
Lingtao Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7330361/publications.pdf Version: 2024-02-01

LINCTAO MANC

#	Article	IF	CITATIONS
1	Preparation of a novel carbon-based solid acid from cassava stillage residue and its use for the esterification of free fatty acids in waste cooking oil. Bioresource Technology, 2014, 158, 392-395.	9.6	50
2	Catalytic Performance of Biomass Carbon-Based Solid Acid Catalyst for Esterification of Free Fatty Acids in Waste Cooking Oil. Catalysis Surveys From Asia, 2015, 19, 61-67.	2.6	40
3	Ordered mesoporous carbon supported ferric sulfate: A novel catalyst for the esterification of free fatty acids in waste cooking oil. Fuel Processing Technology, 2014, 128, 10-16.	7.2	38
4	Phosphorylated ordered mesoporous carbon as a novel solid acid catalyst for the esterification of oleic acid. Catalysis Communications, 2014, 56, 164-167.	3.3	28
5	Preparation of sulfonated ordered mesoporous carbon catalyst and its catalytic performance for esterification of free fatty acids in waste cooking oils. RSC Advances, 2019, 9, 15941-15948.	3.6	23
6	Zr-Incorporating SBA-15 for conversion of the ethanol–acetaldehyde mixture to butadiene. Reaction Chemistry and Engineering, 2020, 5, 1833-1844.	3.7	21
7	Protective desilication of \hat{l}^2 zeolite: A mechanism study and its application in ethanol-acetaldehyde to 1,3-butadiene. Microporous and Mesoporous Materials, 2021, 326, 111359.	4.4	19
8	Pervaporation dehydration of an acetone/water mixture by hybrid membranes incorporated with sulfonated carbon molecular sieves. RSC Advances, 2016, 6, 55272-55281.	3.6	14
9	Preparation of β zeolite with intracrystalline mesoporosity via surfactant -templating strategy and its application in ethanol-acetaldehyde to butadiene. Microporous and Mesoporous Materials, 2021, 316, 110949.	4.4	13
10	One-step synthesis of hydrophobic fluorinated ordered mesoporous carbon materials. RSC Advances, 2016, 6, 48870-48874.	3.6	12
11	Study of Ethanol/Acetaldehyde to 1,3-Butadiene Over MgO–SiO2 Catalyst: Comparative Investigation of Deactivation Behaviour Due to Carbon Deposition. Catalysis Letters, 2020, 150, 1462-1470.	2.6	11
12	Mechanistic insight into the catalytic cracking mechanism of α-olefin on H-Y zeolite: A DFT study. Computational and Theoretical Chemistry, 2021, 1198, 113183.	2.5	9
13	The mechanism of MOF as a heterogeneous catalyst for propene hydroformylation: a DFT study. Reaction Chemistry and Engineering, 2022, 7, 1156-1167.	3.7	8
14	Uniform Mesoporosity Development in Incorporated β Zeolite: Dual-Template Strategy. Industrial & Engineering Chemistry Research, 2022, 61, 4255-4263.	3.7	5
15	Hierarchical β zeolite by post-synthesis and direct synthesis: enhanced catalytic performance on the conversion of ethanol to 1,3-butadiene. Journal of Porous Materials, 2022, 29, 949-956.	2.6	4
16	Understanding Ta as an Efficient Promoter of MgO–SiO2 Catalyst for Conversion of the Ethanol–Acetaldehyde Mixture into 1,3-Butadiene. Catalysis Letters, 2022, 152, 2524-2532.	2.6	2
17	Insights into the mechanism of carbon chain growth on zeolite-based Fischer–Tropsch Co/Y catalysts. Physical Chemistry Chemical Physics, 2022, 24, 14751-14762.	2.8	2
18	Dissipative Particle Dynamics Simulations of the Self-assembly Mechanisms of Fluorinated Ordered Mesoporous Carbon in the Aqueous Phase. Transactions of Tianjin University, 2019, 25, 559-566.	6.4	1