
Luc Vervisch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7330505/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Turbulent combustion modeling. Progress in Energy and Combustion Science, 2002, 28, 193-266.	15.8	781
2	Effects of heat release on triple flames. Physics of Fluids, 1995, 7, 1447-1454.	1.6	386
3	Large-eddy simulation of a lifted methane jet flame in a vitiated coflow. Combustion and Flame, 2008, 152, 415-432.	2.8	262
4	Three-dimensional boundary conditions for direct and large-eddy simulation of compressible viscous flows. Journal of Computational Physics, 2008, 227, 5105-5143.	1.9	229
5	DIRECT NUMERICAL SIMULATION OF NON-PREMIXED TURBULENT FLAMES. Annual Review of Fluid Mechanics, 1998, 30, 655-691.	10.8	215
6	Approximating the chemical structure of partially premixed and diffusion counterflow flames using FPI flamelet tabulation. Combustion and Flame, 2005, 140, 147-160.	2.8	213
7	From Large-Eddy Simulation to Direct Numerical Simulation of a lean premixed swirl flame: Filtered laminar flame-PDF modeling. Combustion and Flame, 2011, 158, 1340-1357.	2.8	205
8	Multidimensional flamelet-generated manifolds for partially premixed combustion. Combustion and Flame, 2010, 157, 43-61.	2.8	200
9	Design of a massively parallel CFD code for complex geometries. Comptes Rendus - Mecanique, 2011, 339, 141-148.	2.1	168
10	Analysis of weakly turbulent dilute-spray flames and spray combustion regimes. Journal of Fluid Mechanics, 2005, 537, 317.	1.4	165
11	DNS of a premixed turbulent V flame and LES of a ducted flame using a FSD-PDF subgrid scale closure with FPI-tabulated chemistry. Combustion and Flame, 2005, 143, 566-586.	2.8	161
12	Spray vaporization in nonpremixed turbulent combustion modeling: a single droplet model. Combustion and Flame, 2000, 121, 75-90.	2.8	156
13	DNS analysis of partially premixed combustion in spray and gaseous turbulent flame-bases stabilized in hot air. Combustion and Flame, 2005, 140, 172-195.	2.8	152
14	Large-eddy simulation of a fuel-lean premixed turbulent swirl-burner. Combustion and Flame, 2008, 155, 247-266.	2.8	144
15	Surface density function in premixed turbulent combustion modeling, similarities between probability density function and flame surface approaches. Physics of Fluids, 1995, 7, 2496-2503.	1.6	140
16	Partially premixed flamelets in LES of nonpremixed turbulent combustion. Combustion Theory and Modelling, 2002, 6, 529-551.	1.0	139
17	Role of the progress variable in models for partially premixed turbulent combustion. Combustion and Flame, 2005, 141, 431-437.	2.8	134
18	Modeling subgrid scale mixture fraction variance in LES of evaporating spray. Combustion and Flame, 2006, 146, 635-648.	2.8	110

#	Article	IF	CITATIONS
19	Premixed turbulent combustion modeling using tabulated detailed chemistry and PDF. Proceedings of the Combustion Institute, 2005, 30, 867-874.	2.4	105
20	Triple flames and partially premixed combustion in autoignition of non-premixed turbulent mixtures. Proceedings of the Combustion Institute, 1996, 26, 233-240.	0.3	101
21	Edge flames and partially premixed combustion in diffusion flame quenching. Combustion and Flame, 2001, 125, 788-803.	2.8	84
22	Three facets of turbulent combustion modelling: DNS of premixed V-flame, LES of lifted nonpremixed flame and RANS of jet-flame. Journal of Turbulence, 2004, 5, .	0.5	84
23	Theoretical and numerical study of a symmetrical triple flame using the parabolic flame path approximation. Journal of Fluid Mechanics, 2000, 415, 227-260.	1.4	80
24	Large eddy simulation of forced ignition of an annular bluff-body burner. Combustion and Flame, 2010, 157, 579-601.	2.8	74
25	An optimization-based approach to detailed chemistry tabulation: Automated progress variable definition. Combustion and Flame, 2013, 160, 776-785.	2.8	70
26	Effects of heat release in laminar diffusion flames lifted on round jets. Combustion and Flame, 2003, 134, 355-368.	2.8	69
27	Estimation of the accuracy of PIV treatments for turbulent flow studies by direct numerical simulation of multi-phase flow. Measurement Science and Technology, 2001, 12, 1382-1391.	1.4	64
28	Chemistry reduction using machine learning trained from non-premixed micro-mixing modeling: Application to DNS of a syngas turbulent oxy-flame with side-wall effects. Combustion and Flame, 2020, 220, 119-129.	2.8	63
29	Finite-rate chemistry and transient effects in direct numerical simulations of turbulent nonpremixed flames. Combustion and Flame, 1995, 102, 285-297.	2.8	61
30	A filtered-laminar-flame PDF sub-grid scale closure for LES of premixed turbulent flames. Part I: Formalism and application to a bluff-body burner with differential diffusion. Combustion and Flame, 2014, 161, 1756-1774.	2.8	60
31	Using numerics to help the understanding of non-premixed turbulent flames. Proceedings of the Combustion Institute, 2000, 28, 11-24.	2.4	58
32	Stability diagram for lift-off and blowout of a round jet laminar diffusion flame. Combustion and Flame, 2001, 124, 646-655.	2.8	58
33	A compressible wall-adapting similarity mixed model for large-eddy simulation of the impinging round jet. Physics of Fluids, 2009, 21, .	1.6	52
34	Flame resolved simulation of a turbulent premixed bluff-body burner experiment. Part I: Analysis of the reaction zone dynamics with tabulated chemistry. Combustion and Flame, 2017, 180, 321-339.	2.8	50
35	Direct mapping from LES resolved scales to filtered-flame generated manifolds using convolutional neural networks. Combustion and Flame, 2019, 210, 71-82.	2.8	49
36	Two-dimensional weak shock-vortex interaction in a mixing zone. AIAA Journal, 1995, 33, 1797-1802.	1.5	48

#	Article	IF	CITATIONS
37	A filtered-laminar-flame PDF sub-grid-scale closure for LES of premixed turbulent flames: II. Application to a stratified bluff-body burner. Combustion and Flame, 2014, 161, 1775-1791.	2.8	48
38	Selective Non-catalytic Reduction (SNCR) of Nitrogen Oxide Emissions: A Perspective from Numerical Modeling. Flow, Turbulence and Combustion, 2018, 100, 301-340.	1.4	48
39	Tabulation of NOx chemistry for Large-Eddy Simulation of non-premixed turbulent flames. Proceedings of the Combustion Institute, 2009, 32, 1555-1561.	2.4	47
40	Response of the dynamic LES model to heat release induced effects. Physics of Fluids, 1996, 8, 2248-2250.	1.6	46
41	Estimation of three-dimensional flame surface densities from planar images in turbulent premixed combustion. Experiments in Fluids, 2010, 49, 267-278.	1.1	42
42	Measurement and kinetics of elemental and atomic potassium release from a burning biomass pellet. Proceedings of the Combustion Institute, 2019, 37, 2681-2688.	2.4	42
43	Progress Variable Variance and Filtered Rate Modelling Using Convolutional Neural Networks and Flamelet Methods. Flow, Turbulence and Combustion, 2019, 103, 485-501.	1.4	41
44	Investigating the effects of edge flames in liftoff in non-premixed turbulent combustion. Proceedings of the Combustion Institute, 1998, 27, 1239-1245.	0.3	40
45	Composition-space premixed flamelet solution with differential diffusion for in situ flamelet-generated manifolds. Combustion and Flame, 2011, 158, 2009-2016.	2.8	39
46	Large Eddy Simulation of premixed turbulent combustion using approximate deconvolution and explicit flame filtering. Proceedings of the Combustion Institute, 2015, 35, 1349-1357.	2.4	37
47	Flame resolved simulation of a turbulent premixed bluff-body burner experiment. Part II: A-priori and a-posteriori investigation of sub-grid scale wrinkling closures in the context of artificially thickened flame modeling. Combustion and Flame, 2017, 180, 340-350.	2.8	37
48	Alkali metal emissions in an early-stage pulverized-coal flame: DNS analysis of reacting layers and chemistry tabulation. Proceedings of the Combustion Institute, 2019, 37, 2791-2799.	2.4	36
49	A new LES model coupling flame surface density and tabulated kinetics approaches to investigate knock and pre-ignition in piston engines. Proceedings of the Combustion Institute, 2011, 33, 3105-3114.	2.4	34
50	Subgrid-Scale Turbulent Micromixing: Dynamic Approach. AIAA Journal, 1998, 36, 336-341.	1.5	33
51	Direct numerical simulation of shock wavy-wall interaction: analysis of cellular shock structures and flow patterns. Journal of Fluid Mechanics, 2016, 789, 221-258.	1.4	33
52	Scalar energy fluctuations in Large-Eddy Simulation of turbulent flames: Statistical budgets and mesh quality criterion. Combustion and Flame, 2010, 157, 778-789.	2.8	32
53	Large Eddy Simulation of turbulent flames in a Trapped Vortex Combustor (TVC) – A flamelet presumed-pdf closure preserving laminar flame speed. Comptes Rendus - Mecanique, 2012, 340, 917-932.	2.1	32
54	DNS and approximate deconvolution as a tool to analyse one-dimensional filtered flame sub-grid scale modelling. Combustion and Flame, 2017, 177, 109-122.	2.8	31

#	Article	IF	CITATIONS
55	Premixed flame–wall interaction in a narrow channel: impact of wall thermal conductivity and heat losses. Journal of Fluid Mechanics, 2018, 856, 5-35.	1.4	31
56	Automatic reduction and optimisation of chemistry for turbulent combustion modelling: Impact of the canonical problem. Combustion and Flame, 2017, 175, 60-79.	2.8	30
57	Immersed Boundaries in Large Eddy Simulation of Compressible Flows. Flow, Turbulence and Combustion, 2013, 90, 29-68.	1.4	29
58	Hybrid presumed pdf and flame surface density approaches for Large-Eddy Simulation of premixed turbulent combustion. Combustion and Flame, 2011, 158, 1201-1214.	2.8	28
59	Two approaches of chemistry downsizing for simulating selective non catalytic reduction DeNOx process. Fuel, 2014, 118, 291-299.	3.4	28
60	Diffusion edge-flame: approximation of the flame tip Damköhler number. Combustion and Flame, 2002, 130, 1-14.	2.8	27
61	CHEMICAL IMPACT OF CO AND H ₂ ADDITION ON THE AUTO-IGNITION DELAY OF HOMOGENEOUS N-HEPTANE/AIR MIXTURES. Combustion Science and Technology, 2007, 179, 1937-1962.	1.2	27
62	Gradient and Counter-Gradient Modeling in Premixed Flames: Theoretical Study and Application to the LES of a Lean Premixed Turbulent Swirl-Burner. Combustion Science and Technology, 2010, 182, 465-479.	1.2	27
63	Combustion regime identification from machine learning trained by Raman/Rayleigh line measurements. Combustion and Flame, 2020, 219, 268-274.	2.8	26
64	A flame stability diagram for piloted non-premixed oxycombustion of low calorific residual gases. Proceedings of the Combustion Institute, 2007, 31, 3385-3392.	2.4	25
65	Subgrid-scale turbulent micromixing - Dynamic approach. AIAA Journal, 1998, 36, 336-341.	1.5	24
66	Combustion of residual steel gases: laminar flame analysis and turbulent flamelet modelingâ~†. Fuel, 2003, 82, 983-991.	3.4	23
67	New Developments in Turbulent Combustion Modeling for Engine Design: ECFM-CLEH Combustion Submodel. , 2007, , .		23
68	Local volumetric dilatation rate and scalar geometries in a premixed methane–air turbulent jet flame. Proceedings of the Combustion Institute, 2015, 35, 1295-1303.	2.4	23
69	Machine learning for integrating combustion chemistry in numerical simulations. Energy and AI, 2021, 5, 100082.	5.8	23
70	Hydrogen–sulphur oxy-flame analysis and single-step flame tabulated chemistry. Fuel, 2004, 83, 605-614.	3.4	22
71	Self-similar behavior and chemistry tabulation of burnt-gas diluted premixed flamelets including heat-loss. Combustion Theory and Modelling, 2010, 14, 541-570.	1.0	21
72	Mixing time-history effects in Large Eddy Simulation of non-premixed turbulent flames: Flow-Controlled Chemistry Tabulation. Combustion and Flame, 2012, 159, 336-352.	2.8	21

#	Article	IF	CITATIONS
73	Optimized Reduced Chemistry and Molecular Transport for Large Eddy Simulation of Partially Premixed Combustion in a Gas Turbine. Combustion Science and Technology, 2016, 188, 21-39.	1.2	21
74	Assessing multi-regime combustion in a novel burner configuration with large eddy simulations using tabulated chemistry. Proceedings of the Combustion Institute, 2021, 38, 2551-2558.	2.4	21
75	Large eddy simulation of turbulent flows in reversing systems. Journal of Turbulence, 2003, 4, .	0.5	20
76	Self-ignition scenarios after rapid compression of a turbulent mixture weakly-stratified in temperature. Combustion and Flame, 2012, 159, 3358-3371.	2.8	20
77	Modelling nitrogen oxide emissions in turbulent flames with air dilution: Application to LES of a non-premixed jet-flame. Combustion and Flame, 2014, 161, 496-509.	2.8	20
78	Hybrid Transported-Tabulated Strategy to Downsize Detailed Chemistry for Numerical Simulation of Premixed Flames. Flow, Turbulence and Combustion, 2014, 92, 175-200.	1.4	20
79	Model Equation for the Dynamics of Wrinkled Shockwaves: Comparison with DNS and Experiments. Combustion Science and Technology, 2015, 187, 296-323.	1.2	20
80	A self-contained progress variable space solution method for thermochemical variables and flame speed in freely-propagating premixed flamelets. Proceedings of the Combustion Institute, 2019, 37, 1529-1536.	2.4	20
81	Large eddy simulation of selective non-catalytic reduction (SNCR): A downsizing procedure for simulating nitric-oxide reduction units. Chemical Engineering Science, 2016, 139, 285-303.	1.9	19
82	A Priori Assessment of an Iterative Deconvolution Method for LES Sub-grid Scale Variance Modelling. Flow, Turbulence and Combustion, 2018, 101, 33-53.	1.4	19
83	A self-contained composition space solution method for strained and curved premixed flamelets. Combustion and Flame, 2019, 207, 342-355.	2.8	19
84	Numerical study of HCl and SO2 impact on potassium emissions in pulverized-biomass combustion. Fuel Processing Technology, 2019, 193, 19-30.	3.7	19
85	Modeling Engine Turbulent Auto-Ignition Using Tabulated Detailed Chemistry. , 2007, , .		18
86	Modelling alkali metal emissions in large-eddy simulation of a preheated pulverised-coal turbulent jet flame using tabulated chemistry. Combustion Theory and Modelling, 2018, 22, 203-236.	1.0	18
87	Machine learning for detailed chemistry reduction in DNS of a syngas turbulent oxy-flame with side-wall effects. Proceedings of the Combustion Institute, 2021, 38, 2825-2833.	2.4	17
88	Large-eddy simulation of H ₂ –air auto-ignition using tabulated detailed chemistry. Journal of Turbulence, 2008, 9, N13.	0.5	16
89	Scalar flux modeling in turbulent flames using iterative deconvolution. Physical Review Fluids, 2018, 3, .	1.0	16
90	Effects of the Local Flow Topologies Upon the Structure of a Premixed Methane-air Turbulent Jet Flame. Flow, Turbulence and Combustion, 2016, 96, 535-546.	1.4	15

#	Article	IF	CITATIONS
91	Auto-thermal reforming (ATR) of natural gas: An automated derivation of optimised reduced chemical schemes. Proceedings of the Combustion Institute, 2017, 36, 3321-3330.	2.4	15
92	A hybrid stochastic/fixed-sectional method for solving the population balance equation. Chemical Engineering Science, 2019, 209, 115198.	1.9	15
93	Entropy preserving low dissipative shock capturing with wave-characteristic based sensor for high-order methods. Computers and Fluids, 2020, 197, 104357.	1.3	15
94	Interlinks between approaches for modeling turbulent flames. Proceedings of the Combustion Institute, 2000, 28, 175-183.	2.4	14
95	Using self-similar properties of turbulent premixed flames to downsize chemical tables in high-performance numerical simulations. Combustion Theory and Modelling, 2008, 12, 1055-1088.	1.0	14
96	Simulating upstream flame propagation in a narrow channel after wall preheating: Flame analysis and chemistry reduction strategy. Combustion and Flame, 2019, 200, 219-231.	2.8	14
97	Solving the population balance equation for non-inertial particles dynamics using probability density function and neural networks: Application to a sooting flame. Physics of Fluids, 2021, 33, .	1.6	14
98	Flow streamline based Navier–Stokes Characteristic Boundary Conditions: Modeling for transverse and corner outflows. Computers and Fluids, 2011, 51, 115-126.	1.3	13
99	A multi-zone self-similar chemistry tabulation with application to auto-ignition including cool-flames effects. Fuel, 2012, 91, 87-92.	3.4	13
100	Evaluation of a Neural Network-Based Closure for the Unresolved Stresses in Turbulent Premixed V-Flames. Flow, Turbulence and Combustion, 2021, 106, 331-356.	1.4	13
101	Prediction of ignition delay times of Jet A-1/hydrogen fuel mixture using machine learning. Aerospace Science and Technology, 2022, 127, 107675.	2.5	13
102	3-D CFD Analysis of the Combustion Process in a DI Diesel Engine using a Flamelet Model. , 0, , .		12
103	Numerical Study of Smoothly Perturbed Shocks in the Newtonian Limit. Flow, Turbulence and Combustion, 2017, 99, 887-908.	1.4	12
104	Analysis of sub-grid scale modeling of the ideal-gas equation of state in hydrogen–oxygen premixed flames. Proceedings of the Combustion Institute, 2019, 37, 2345-2351.	2.4	12
105	Numerical study of HCl and SO2 impact on sodium emissions in pulverized-coal flames. Fuel, 2019, 250, 315-326.	3.4	12
106	DNS study of spray vaporization and turbulent micro-mixing. , 1998, , .		11
107	DNS of partially premixed flame propagating in a turbulent rotating flow. Proceedings of the Combustion Institute, 2007, 31, 1657-1664.	2.4	11
108	The role of gravity in the asymmetry of flames in narrow combustion chambers. Combustion and Flame, 2019, 203, 238-246.	2.8	11

#	Article	IF	CITATIONS
109	Simulation of char-pellet combustion and sodium release inside porous char using lattice Boltzmann method. Combustion and Flame, 2020, 211, 325-336.	2.8	11
110	Hybrid presumed pdf and flame surface density approaches for Large-Eddy Simulation of premixed turbulent combustion. Part 2: Early flame development after sparking. Combustion and Flame, 2011, 158, 1215-1226.	2.8	10
111	Analysis of the Soot Particle Size Distribution in a Laminar Premixed Flame: A Hybrid Stochastic/Fixed-Sectional Approach. Flow, Turbulence and Combustion, 2020, 104, 753-775.	1.4	10
112	Unresolved stress tensor modeling in turbulent premixed V-flames using iterative deconvolution: An <i>a priori</i> assessment. Physical Review Fluids, 2019, 4, .	1.0	9
113	Heat release effects on mixing scales of non-premixed turbulent wall-jets: A direct numerical simulation study. International Journal of Heat and Fluid Flow, 2013, 40, 65-80.	1.1	8
114	DNS Analysis of Wall Heat Transfer and Combustion Regimes in a Turbulent Non-premixed Wall-jet Flame. Flow, Turbulence and Combustion, 2016, 97, 951-969.	1.4	8
115	Using staggered grids with characteristic boundary conditions when solving compressible reactive Navier–Stokes equations. International Journal for Numerical Methods in Fluids, 2012, 68, 546-563.	0.9	7
116	Derivation and analysis of two-dimensional composition space equations for multi-regime combustion using orthogonal coordinates. Combustion and Flame, 2020, 218, 205-217.	2.8	7
117	Influence of a Central Jet on Isothermal and Reacting Swirling Flow in a Model Combustion Chamber. Energies, 2022, 15, 1615.	1.6	7
118	Modeling non-premixed turbulent combustion in aeronautical engines using PDF-generator. , 1998, , .		6
119	Large Eddy Simulation of compressible turbulent flows. , 1999, , .		6
120	Reynolds Number Effects on Statistics and Structure of an Isothermal Reacting Turbulent Wall-Jet. Flow, Turbulence and Combustion, 2014, 92, 931-945.	1.4	6
121	Reducedâ€order modeling for the control of selective noncatalytic reduction of nitrogen monoxide. AICHE Journal, 2016, 62, 928-938.	1.8	6
122	A Comparative Study from Spectral Analyses of High-Order Methods with Non-Constant Advection Velocities. Journal of Scientific Computing, 2021, 87, 1.	1.1	6
123	Turbulence kinetic energy transfers in direct numerical simulation of shock-wave–turbulence interaction in a compression/expansion ramp. Journal of Fluid Mechanics, 2022, 935, .	1.4	6
124	Vitiated High Karlovitz n-decane/air Turbulent Flames: Scaling Laws and Micro-mixing Modeling Analysis. Flow, Turbulence and Combustion, 2019, 102, 235-252.	1.4	5
125	Flameless combustion of low calorific value gases, experiments, and simulations with advanced radiative heat transfer modeling. Physics of Fluids, 2022, 34, .	1.6	5
126	Eulerian Scalar Projection in Lagrangian Point Source Context: An Approximate Inverse Filtering Approach. Flow, Turbulence and Combustion, 2016, 97, 363-368.	1.4	4

#	Article	IF	CITATIONS
127	Analysis of High-order Explicit LES Dynamic Modeling Applied to Airfoil Flows. Flow, Turbulence and Combustion, 2022, 108, 77-104.	1.4	4
128	DNS of premixed turbulent V-flame: coupling spectral and finite difference methods. Comptes Rendus - Mecanique, 2005, 333, 95-102.	2.1	3
129	Assessment of subgrid-scale stress statistics in non-premixed turbulent wall-jet flames. Journal of Turbulence, 2016, 17, 471-490.	0.5	3
130	One-dimensional dynamics of gaseous detonations revisited. Combustion and Flame, 2021, 232, 111535.	2.8	3
131	Dynamic Subgrid Pdf Modeling for Nonpremixed Turbulent Combustion. ERCOFTAC Series, 1997, , 311-320.	0.1	3
132	Development of reduced and optimized reaction mechanism for potassium emissions during biomass combustion based on genetic algorithms. Energy, 2020, 211, 118565.	4.5	3
133	Direct Numerical Simulation (DNS) of Premixed Turbulent V-Flames. , 2003, , .		2
134	Two recent developments in numerical simulation of premixed and partially premixed turbulent flames. Comptes Rendus - Mecanique, 2006, 334, 523-530.	2.1	2
135	A turbulent-energy based mesh refinement procedure for Large Eddy Simulation. Springer Proceedings in Physics, 2007, , 413-415.	0.1	2
136	Turbulent flame spreading mechanisms after spark ignition. , 2009, , .		2
137	A massively parallel solution strategy for efficient thermal radiation simulation. Journal of Physics: Conference Series, 2012, 369, 012017.	0.3	2
138	Quantification of the Pre-ignition Front Propagation in DNS of Rapidly Compressed Mixture. Flow, Turbulence and Combustion, 2015, 94, 219-235.	1.4	2
139	Analysis of combustion modeling tools using DNS of a non-premixed turbulent wall-jet. , 2012, , .		2
140	Dynamics of isoconcentration surfaces in weak shock turbulent mixing interaction. , 1996, , .		1
141	Verification of a low Mach variable-density Navier-Stokes solver for turbulent combustion. Journal of Physics: Conference Series, 2016, 754, 062005.	0.3	1
142	Reduced chemical reaction mechanisms for simulating sodium emissions by solid-fuel combustion. Applications in Energy and Combustion Science, 2020, 1-4, 100009.	0.9	1
143	LES of compression ramp using high-order dynamic SGS modeling. , 2021, , .		1
144	Revisiting the relation between premixed flame brush thickness and turbulent burning velocities from Ken Bray's notes. Combustion and Flame, 2022, 239, 111706.	2.8	1

#	Article	IF	CITATIONS
145	Modeling partially premixed turbulent combustion. , 2001, , 161-180.		1
146	The Calculation of Local Fluctuations in Non Premixed Turbulent Flames. , 1991, , 83-113.		1
147	Scalar sub-grid energy in large-eddy simulation of turbulent flames: mesh quality criterion. ERCOFTAC Series, 2011, , 201-210.	0.1	1
148	Numerical Simulation of Combustion in Partially Premixed Turbulent Flows. , 1998, , 203-221.		1
149	Assessment of deconvolution-based flamelet methods for progress variable rate modeling. Aeronautics and Aerospace Open Access Journal, 2018, 2, .	0.1	1
150	From Discrete and Iterative Deconvolution Operators to Machine Learning for Premixed Turbulent Combustion Modeling. , 2020, , 215-232.		1
151	A conservative Eulerian-Lagrangian decomposition principle for the solution of multi-scale flow problems at high Schmidt or Prandtl numbers. Journal of Computational Physics, 2022, , 111216.	1.9	1
152	Quelques aspects de la modélisation numérique appliquée à la combustion turbulente. Revue Europeenne Des Elements, 1996, 5, 161-196.	0.1	0
153	Dynamics of isoconcentration surfaces in weak shock turbulent mixing interaction. AIAA Journal, 1996, 34, 2539-2544.	1.5	0
154	Studying turbulent plasma using direct numerical simulation and probability density function. , 1998, , .		0
155	Partial premixing in diffusion flame quenching. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 2001, 81, 525-526.	0.9	0
156	An hybrid transported-tabulated strategy to downsize detailed chemistry for Direct Numerical Simulation. , 2013, , .		0
157	Large-Eddy Simulation of Alkali Metal Reacting Dynamics in a Preheated Pulverized-Coal Jet Flame Using Tabulated Chemistry. , 2017, , .		0
158	Progress in Clean-Combustion Science and Technology. Flow, Turbulence and Combustion, 2021, 106, 293-294.	1.4	0
159	LES of Partially Premixed Combustion. Fluid Mechanics and Its Applications, 2002, , 235-249.	0.1	0
160	Diffusion Edge-Flame Quenching. Fluid Mechanics and Its Applications, 2002, , 161-168.	0.1	0
161	Modeling Partially Premixed Turbulent Combustion. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 2003, , 139-158.	0.2	0
162	A WALE-Similarity Mixed Model for Large-Eddy Simulation of Wall Bounded Compressible Turbulent Flows. ERCOFTAC Series, 2010, , 563-569.	0.1	0

#	Article	IF	CITATIONS
163	Immersed Boundaries in Large-Eddy Simulation of a transonic cavity flow. ERCOFTAC Series, 2011, , 119-124.	0.1	0
164	Modeling differential diffusion in Large Eddy Simulation of a bluff body stabilized premixed weakly-turbulent flame. , 2012, , .		0
165	Recent developments in turbulent combustion modeling: automated progress variables definition - Ignition combustion regimes after rapid compression. , 2012, , .		0
166	Numerical Simulation of Combustion in Partially Premixed Turbulent Flows. Notes on Numerical Fluid Mechanics, 1998, , 203-221.	0.1	0
167	DNS to Help Understanding of Non-Premixed Turbulent Flames. Fluid Mechanics and Its Applications, 1999, , 49-59.	0.1	0
168	Reliability of Large-Eddy Simulation of Nonpremixed Turbulent Flames: Scalar Dissipation Rate Modeling and 3D-Boundary Conditions. ERCOFTAC Series, 2008, , 227-237.	0.1	0
169	Large Eddy Simulation of Premixed Turbulent Combustion: FSD-PDF modeling. , 0, , 17-26.		0
170	A dedication to Professor Kenneth Noel Corbett Bray. Combustion and Flame, 2022, 239, 111983.	2.8	0
171	Mitigation of post-shock oscillations induced by artificial viscosity in discontinuous finite element methods. Computers and Fluids, 2022, 241, 105491.	1.3	0
172	High-order polynomial approximations for solving non-inertial particle size density in flames. Proceedings of the Combustion Institute, 2022, , .	2.4	0