Jean Martins

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7330974/publications.pdf Version: 2024-02-01

IFAN MADTINS

#	Article	IF	CITATIONS
1	Zinc Sorption to Three Gram-Negative Bacteria:  Combined Titration, Modeling, and EXAFS Study. Environmental Science & Technology, 2006, 40, 1806-1813.	10.0	195
2	Tracing the Origin and Fate of NO _x in the Arctic Atmosphere Using Stable Isotopes in Nitrate. Science, 2008, 322, 730-732.	12.6	189
3	Photolysis imprint in the nitrate stable isotope signal in snow and atmosphere of East Antarctica and implications for reactive nitrogen cycling. Atmospheric Chemistry and Physics, 2009, 9, 8681-8696.	4.9	157
4	Comprehensive isotopic composition of atmospheric nitrate in the Atlantic Ocean boundary layer from 65°S to 79°N. Journal of Geophysical Research, 2009, 114, .	3.3	156
5	OZCAR: The French Network of Critical Zone Observatories. Vadose Zone Journal, 2018, 17, 1-24.	2.2	126
6	Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers. Scientific Reports, 2016, 6, 33643.	3.3	114
7	Comparison between five acellular oxidative potential measurement assays performed with detailed chemistry on PM ₁₀ samples from the city of Chamonix (France). Atmospheric Chemistry and Physics, 2018, 18, 7863-7875.	4.9	109
8	Influence of soil properties on the toxicity of TiO2 nanoparticles on carbon mineralization and bacterial abundance. Journal of Hazardous Materials, 2015, 283, 529-535.	12.4	108
9	Air–snow transfer of nitrate on the East Antarctic Plateau – Part 1: Isotopic evidence for a photolytically driven dynamic equilibrium in summer. Atmospheric Chemistry and Physics, 2013, 13, 6403-6419.	4.9	103
10	Negative Effects of Copper Oxide Nanoparticles on Carbon and Nitrogen Cycle Microbial Activities in Contrasting Agricultural Soils and in Presence of Plants. Frontiers in Microbiology, 2018, 9, 3102.	3.5	89
11	The importance of simulated lung fluid (SLF) extractions for a more relevant evaluation of the oxidative potential of particulate matter. Scientific Reports, 2017, 7, 11617.	3.3	72
12	The unexpected role of bioaerosols in the Oxidative Potential of PM. Scientific Reports, 2017, 7, 10978.	3.3	70
13	Antibiotic pollution in the Katari subcatchment of the Titicaca Lake: Major transformation products and occurrence of resistance genes. Science of the Total Environment, 2017, 576, 671-682.	8.0	69
14	Copper Dynamics and Impact on Microbial Communities in Soils of Variable Organic Status. Environmental Science & Technology, 2008, 42, 2819-2825.	10.0	67
15	Sorption and degradation of four nitroaromatic herbicides in mono and multi-solute saturated/unsaturated soil batch systems. Journal of Contaminant Hydrology, 1998, 33, 187-210.	3.3	61
16	Toxicity of TiO ₂ nanoparticles on soil nitrification at environmentally relevant concentrations: Lack of classical dose–response relationships. Nanotoxicology, 2017, 11, 247-255.	3.0	59
17	Fingerprinting and diversity of bacterial copA genes in response to soil types, soil organic status and copper contamination. FEMS Microbiology Ecology, 2007, 61, 424-437.	2.7	55
18	Polyols and glucose particulate species as tracers of primary biogenic organic aerosols at 28 French sites. Atmospheric Chemistry and Physics, 2019, 19, 3357-3374.	4.9	53

JEAN MARTINS

#	Article	IF	CITATIONS
19	How Uncontrolled Urban Expansion Increases the Contamination of the Titicaca Lake Basin (El Alto, La) Tj ETQq1	1 0.78431 2.4	4₄rǥBT /Ov€
20	Effect of cultivation and experimental conditions on the surface reactivity of the metal-resistant bacteria Cupriavidus metallidurans CH34 to protons, cadmium and zinc. Chemical Geology, 2007, 236, 266-280.	3.3	42
21	Microscale evidence for a high decrease of soil bacterial density and diversity by cropping. Agronomy for Sustainable Development, 2014, 34, 831-840.	5.3	41
22	Speciation study in the sulfamethoxazole–copper–pH–soil system: Implications for retention prediction. Science of the Total Environment, 2014, 481, 266-273.	8.0	39
23	Effect of pine bark and compost on the biological denitrification process of non-hazardous landfill leachate: Focus on the microbiology. Journal of Hazardous Materials, 2010, 181, 1163-1169.	12.4	37
24	Arabitol, mannitol, and glucose as tracers of primary biogenic organic aerosol: the influence of environmental factors on ambient air concentrations and spatial distribution over France. Atmospheric Chemistry and Physics, 2019, 19, 11013-11030.	4.9	35
25	Tannin impacts on microbial diversity and the functioning of alpine soils: a multidisciplinary approach. Environmental Microbiology, 2008, 10, 799-809.	3.8	33
26	Spatial and diurnal variability in reactive nitrogen oxide chemistry as reflected in the isotopic composition of atmospheric nitrate: Results from the CalNex 2010 field study. Journal of Geophysical Research D: Atmospheres, 2013, 118, 10,567.	3.3	33
27	lsotopic effects of nitrate photochemistry in snow: a field study at Dome C, Antarctica. Atmospheric Chemistry and Physics, 2015, 15, 11243-11256.	4.9	32
28	Transport of rimsulfuron and its metabolites in soil columns. Chemosphere, 1999, 38, 601-616.	8.2	31
29	Seasonal Variations and Chemical Predictors of Oxidative Potential (OP) of Particulate Matter (PM), for Seven Urban French Sites. Atmosphere, 2019, 10, 698.	2.3	31
30	Effect of long term organic amendments and vegetation of vineyard soils on the microscale distribution and biogeochemistry of copper. Science of the Total Environment, 2014, 466-467, 681-689.	8.0	30
31	Assessment of the Sulfamethoxazole mobility in natural soils and of the risk of contamination of water resources at the catchment scale. Environment International, 2019, 130, 104905.	10.0	29
32	Comparison of supercritical fluid extraction (SFE), Soxhlet and shaking methods for pendimethalin extraction from soils: effect of soil properties and water content. Journal of Contaminant Hydrology, 1998, 33, 171-185.	3.3	26
33	Impacts of Anthropogenic Activities on the Contamination of a Sub Watershed of Lake Titicaca. Are Antibiotics a Concern in the Bolivian Altiplano?. Procedia Earth and Planetary Science, 2014, 10, 370-375.	0.6	26
34	Environmental fate and ecotoxicological risk of the antibiotic sulfamethoxazole across the Katari catchment (Bolivian Altiplano): Application of the GREAT-ER model. Science of the Total Environment, 2018, 622-623, 1046-1055.	8.0	26
35	Degradation in soil and water and ecotoxicity of rimsulfuron and its metabolites. Chemosphere, 2001, 45, 515-522.	8.2	25
36	Combined Study of Titanium Dioxide Nanoparticle Transport and Toxicity on Microbial Nitrifying Communities under Single and Repeated Exposures in Soil Columns. Environmental Science & Technology, 2016, 50, 10693-10699.	10.0	25

JEAN MARTINS

#	Article	IF	CITATIONS
37	An isotopic view on the connection between photolytic emissions of NO _{<i>x</i>} from the Arctic snowpack and its oxidation by reactive halogens. Journal of Geophysical Research, 2012, 117, .	3.3	23
38	Distribution of microorganisms and fate of xenobiotic molecules in unsaturated soil environments. Science of the Total Environment, 1993, 136, 121-133.	8.0	22
39	Role of macropore flow in the transport of Escherichia coli cells in undisturbed cores of a brown leached soil. Environmental Sciences: Processes and Impacts, 2013, 15, 347-356.	3.5	20
40	Microbial response to repeated applications of low concentrations of pentachlorophenol in an alfisol under pasture. Chemosphere, 1997, 35, 1637-1650.	8.2	19
41	Application of synchrotron Xâ€ray microtomography for visualizing bacterial biofilms 3D microstructure in porous media. Biotechnology and Bioengineering, 2014, 111, 1265-1271.	3.3	19
42	Investigation of hydrodynamic/biomass growth coupling in a pilot scale granular bioreactor at low pore Reynolds number. Chemical Engineering Science, 2011, 66, 1765-1782.	3.8	16
43	High levels of primary biogenic organic aerosols are driven by only a few plant-associated microbial taxa. Atmospheric Chemistry and Physics, 2020, 20, 5609-5628.	4.9	16
44	Comparison of three labeled silica nanoparticles used as tracers in transport experiments in porous media. Part II: Transport experiments and modeling. Environmental Pollution, 2014, 184, 613-619.	7.5	15
45	Size- and concentration-dependent deposition of fluorescent silica colloids in saturated sand columns: transport experiments and modeling. Environmental Sciences: Processes and Impacts, 2013, 15, 1590.	3.5	14
46	Comparison of chemical washing and physical cell-disruption approaches to assess the surface adsorption and internalization of cadmium by Cupriavidus metallidurans CH34. Journal of Hazardous Materials, 2014, 273, 231-238.	12.4	14
47	Comparison of three labeled silica nanoparticles used as tracers in transport experiments in porous media. Part I: Syntheses and characterizations. Environmental Pollution, 2014, 184, 605-612.	7.5	13
48	Transporte do paclobutrazol em colunas de solos. Revista Brasileira De Ciencia Do Solo, 2008, 32, 2165-2175.	1.3	11
49	Searching for life in extreme environments relevant to Jovian's Europa: Lessons from subglacial ice studies at Lake Vostok (East Antarctica). Advances in Space Research, 2011, 48, 697-701.	2.6	11
50	Xanthan exopolysaccharide: Acid–base reactivity related to structure and conformation. A model for understanding the reactivity of degraded and colloidal soil organic matter. Chemical Geology, 2013, 359, 150-158.	3.3	11
51	Low mobility of CuO and TiO2 nanoparticles in agricultural soils of contrasting texture and organic matter content. Science of the Total Environment, 2021, 783, 146952.	8.0	11
52	Characterization and comparison of groundwater quality and redox conditions in the Arakawa Lowland and Musashino Upland, southern Kanto Plain of the Tokyo Metropolitan area, Japan. Science of the Total Environment, 2020, 722, 137783.	8.0	9
53	Facilitated transport of heavy metals by bacterial colloids in sand columns. European Physical Journal Special Topics, 2003, 107, 593-596.	0.2	8
54	Reactivity of the Plant Growth Regulator Paclobutrazol (Cultar) with Two Tropical Soils of the Northeast Semiarid Region of Brazil. Journal of Environmental Quality, 2008, 37, 90-97.	2.0	7

JEAN MARTINS

#	Article	IF	CITATIONS
55	Influence of hydrodynamics on the growth kinetics of glass-adhering <i>Pseudomonas putida</i> cells through a parallel plate flow chamber. Biomicrofluidics, 2013, 7, 54105.	2.4	6
56	Customization of an optical probe device and validation of a signal processing procedure to study gas–liquid–solid flows. Application to a three-phase internal-loop gas-lift Bioreactor. Chemical Engineering Science, 2015, 138, 814-826.	3.8	6
57	Variability of the Atmospheric PM10 Microbiome in Three Climatic Regions of France. Frontiers in Microbiology, 2020, 11, 576750.	3.5	6
58	Biodegradação de paclobutrazol por Pseudomonas spp. em sistemas de solo saturados. Quimica Nova, 2012, 35, 1090-1096.	0.3	5
59	Soil aggregates: a scale to investigate the densities of metal and proton reactive sites of organic matter and clay phases in soil. European Journal of Soil Science, 2018, 69, 953-961.	3.9	5
60	Small-Scale Variability in Bacterial Community Structure in Different Soil Types. Microbial Ecology, 2021, 82, 470-483.	2.8	5
61	Sulfamethoxazole biodegradation and impacts on soil microbial communities in a Bolivian arid high altitude catchment. Chemosphere, 2021, 284, 131335.	8.2	5
62	Development of an Optical Fiber Fluorescence Setup forin situPAHs Detection in Porous Media. Application to Pyranine Transport in Sand Columns. International Journal of Environmental Analytical Chemistry, 1997, 68, 239-256.	3.3	4
63	Smallâ€Scale Spatial Variability of Atrazine and Dinoseb Adsorption Parameters in an Alluvial Soil. Journal of Environmental Quality, 2008, 37, 1929-1936.	2.0	4
64	Combining microscopy with spectroscopic and chemical methods for tracing the origin of atmospheric fallouts from mining sites. Journal of Hazardous Materials, 2015, 300, 538-545.	12.4	4
65	Development and evaluation of an experimental protocol for 3-D visualization and characterization of the structure of bacterial biofilms in porous media using laboratory X-ray tomography. Biofouling, 2016, 32, 1235-1244.	2.2	4
66	Lixiviação de naftaleno em solos urbanos da região metropolitana do Recife, PE. Revista Brasileira De Ciencia Do Solo, 2013, 37, 1415-1422.	1.3	3
67	Modelagem da cinética de biodegradação de paclobutrazol em dois solos do semiárido do nordeste brasileiro. Quimica Nova, 2012, 35, 77-81.	0.3	2
68	Wastewater reuse in irrigation: short-term effect on soil carbon and nitrogen stocks in Brazilian semi-arid region. Revista Ambiente & Ãgua, 2021, 16, 1.	0.3	2
69	First visualisation of bacterial biofilms in 3D porous media with neutron microtomography without contrast agent. Journal of Microscopy, 2022, 285, 20-28.	1.8	2
70	Theoretical evidence of maximum intracellular currents versus frequency in an <i>Escherichia coli</i> cell submitted to AC voltage. Bioelectromagnetics, 2017, 38, 213-219.	1.6	1
71	Distribution of AC Electric Fieldâ€Induced Transmembrane Voltage in Escherichia coli Cell Wall Layers. Bioelectromagnetics, 2020, 41, 279-288.	1.6	1
72	SIMULAÇÃO DO TRANSPORTE DE PACLOBUTRAZOL EM SOLOS DE UMA ESTAÇÃO EXPERIMENTAL EM JUAZEIRO (BA). Revista Ãguas Subterrâneas, 2013, 27, .	0.1	0

#	Article	IF	CITATIONS
73	A device to simulate contaminant transfer and surface and subsurface flow through intact soil monoliths. Vadose Zone Journal, 2022, 21, .	2.2	0