catalysed Olefin Metathesis in Environmentally Friendly Solvents: 2-Methyltetrahydrofuran Revisited. European Journal of Organic Chemistry, 2019, 2019, 640-646.	1.2	18
16	Ruthenium Complexes Featuring Unsymmetrical Nâ€Heterocyclic Carbene Ligands–Useful Olefin Metathesis Catalysts for Special Tasks. Chemical Record, 2021, 21, 3648-3661.	2.9	18
17	Sterically Tuned <i>N</i> -Heterocyclic Carbene Ligands for the Efficient Formation of Hindered Products in Ru-Catalyzed Olefin Metathesis. ACS Catalysis, 2020, 10, 11394-11404.	5.5	17

Force Field Parametrization and Molecular Dynamics Simulation of Flexible POSS-Linked (NHC;) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 62

#	Article	IF	CITATIONS
19	A Gentler Touch: Synthesis of Modern Ruthenium Olefin Metathesis Catalysts Sustained by Mechanical Force. ChemCatChem, 2019, 11, 5362-5369.	1.8	14
20	Preparation of macrocyclic musks via olefin metathesis: comparison with classical syntheses and recent advances. Russian Chemical Reviews, 2020, 89, 469-490.	2.5	14
21	Ruthenium Amide Complexes - Synthesis and Catalytic Activity in Olefin Metathesis and in Ring-Opening Polymerisation. European Journal of Inorganic Chemistry, 2018, 2018, 1766-1774.	1.0	13
22	Olefin Metathesis in Continuous Flow Reactor Employing Polar Ruthenium Catalyst and Soluble Metal Scavenger for Instant Purification of Products of Pharmaceutical Interest. ACS Sustainable Chemistry and Engineering, 2021, 9, 16450-16458.	3.2	13
23	Ruthenium Olefin Metathesis Catalysts Systematically Modified in Chelating Benzylidene Ether Fragment: Experiment and Computations. European Journal of Inorganic Chemistry, 2018, 2018, 3675-3685.	1.0	12
24	Synthesis of Substituted βâ€Functionalised Styrenes by Microwaveâ€Assisted Olefin Crossâ€Metathesis and Scalable Synthesis of Apremilast. ChemCatChem, 2019, 11, 5808-5813.	1.8	12
25	2-Methyltetrahydrofuran as a Solvent of Choice for Spontaneous Metathesis/Isomerization Sequence. ACS Omega, 2019, 4, 1831-1837.	1.6	12
26	4-Methyltetrahydropyran as a Convenient Alternative Solvent for Olefin Metathesis Reaction: Model Studies and Medicinal Chemistry Applications. ACS Sustainable Chemistry and Engineering, 2020, 8, 18215-18223.	3.2	12
27	Hoveydaâ€Type Quinone ontaining Complexes – Catalysts to Prevent Migration of the Double Bond under Metathesis Conditions. European Journal of Organic Chemistry, 2017, 2017, 626-638.	1.2	11
28	Recycling waste plastics packaging to value-added products by two-step microwave cracking with different heating strategies. Fuel Processing Technology, 2020, 201, 106346.	3.7	10
29	Preparation of Ruthenium Olefin Metathesis Catalysts Immobilized on MOF, SBA-15, and 13X for Probing Heterogeneous Boomerang Effect. Catalysts, 2020, 10, 438.	1.6	10
30	Activated Hoveydaâ€Grubbs Olefin Metathesis Catalysts Derived from a Large Scale Produced Pharmaceutical Intermediate – Sildenafil Aldehyde. Advanced Synthesis and Catalysis, 2021, 363, 4590-4604.	2.1	10
31	Synthesis of substituted tetrahydrofurans via intermolecular reactions of γ-chlorocarbanions of 3-substituted 3-chloro-propylphenyl sulfones with aldehydes. Tetrahedron, 2010, 66, 3378-3385.	1.0	9
32	Largeâ€Scale Synthesis of a Niche Olefin Metathesis Catalyst Bearing an Unsymmetrical Nâ€Heterocyclic Carbene (NHC) Ligand and its Application in a Green Pharmaceutical Context. Chemistry - A European Journal, 2020, 26, 15708-15717.	1.7	9
33	Copper(I)-Mediated 1,2-Metallate Rearrangements of 1-Metallated Glycals. Synthesis, 2012, 44, 946-952.	1.2	8
34	The Influence of Various N-Heterocyclic Carbene Ligands on Activity of Nitro-Activated Olefin Metathesis Catalysts. Molecules, 2020, 25, 2282.	1.7	7
35	Specialized Olefin Metathesis Catalysts Featuring Unsymmetrical N-Heterocyclic Carbene Ligands Bearing N-(Fluoren-9-yl) Arm. Catalysts, 2020, 10, 599.	1.6	7
36	Making the family portrait complete: Synthesis of Electron Withdrawing Group activated Hoveyda-Grubbs catalysts bearing sulfone and ketone functionalities. Journal of Organometallic Chemistry, 2020, 918, 121276.	0.8	7

#	Article	IF	CITATIONS
37	Synthesis and Catalytic Properties of a Very Latent Selenium-Chelated Ruthenium Benzylidene Olefin Metathesis Catalyst. Organometallics, 2021, 40, 3608-3616.	1.1	7
38	Ruthenium Olefin Metathesis Catalysts Bearing a Macrocyclic Nâ€Heterocyclic Carbene Ligand: Improved Stability and Activity. Angewandte Chemie - International Edition, 2022, 61, .	7.2	7
39	Halogens in Î ³ -position enhance the acidity of alkyl aryl sulfones and alkane nitriles. Tetrahedron, 2007, 63, 8902-8909.	1.0	6
40	Anion Metathesis in Facile Preparation of Olefin Metathesis Catalysts Bearing a Quaternary Ammonium Chloride Tag. Synlett, 2019, 30, 1981-1987.	1.0	6
41	A Synthesis of 1-Lithiated Glycals and 1-Tributylstannyl Glycals from 1-Phenylsulfinyl Glycals via Sulfoxide-Lithium Ligand Exchange. Synthesis, 2008, 2008, 2747-2763.	1.2	5
42	An unexpected formation of a Ru(III) benzylidene complex during activation of a LatMet-type ring-opening polymerisation catalyst. Journal of Catalysis, 2018, 364, 345-353.	3.1	5
43	Reactions of Carbanions of 1 hloroâ€5â€(phenylsulfonyl)pentâ€2â€enes: Synthesis of Vinyl‧ubstituted Tetrahydrofurans. European Journal of Organic Chemistry, 2009, 2009, 3732-3740.	1.2	4
44	γ-Diphenylphosphinoxy Carbanions: Slow Reacting Analogues of γ -Halocarbanions. Phosphorus, Sulfur and Silicon and the Related Elements, 2009, 184, 857-864.	0.8	4
45	Intramolecular Addition of γâ€Chloro Carbanions to Electrophilic Groups: Synthesis of Tricyclic Tetrahydrofurans, Pyrrolidines, and Cyclopentanes. European Journal of Organic Chemistry, 2010, 2010, 1885-1894.	1.2	4
46	Unexpected formation of nitroso-chelated cyclic η1-acylruthenium(II) complex, an effective catalysts for transfer hydrogenation reaction. Journal of Organometallic Chemistry, 2018, 867, 359-366.	0.8	4
47	Aminomethylpyridinequinones as new ligands for PEPPSI-type complexes. Arkivoc, 2021, 2021, 138-156.	0.3	4
48	2-Cyanomethylbenzaldehyde – useful substrate for preparation of some 1,3-di- and 1,2,3-trisubstituted naphthalenes or substituted 1-cyanobenzobicyclo[2.2.2]octenes. Arkivoc, 2009, 2009, 98-110.	0.3	4
49	Preparation of Functionalized α,β-Unsaturated Sulfonamides via Olefin Cross-Metathesis. Organic Letters, 2020, 22, 4970-4973.	2.4	3
50	Ruthenium Olefin Metathesis Catalysts Featuring N-Heterocyclic Carbene Ligands Tagged with Isonicotinic and 4-(Dimethylamino)benzoic Acid Rests: Evaluation of a Modular Synthetic Strategy. Molecules, 2021, 26, 5220.	1.7	3
51	Ruthenium Complex Bearing a Hydroxy Group Functionalised Nâ€Heterocyclic Carbene Ligand – A Universal Platform for Synthesis of Tagged and Immobilised Catalysts for Olefin Metathesis. European Journal of Organic Chemistry, 2021, 2021, 6424.	1.2	3
52	Progress in metathesis chemistry. Beilstein Journal of Organic Chemistry, 2019, 15, 2765-2766.	1.3	2
53	Durch Nitro―und andere elektronenziehende Gruppen aktivierte Rutheniumâ€Katalysatoren für die Olefinmetathese. Angewandte Chemie, 2020, 133, 13854.	1.6	2
54	Improved preparation of an olefin metathesis catalyst bearing quaternary ammonium tag (FixCat) and its use in ethenolysis and macrocyclization reactions after immobilization on metal-organic framework (MOF). Arkivoc, 2021, 2021, 73-84.	0.3	2

#	Article	IF	CITATIONS
55	Testing diverse strategies for ruthenium catalyst removal after aqueous homogeneous olefin metathesis. Journal of Organometallic Chemistry, 2022, 965-966, 122320.	0.8	2
56	Testing enabling techniques for olefin metathesis reactions of lipophilic substrates in water as a diluent. IScience, 2022, 25, 104131.	1.9	1
57	Tandem Olefin Metathesis/α-Ketohydroxylation Revisited. Catalysts, 2021, 11, 719.	1.6	Ο
58	An Anionic, Chelating C(sp3)/NHC ligand from the Combination of an N-heterobicyclic Carbene and Barbituric Heterocycle. Organometallics, 2021, 40, 3223-3234.	1.1	0
59	Ruthenium Olefin Metathesis Catalysts Bearing Macrocyclic Nâ€Heterocyclic Carbene Ligand: Improved Stability and Activity. Angewandte Chemie, 0, , .	1.6	Ο
60	Ruthenium olefin metathesis catalysts bearing two bulky and unsymmetrical NHC ligands. Applied Organometallic Chemistry, 0, , .	1.7	0