
Lesley Hughes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7330904/publications.pdf Version: 2024-02-01

LESLEV HUCHES

#	Article	IF	CITATIONS
1	The costs and benefits of restoring a continent's terrestrial ecosystems. Journal of Applied Ecology, 2022, 59, 408-419.	1.9	16
2	Combating ecosystem collapse from the tropics to the Antarctic. Global Change Biology, 2021, 27, 1692-1703.	4.2	128
3	Small vegetated patches greatly reduce urban surface temperature during a summer heatwave in Adelaide, Australia. Landscape and Urban Planning, 2021, 209, 104046.	3.4	46
4	Embedding biodiversity research into climate adaptation policy and practice. Global Change Biology, 2021, 27, 4935-4945.	4.2	2
5	Research priorities for natural ecosystems in a changing global climate. Global Change Biology, 2020, 26, 410-416.	4.2	21
6	The Rocky Hill decision: a watershed for climate change action?. Journal of Energy and Natural Resources Law, 2019, 37, 341-351.	0.3	8
7	Improving engagement in an early career academic setting: can existing models guide early career academic support strategies?. Higher Education Research and Development, 2019, 38, 717-732.	1.9	18
8	Climate readiness of recovery plans for threatened Australian species. Conservation Biology, 2019, 33, 534-542.	2.4	15
9	Reflections on a seminal paper in conservation biology: the legacy of Peters and Darling (1985). Pacific Conservation Biology, 2018, 24, 267.	0.5	2
10	Response of extrafloral nectar production to elevated atmospheric carbon dioxide. Australian Journal of Botany, 2018, 66, 479.	0.3	5
11	Renewal ecology: conservation for the Anthropocene. Restoration Ecology, 2017, 25, 674-680.	1.4	41
12	The power of the transplant: direct assessment of climate change impacts. Climatic Change, 2017, 144, 237-255.	1.7	33
13	Effects of elevated carbon dioxide (CO2) on flowering traits of three horticultural plant species. Australian Journal of Crop Science, 2016, 10, 1523-1528.	0.1	5
14	Roles of family and architecture in driving insect community structure: a comparison of nine Australian plant species. Austral Entomology, 2016, 55, 423-432.	0.8	0
15	Reprint of: The effectiveness of common thermo-regulatory behaviours in a cool temperate grasshopper. Journal of Thermal Biology, 2015, 54, 12-19.	1.1	4
16	Seeking the voices of Catholic Teaching Sisters: challenges in the research process. History of Education Review, 2015, 44, 71-84.	0.2	1
17	Comparison of invertebrate herbivores on native and nonâ€native <scp><i>S</i></scp> <i>enecio</i> species: Implications for the enemy release hypothesis. Austral Ecology, 2015, 40, 503-514.	0.7	9
18	A tool to assess potential for alien plant establishment and expansion under climate change. Journal of Environmental Management, 2015, 159, 121-127.	3.8	23

#	Article	IF	CITATIONS
19	The effectiveness of common thermo-regulatory behaviours in a cool temperate grasshopper. Journal of Thermal Biology, 2015, 52, 75-83.	1.1	11
20	Assessing the vulnerability of Australian skinks to climate change. Climatic Change, 2015, 130, 223-233.	1.7	8
21	Fuel flammability and fire responses of juvenile canopy species in a temperate rainforest ecosystem. International Journal of Wildland Fire, 2015, 24, 349.	1.0	13
22	Potential Impacts of Climate Change on Insect Communities: A Transplant Experiment. PLoS ONE, 2014, 9, e85987.	1.1	52
23	Turning up the heat on the provenance debate: Testing the †local is best' paradigm under heatwave conditions. Austral Ecology, 2014, 39, 600-611.	0.7	24
24	Which hostâ€dependent insects are most prone to coextinction under changed climates?. Ecology and Evolution, 2014, 4, 1295-1312.	0.8	20
25	How can knowledge of the climate niche inform the weed risk assessment process? A case study of <i><scp>C</scp>hrysanthemoides monilifera</i> in <scp>A</scp> ustralia. Diversity and Distributions, 2014, 20, 613-625.	1.9	30
26	Testing for taxonomic bias in the future diversity of Australian Odonata. Diversity and Distributions, 2014, 20, 1016-1028.	1.9	11
27	Potential impacts of climate change on patterns of insect herbivory on understorey plant species: A transplant experiment. Austral Ecology, 2014, 39, 668-676.	0.7	10
28	A framework for assessing the vulnerability of species to climate change: a case study of the Australian elapid snakes. Biodiversity and Conservation, 2014, 23, 3019-3034.	1.2	28
29	Freshwater conservation planning under climate change: demonstrating proactive approaches for Australian Odonata. Journal of Applied Ecology, 2014, 51, 1273-1281.	1.9	39
30	The impacts of climate change on Australian and New Zealand flora and fauna. , 2014, , 65-82.		4
31	Continental-Scale Assessment of Risk to the Australian Odonata from Climate Change. PLoS ONE, 2014, 9, e88958.	1.1	42
32	Does time since introduction influence enemy release of an invasive weed?. Oecologia, 2013, 173, 493-506.	0.9	23
33	Patterns of insect herbivory on four <scp>A</scp> ustralian understory plant species. Australian Journal of Entomology, 2013, 52, 309-314.	1.1	4
34	A Test of the Thermal Melanism Hypothesis in the Wingless Grasshopper <i>Phaulacridium vittatum</i> . Journal of Insect Science, 2013, 13, 1-18.	0.9	24
35	Dragonflies: climate canaries for river management. Diversity and Distributions, 2013, 19, 86-97.	1.9	53
36	Species loss and gain in communities under future climate change: consequences for functional diversity. Ecography, 2013, 36, 531-540.	2.1	74

#	Article	IF	CITATIONS
37	Testing the "Local Provenance―Paradigm: A Common Garden Experiment in Cumberland Plain Woodland, Sydney, Australia. Restoration Ecology, 2013, 21, 569-577.	1.4	23
38	The grass may not always be greener: projected reductions in climatic suitability for exotic grasses under future climates in Australia. Biological Invasions, 2013, 15, 961-975.	1.2	30
39	Phenological Changes in the Southern Hemisphere. PLoS ONE, 2013, 8, e75514.	1.1	161
40	Experimental Manipulation of Melanism Demonstrates the Plasticity of Preferred Temperature in an Agricultural Pest (Phaulacridium vittatum). PLoS ONE, 2013, 8, e80243.	1.1	8
41	Next-Generation Invaders? Hotspots for Naturalised Sleeper Weeds in Australia under Future Climates. PLoS ONE, 2013, 8, e84222.	1.1	29
42	Climate Change Impacts on Species Interactions: Assessing the Threat of Cascading Extinctions. , 2012, , 337-359.		9
43	Considering Extinction of Dependent Species during Translocation, Ex Situ Conservation, and Assisted Migration of Threatened Hosts. Conservation Biology, 2012, 26, 199-207.	2.4	55
44	Australian family ties: does a lack of relatives help invasive plants escape natural enemies?. Biological Invasions, 2012, 14, 2423-2434.	1.2	30
45	How far is it to your local? A survey on local provenance use in New South Wales. Ecological Management and Restoration, 2012, 13, 259-266.	0.7	15
46	A preliminary assessment of changes in plant-dwelling insects when threatened plants are translocated. Journal of Insect Conservation, 2012, 16, 367-377.	0.8	11
47	Invasion hotspots for nonâ€native plants in <scp>A</scp> ustralia under current and future climates. Global Change Biology, 2012, 18, 617-629.	4.2	99
48	Determining vulnerability of stream communities to climate change at the landscape scale. Freshwater Biology, 2012, 57, 1689-1701.	1.2	30
49	Patterns in body size and melanism along a latitudinal cline in the wingless grasshopper, <i>Phaulacridium vittatum</i> . Journal of Biogeography, 2012, 39, 1450-1461.	1.4	32
50	Plant phylogeny as a surrogate for turnover in beetle assemblages. Biodiversity and Conservation, 2012, 21, 323-342.	1.2	18
51	Can Australian biodiversity adapt to climate change?. , 2012, , 8-10.		38
52	The American Society for Radiation Oncology's 2010 Core Physics Curriculum for Radiation Oncology Residents. International Journal of Radiation Oncology Biology Physics, 2011, 81, 1190-1192.	0.4	6
53	Identifying and Managing Threatened Invertebrates through Assessment of Coextinction Risk. Conservation Biology, 2011, 25, 787-796.	2.4	43
54	Climate change and Australia: key vulnerable regions. Regional Environmental Change, 2011, 11, 189-195.	1.4	80

#	Article	IF	CITATIONS
55	Predicted impact of exotic vines on an endangered ecological community under future climate change. Biological Invasions, 2010, 12, 4049-4063.	1.2	30
56	Does the choice of climate baseline matter in ecological niche modelling?. Ecological Modelling, 2010, 221, 2280-2286.	1.2	57
57	Current Constraints and Future Directions in Estimating Coextinction. Conservation Biology, 2010, 24, 682-690.	2.4	79
58	Evidence for climatic niche and biome shifts between native and novel ranges in plant species introduced to Australia. Journal of Ecology, 2010, 98, 790-799.	1.9	185
59	Leaf miners: The hidden herbivores. Austral Ecology, 2010, 35, 300-313.	0.7	55
60	Conservation strategies in response to rapid climate change: Australia as a case study. Biological Conservation, 2010, 143, 1587-1593.	1.9	64
61	HIV/AIDS Knowledge, Sexual Activity, and Safer Sex Practices Among Female Students in Hong Kong, Australia, and the United States. Journal of HIV/AIDS and Social Services, 2009, 8, 414-429.	0.7	2
62	Modelling the impact of <i>Hieracium</i> spp. on protected areas in Australia under future climates. Ecography, 2009, 32, 757-764.	2.1	39
63	The New South Wales Scientific Committee: Assessment procedures and independence. Ecological Management and Restoration, 2009, 10, S140.	0.7	0
64	Major Conservation Policy Issues for Biodiversity in Oceania. Conservation Biology, 2009, 23, 834-840.	2.4	160
65	Different climatic envelopes among invasive populations may lead to underestimations of current and future biological invasions. Diversity and Distributions, 2009, 15, 409-420.	1.9	263
66	A new approach and case study for estimating extent and rates of habitat loss for ecological communities. Biological Conservation, 2009, 142, 1469-1479.	1.9	21
67	Phenological trends among Australian alpine species: using herbarium records to identify climate-change indicators. Australian Journal of Botany, 2009, 57, 1.	0.3	113
68	Effects of elevated CO2 on an insect omnivore: A test for nutritional effects mediated by host plants and prey. Agriculture, Ecosystems and Environment, 2008, 123, 271-279.	2.5	52
69	Incidence of leaf mining in different vegetation types across rainfall, canopy cover and latitudinal gradients. Austral Ecology, 2008, 33, 353-360.	0.7	40
70	Abundance–body mass relationships among insects along a latitudinal gradient. Austral Ecology, 2008, 33, 253-260.	0.7	6
71	Why is the choice of future climate scenarios for species distribution modelling important?. Ecology Letters, 2008, 11, 1135-1146.	3.0	257
72	Leaf mining in the Myrtaceae. Ecological Entomology, 2008, 33, 623-630.	1.1	10

#	Article	IF	CITATIONS
73	Assisted Colonization and Rapid Climate Change. Science, 2008, 321, 345-346.	6.0	786
74	Social Care Work in the Recent Past: Revisiting the Professional/Amateur Dichotomy. Australian Social Work, 2008, 61, 226-238.	0.7	2
75	The reality of living with AD/HD: children's concern about educational and medical support. Emotional and Behavioural Difficulties, 2007, 12, 69-80.	0.7	14
76	AD/HD is a bioâ€psychosocial condition requiring support from integrated services. Emotional and Behavioural Difficulties, 2007, 12, 241-253.	0.7	2
77	ASTRO's 2007 Core Physics Curriculum for Radiation Oncology Residents. International Journal of Radiation Oncology Biology Physics, 2007, 68, 1276-1288.	0.4	8
78	Where will species go? Incorporating new advances in climate modelling into projections of species distributions. Global Change Biology, 2007, 13, 1368-1385.	4.2	157
79	Potential host colonization by insect herbivores in a warmer climate: a transplant experiment. Global Change Biology, 2007, 13, 1539-1549.	4.2	38
80	Measuring the Effectiveness of Frequency Assignment Algorithms. IEEE Transactions on Vehicular Technology, 2007, 56, 331-341.	3.9	4
81	A matter of timing: changes in the first date of arrival and last date of departure of Australian migratory birds. Clobal Change Biology, 2006, 12, 1339-1354.	4.2	66
82	The impact of realistic biophysical parameters for eucalypts on the simulation of the January climate of Australia. Environmental Modelling and Software, 2005, 20, 595-612.	1.9	14
83	Diversity and assemblage structure of phytophagous Hemiptera along a latitudinal gradient: predicting the potential impacts of climate change. Global Ecology and Biogeography, 2005, 14, 249-262.	2.7	70
84	Arthropod community structure along a latitudinal gradient: Implications for future impacts of climate change. Austral Ecology, 2005, 30, 281-297.	0.7	53
85	Herbivore damage along a latitudinal gradient: relative impacts of different feeding guilds. Oikos, 2005, 108, 176-182.	1.2	112
86	Predicting species distributions: use of climatic parameters in BIOCLIM and its impact on predictions of species' current and future distributions. Ecological Modelling, 2005, 186, 251-270.	1.2	401
87	Salvage of suboptimal prostate seed implantation: Reimplantation of underdosed region of prostate base. Brachytherapy, 2005, 4, 163-170.	0.2	15
88	Climate change and its impact on Australia's avifauna. Emu, 2005, 105, 1-20.	0.2	108
89	Consensus on climate change. Trends in Ecology and Evolution, 2005, 20, 648-649.	4.2	49
90	Extinction risk from climate change. Nature, 2004, 427, 145-148.	13.7	5,985

#	Article	IF	CITATIONS
91	Uncertainty in predictions of extinction risk/Effects of changes in climate and land use/Climate change and extinction risk (reply). Nature, 2004, 430, 34-34.	13.7	47
92	ASTRO's core physics curriculum for radiation oncology residents. International Journal of Radiation Oncology Biology Physics, 2004, 60, 697-705.	0.4	9
93	Mobile Gene Cassettes: A Fundamental Resource for Bacterial Evolution. American Naturalist, 2004, 164, 1-12.	1.0	168
94	Species diversity and structure of phytophagous beetle assemblages along a latitudinal gradient: predicting the potential impacts of climate change. Ecological Entomology, 2004, 29, 527-542.	1.1	61
95	Feeding preferences of the Christmas beetleAnoplognathus chloropyrus(Coleoptera: Scarabaeidae) and four paropsine species (Coleoptera: Chrysomelidae) on selectedEucalyptus grandisclonal foliage. Australian Forestry, 2004, 67, 184-190.	0.3	8
96	Effects of elevated CO2 and temperature on development and consumption rates of Octotoma championi and O. scabripennis feeding on Lantana camara. Entomologia Experimentalis Et Applicata, 2003, 108, 169-178.	0.7	36
97	Climate change and Australia: Trends, projections and impacts. Austral Ecology, 2003, 28, 423-443.	0.7	569
98	Interactive effects of elevated CO2 and temperature on the leaf-miner Dialectica scalariella Zeller (Lepidoptera: Gracillariidae) in Paterson's Curse, Echium plantagineum (Boraginaceae). Global Change Biology, 2002, 8, 142-152.	4.2	89
99	Potential changes in the distributions of latitudinally restricted Australian butterfly species in response to climate change. Global Change Biology, 2002, 8, 954-971.	4.2	139
100	Response of ant communities and ant-seed interactions to bush regeneration. Ecological Management and Restoration, 2002, 3, 188-199.	0.7	21
101	From pillar to post: Women and social work studies in the 21st century. Australian Social Work, 2001, 54, 67-79.	0.7	6
102	Effects of elevated CO2 on five plant-aphid interactions. Entomologia Experimentalis Et Applicata, 2001, 99, 87-96.	0.7	110
103	Reply from L. Hughes. Trends in Ecology and Evolution, 2000, 15, 287.	4.2	1
104	Biological consequences of global warming: is the signal already apparent?. Trends in Ecology and Evolution, 2000, 15, 56-61.	4.2	1,648
105	Nectar Production and Floral Characteristics of Tropaeolum majus L. Grown in Ambient and Elevated Carbon Dioxide. Annals of Botany, 1999, 84, 535-541.	1.4	36
106	Catholics and the care of destitute children in late Nineteenth Century New South Wales. Australian Social Work, 1998, 51, 17-25.	0.7	2
107	An evaluation of problem based learning in the multiprofessional education curriculum for the health professions. Journal of Interprofessional Care, 1997, 11, 77-88.	0.8	29
108	Effect of elevated CO 2 on interactions betwe en the western flower thrips, Frankliniella occidentalis (Thysanoptera: Thripidae) and the common milkweed, Asclepias syriaca. Oecologia, 1997, 109, 286-290.	0.9	64

#	Article	IF	CITATIONS
109	Climatic Range Sizes of Eucalyptus Species in Relation to Future Climate Change. Global Ecology and Biogeography Letters, 1996, 5, 23.	0.6	132
110	Fear of the personal: Assessing students in practicum. Australian Social Work, 1996, 49, 33-40.	0.7	9
111	Geographic and Climatic Range Sizes of Australian Eucalypts and a Test of Rapoport's Rule. Global Ecology and Biogeography Letters, 1996, 5, 128.	0.6	57
112	Climate change and conservation policies in Australia: coping with change that is far away and not yet certain. Pacific Conservation Biology, 1994, 1, 308.	0.5	17
113	Fate of Seeds Adapted for Dispersal by Ants in Australian Sclerophyll Vegetation. Ecology, 1992, 73, 1285-1299.	1.5	183
114	Seed and Seedling Biology in Relation to Modelling Vegetation Dynamics Under Global Climate Change. Australian Journal of Botany, 1992, 40, 599.	0.3	22
115	The relocation of ant nest entrances: Potential consequences for ant-dispersed seeds. Austral Ecology, 1991, 16, 207-214.	0.7	35
116	Why do more plant species use ants for dispersal on infertile compared with fertile soils?*. Austral Ecology, 1991, 16, 445-455.	0.7	53
117	Removal Rates of Seeds Adapted for Dispersal by Ants. Ecology, 1990, 71, 138-148.	1.5	108
118	Climate change and Australia: Trends, projections and impacts. Austral Ecology, 0, 28, 423-443.	0.7	0