Jagadheswaran Rajendran

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7330827/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Low-Voltage Capacitive-Based Step-Up DC-DC Converters for RF Energy Harvesting System: A Review. IEEE Access, 2020, 8, 186393-186407.	4.2	26
2	A 700MHz to 2.5GHz Cascode GaAs Power Amplifier for Multi-Band Pico-Cell Achieving 20dB Gain, 40dBm to 45dBm OIP3 and 66% Peak PAE. IEEE Access, 2018, 6, 818-829.	4.2	24
3	A Wide-PCE-Dynamic-Range CMOS Cross-Coupled Differential-Drive Rectifier for Ambient RF Energy Harvesting. IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, 68, 1743-1747.	3.0	23
4	CMOS Cross-Coupled Differential-Drive Rectifier in Subthreshold Operation for Ambient RF Energy Harvesting—Model and Analysis. IEEE Transactions on Circuits and Systems II: Express Briefs, 2019, 66, 1942-1946.	3.0	22
5	The Advancement of Radio Frequency Energy Harvesters (RFEHs) as a Revolutionary Approach for Solving Energy Crisis in Wireless Communication Devices: A Review. IEEE Access, 2021, 9, 106107-106139.	4.2	18
6	A 2.2 to 2.9 GHz Complementary Class-C VCO With PMOS Tail-Current Source Feedback Achieving – 120 dBc/Hz Phase Noise at 1 MHz Offset. IEEE Access, 2019, 7, 91325-91336.	4.2	15
7	A 0.8 mm ² Sub-GHz GaAs HBT Power Amplifier for 5G Application Achieving 57.5% PAE and 28.5 dBm Maximum Linear Output Power. IEEE Access, 2019, 7, 158808-158819.	4.2	11
8	A 1.7-to-2.7GHz 35–38% PAE Multiband CMOS Power Amplifier Employing a Digitally-Assisted Analog Pre-Distorter (DAAPD) Reconfigurable Linearization Technique. IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, 68, 3381-3385.	3.0	7
9	A CMOS 180nm class-AB power amplifier with intergrated phase linearizer for BLE 4.0 achieving 11.5dB gain, 38.4% PAE and 20dBm OIP3. , 2017, , .		6
10	An 0.4–2.8 GHz CMOS Power Amplifier With On-Chip Broadband-Pre-Distorter (BPD) Achieving 36.1–38.6% PAE and 21 dBm Maximum Linear Output Power. IEEE Access, 2021, 9, 48831-48840.	4.2	4
11	An 800 MHz-to-3.3 GHz 20-MHz Channel Bandwidth WPD CMOS Power Amplifier For Multiband Uplink Radio Transceivers. IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, 68, 1178-1182.	3.0	4
12	Analysis of a Single-Frequency Multi-Channel Ambient RF Energy Harvesting in CMOS Technology. , 2019, , .		3
13	A Low Power 180 nm CMOS Power Amplifier with 47% PAE for NB IoT Application. , 2019, , .		3
14	The Evolution of Integrated CMOS Power Amplifiers for Next Generation Mobile Wireless Transceivers. Journal of Circuits, Systems and Computers, 2020, 29, 2030007.	1.5	3
15	A 1.8 V 8-Bit Pipelined ADC With Integrated Folded Cascode Op-Amp in CMOS 180 nm. , 2020, , .		3
16	A 1-mm2 CMOS-pipelined ADC with integrated folded cascode operational amplifier. Microelectronics International, 2020, 37, 205-213.	0.6	2
17	A 23 dBm Gain Shaping Stacked Power Block CMOS Power Amplifier Achieving 36% PAE. IETE Journal of Research, 2023, 69, 6247-6254.	2.6	2
18	A coin-battery-powered LDO-Free 2.4-GHz Bluetooth Low Energy/ZigBee receiver consuming 2â€mA. The Integration VLSI Journal, 2019, 66, 112-118.	2.1	0

#	Article	IF	CITATIONS
19	Foreword Special Issue From the Selected Extended Papers Presented at EDTM 2020. IEEE Journal of the Electron Devices Society, 2020, 8, 1105-1110.	2.1	0
20	A CMOS Low Power Current Source Tunable Inductor With 80% Tuning Range for RFIC. IEEE Journal of the Electron Devices Society, 2020, 8, 1210-1218.	2.1	0
21	A 5 GHz Current Controlled Oscillator with Active Inductor. Lecture Notes in Electrical Engineering, 2022, , 1016-1021.	0.4	0
22	1.8ÂV, 8-bit Integrated ADC and DAC in CMOS 180Ânm for Bluetooth Low-Energy (BLE) System. Lecture Notes in Electrical Engineering, 2022, , 317-324.	0.4	0