Erdybaeva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7330937/publications.pdf

Version: 2024-02-01

		1163117	940533	
16	235	8	16	
papers	citations	h-index	g-index	
18	18	18	169	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Nanocomposite protective coatings based on Ti–N–Cr/Ni–Cr–B–Si–Fe, their structure and properties Vacuum, 2009, 83, S235-S239.	3.5	53
2	The influence of deposition conditions and bilayer thickness on physical-mechanical properties of CA-PVD multilayer ZrN/CrN coatings. Materials Characterization, 2018, 140, 189-196.	4.4	50
3	Structure and physicomechanical properties of NbN-based protective nanocomposite coatings: A review. Protection of Metals and Physical Chemistry of Surfaces, 2016, 52, 802-813.	1.1	29
4	Multilayered Nano-Microcomposite Ti-Al-N/TiN/Al2O3Coatings. Their Structure and Properties. Acta Physica Polonica A, 2011, 120, 94-99.	0.5	29
5	Comparative measurements and analysis of the mechanical and electrical properties of Ti-Zr-C nanocomposite: Role of stoichiometry. Measurement: Journal of the International Measurement Confederation, 2021, 176, 109223.	5.0	18
6	Investigation of the structure and physicochemical properties of combined nanocomposite coatings based on Ti–N–Cr/Ni–Cr–B–Si–Fe. Russian Physics Journal, 2009, 52, 1317-1324.	0.4	12
7	Effect of high doses of N+, N+ + Ni+, and Mo+ + W+ ions on the physicomechanical properties of TiNi. Technical Physics, 2009, 54, 667-673.	0.7	9
8	Physical and mechanical properties of nanostructured (Ti-Zr-Nb)N coatings obtained by vacuum-arc deposition method. Przeglad Elektrotechniczny, 2016, 1, 182-185.	0.2	7
9	Microstructure and Mechanical Properties of Multilayer \hat{l} ±-AlN/ \hat{l} ±-BCN Coating as Functions of the Current Density during Sputtering of a B4C Target. Physics of the Solid State, 2018, 60, 2030-2033.	0.6	4
10	Study of nanostructured (Ti-Zr-Nb)N coatings' physical- mechanical properties obtained by vacuum arc evaporation. IOP Conference Series: Materials Science and Engineering, 2016, 110, 012031.	0.6	3
11	Dependence of mechanical and tribotechnical properties of multilayered TiN/ZrN coatings on deposition. Przeglad Elektrotechniczny, 2015, 1, 235-238.	0.2	3
12	Studying of nanocomposite films' structure and properties obtained by magnetron sputtering. IOP Conference Series: Materials Science and Engineering, 2016, 110, 012004.	0.6	2
13	Degradation of austenitic steel 12X18H10T after electron beam impact. IOP Conference Series: Materials Science and Engineering, 2015, 81, 012013.	0.6	1
14	The structure and properties of the nanocomposite films Nb-Al-N. IOP Conference Series: Materials Science and Engineering, 2015, 81, 012021.	0.6	1
15	Functional properties of multilayer vacuum-arc TiN/ZrN coatings. IOP Conference Series: Materials Science and Engineering, 2016, 110, 012056.	0.6	1
16	Characteristics of ion-plasma coatings AlN-TiB2(TiSi2) after annealing. , 2014, , .		0