Brian Huntly

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7329983/publications.pdf Version: 2024-02-01

Βριλη Ηιιητίν

#	Article	IF	CITATIONS
1	Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell, 2005, 7, 387-397.	16.8	2,695
2	Somatic <i>CALR</i> Mutations in Myeloproliferative Neoplasms with Nonmutated <i>JAK2</i> . New England Journal of Medicine, 2013, 369, 2391-2405.	27.0	1,556
3	FoxOs Are Critical Mediators of Hematopoietic Stem Cell Resistance toÂPhysiologic Oxidative Stress. Cell, 2007, 128, 325-339.	28.9	1,416
4	Characterization of AMN107, a selective inhibitor of native and mutant Bcr-Abl. Cancer Cell, 2005, 7, 129-141.	16.8	1,387
5	Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia. Nature, 2011, 478, 529-533.	27.8	1,354
6	MOZ-TIF2, but not BCR-ABL, confers properties of leukemic stem cells to committed murine hematopoietic progenitors. Cancer Cell, 2004, 6, 587-596.	16.8	642
7	Cancer stem cell definitions and terminology: the devil is in the details. Nature Reviews Cancer, 2012, 12, 767-775.	28.4	599
8	Leukaemia stem cells and the evolution of cancer-stem-cell research. Nature Reviews Cancer, 2005, 5, 311-321.	28.4	564
9	A CRISPR Dropout Screen Identifies Genetic Vulnerabilities and Therapeutic Targets in Acute Myeloid Leukemia. Cell Reports, 2016, 17, 1193-1205.	6.4	556
10	Fumarate is an epigenetic modifier that elicits epithelial-to-mesenchymal transition. Nature, 2016, 537, 544-547.	27.8	443
11	BET inhibitor resistance emerges from leukaemia stem cells. Nature, 2015, 525, 538-542.	27.8	441
12	Population dynamics of normal human blood inferred from somatic mutations. Nature, 2018, 561, 473-478.	27.8	427
13	Targeting Epigenetic Readers in Cancer. New England Journal of Medicine, 2012, 367, 647-657.	27.0	363
14	The JAK2V617F activating mutation occurs in chronic myelomonocytic leukemia and acute myeloid leukemia, but not in acute lymphoblastic leukemia or chronic lymphocytic leukemia. Blood, 2005, 106, 3377-3379.	1.4	358
15	Molecular landscape of acute myeloid leukemia in younger adults and its clinical relevance. Blood, 2016, 127, 29-41.	1.4	356
16	Mutation of JAK2 in the myeloproliferative disorders: timing, clonality studies, cytogenetic associations, and role in leukemic transformation. Blood, 2006, 108, 3548-3555.	1.4	302
17	Reprogramming of T Cells to Natural Killer–Like Cells upon <i>Bcl11b</i> Deletion. Science, 2010, 329, 85-89.	12.6	294
18	Deletions of the derivative chromosome 9 occur at the time of the Philadelphia translocation and provide a powerful and independent prognostic indicator in chronic myeloid leukemia. Blood, 2001, 98, 1732-1738.	1.4	228

#	Article	IF	CITATIONS
19	JAK2 V617F impairs hematopoietic stem cell function in a conditional knock-in mouse model of JAK2 V617F–positive essential thrombocythemia. Blood, 2010, 116, 1528-1538.	1.4	195
20	Molecular basis of histone H3K36me3 recognition by the PWWP domain of Brpf1. Nature Structural and Molecular Biology, 2010, 17, 617-619.	8.2	192
21	FLT3 Mutations Confer Enhanced Proliferation and Survival Properties to Multipotent Progenitors in a Murine Model of Chronic Myelomonocytic Leukemia. Cancer Cell, 2007, 12, 367-380.	16.8	182
22	PKC412 inhibits the zinc finger 198-fibroblast growth factor receptor 1 fusion tyrosine kinase and is active in treatment of stem cell myeloproliferative disorder. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 14479-14484.	7.1	168
23	Recurrent mutations, including NPM1c, activate a BRD4-dependent core transcriptional program in acute myeloid leukemia. Leukemia, 2014, 28, 311-320.	7.2	152
24	Chromosome 20 deletions in myeloid malignancies: reduction of the common deleted region, generation of a PAC/BAC contig and identification of candidate genes. Oncogene, 2000, 19, 3902-3913.	5.9	151
25	Requirement for CDK6 in MLL-rearranged acute myeloid leukemia. Blood, 2014, 124, 13-23.	1.4	139
26	Recent advances in acute myeloid leukemia stem cell biology. Haematologica, 2012, 97, 966-974.	3.5	128
27	Network properties derived from deep sequencing of human B-cell receptor repertoires delineate B-cell populations. Genome Research, 2013, 23, 1874-1884.	5.5	128
28	Summing up cancer stem cells. Nature, 2005, 435, 1169-1170.	27.8	127
29	The homeobox gene CDX2 is aberrantly expressed in most cases of acute myeloid leukemia and promotes leukemogenesis. Journal of Clinical Investigation, 2007, 117, 1037-1048.	8.2	127
30	Bone Marrow Mesenchymal Stem Cells Support Acute Myeloid Leukemia Bioenergetics and Enhance Antioxidant Defense and Escape from Chemotherapy. Cell Metabolism, 2020, 32, 829-843.e9.	16.2	122
31	Imatinib improves but may not fully reverse the poor prognosis of patients with CML with derivative chromosome 9 deletions. Blood, 2003, 102, 2205-2212.	1.4	119
32	UTX-mediated enhancer and chromatin remodeling suppresses myeloid leukemogenesis through noncatalytic inverse regulation of ETS and GATA programs. Nature Genetics, 2018, 50, 883-894.	21.4	117
33	Double jeopardy from a single translocation: deletions of the derivative chromosome 9 in chronic myeloid leukemia. Blood, 2003, 102, 1160-1168.	1.4	116
34	Glutaminolysis is a metabolic dependency in FLT3ITD acute myeloid leukemia unmasked by FLT3 tyrosine kinase inhibition. Blood, 2018, 131, 1639-1653.	1.4	114
35	Clinical utility of routine <i>MPL</i> exon 10 analysis in the diagnosis of essential thrombocythaemia and primary myelofibrosis. British Journal of Haematology, 2010, 149, 250-257.	2.5	98
36	Functional interdependence of BRD4 and DOT1L in MLL leukemia. Nature Structural and Molecular Biology, 2016, 23, 673-681.	8.2	92

#	Article	IF	CITATIONS
37	FGFR3 as a therapeutic target of the small molecule inhibitor PKC412 in hematopoietic malignancies. Oncogene, 2005, 24, 8259-8267.	5.9	91
38	Contrasting requirements during disease evolution identify EZH2 as a therapeutic target in AML. Journal of Experimental Medicine, 2019, 216, 966-981.	8.5	91
39	The EOL-1 cell line as an in vitro model for the study of FIP1L1-PDGFRA–positive chronic eosinophilic leukemia. Blood, 2004, 103, 2802-2805.	1.4	88
40	Inhibition of the Bcl-x _L Deamidation Pathway in Myeloproliferative Disorders. New England Journal of Medicine, 2008, 359, 2778-2789.	27.0	84
41	The Antiproliferative Activity of Kinase Inhibitors in Chronic Myeloid Leukemia Cells Is Mediated by FOXO Transcription Factors. Stem Cells, 2014, 32, 2324-2337.	3.2	83
42	Clonal diversity in the myeloproliferative neoplasms: independent origins of genetically distinct clones. British Journal of Haematology, 2009, 144, 904-908.	2.5	75
43	Derivative chromosome 9 deletions in chronic myeloid leukemia: poor prognosis is not associated with loss of ABL-BCRexpression, elevated BCR-ABL levels, or karyotypic instability. Blood, 2002, 99, 4547-4553.	1.4	74
44	Survival implications of molecular heterogeneity in variant Philadelphiaâ€positive chronic myeloid leukaemia. British Journal of Haematology, 2003, 121, 419-427.	2.5	73
45	Activity of a heptad of transcription factors is associated with stem cell programs and clinical outcome in acute myeloid leukemia. Blood, 2013, 121, 2289-2300.	1.4	72
46	Modeling the evolution of ETV6-RUNX1–induced B-cell precursor acute lymphoblastic leukemia in mice. Blood, 2011, 118, 1041-1051.	1.4	71
47	BET protein inhibition shows efficacy against JAK2V617F-driven neoplasms. Leukemia, 2014, 28, 88-97.	7.2	70
48	Cdx4 dysregulates Hox gene expression and generates acute myeloid leukemia alone and in cooperation with Meis1a in a murine model. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 16924-16929.	7.1	69
49	FLT3 internal tandem duplication mutations induce myeloproliferative or lymphoid disease in a transgenic mouse model. Oncogene, 2005, 24, 7882-7892.	5.9	68
50	Effects of the JAK2 mutation on the hematopoietic stem and progenitor compartment in human myeloproliferative neoplasms. Blood, 2011, 118, 177-181.	1.4	61
51	SRPK1 maintains acute myeloid leukemia through effects on isoform usage of epigenetic regulators including BRD4. Nature Communications, 2018, 9, 5378.	12.8	60
52	Targeting cancer stem cells. Expert Opinion on Therapeutic Targets, 2007, 11, 915-927.	3.4	58
53	Early loss of Crebbp confers malignant stem cell properties on lymphoid progenitors. Nature Cell Biology, 2017, 19, 1093-1104.	10.3	58
54	Ezh2 and Runx1 Mutations Collaborate to Initiate Lympho-Myeloid Leukemia in Early Thymic Progenitors. Cancer Cell, 2018, 33, 274-291.e8.	16.8	58

#	Article	IF	CITATIONS
55	Leukemia Stem Cells in Acute Myeloid Leukemia. Seminars in Oncology, 2008, 35, 326-335.	2.2	56
56	Common and Overlapping Oncogenic Pathways Contribute to the Evolution of Acute Myeloid Leukemias. Cancer Research, 2011, 71, 4117-4129.	0.9	55
57	Histone deacetylase 4 promotes type I interferon signaling, restricts DNA viruses, and is degraded via vaccinia virus protein C6. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11997-12006.	7.1	54
58	Development and validation of a comprehensive genomic diagnostic tool for myeloid malignancies. Blood, 2016, 128, e1-e9.	1.4	49
59	Does isochromosome 7q mandate bone marrow transplant in children with Shwachman-Diamond syndrome?. British Journal of Haematology, 2002, 119, 1062-1069.	2.5	47
60	The Transcriptional Coactivator Cbp Regulates Self-Renewal and Differentiation in Adult Hematopoietic Stem Cells. Molecular and Cellular Biology, 2011, 31, 5046-5060.	2.3	46
61	Epigenetic regulators as promising therapeutic targets in acute myeloid leukemia. Therapeutic Advances in Hematology, 2015, 6, 103-119.	2.5	45
62	Increased basal intracellular signaling patterns do not correlate with JAK2 genotype in human myeloproliferative neoplasms. Blood, 2011, 118, 1610-1621.	1.4	42
63	Sequential inverse dysregulation of the RNA helicases DDX3X and DDX3Y facilitates MYC-driven lymphomagenesis. Molecular Cell, 2021, 81, 4059-4075.e11.	9.7	42
64	Dynamic regulation of hypoxia-inducible factor-1α activity is essential for normal B cell development. Nature Immunology, 2020, 21, 1408-1420.	14.5	40
65	Myeloproliferative disorders. Best Practice and Research in Clinical Haematology, 2001, 14, 531-551.	1.7	39
66	A previously unrecognized promoter of LMO2 forms part of a transcriptional regulatory circuit mediating LMO2 expression in a subset of T-acute lymphoblastic leukaemia patients. Oncogene, 2010, 29, 5796-5808.	5.9	39
67	Cohesin-dependent regulation of gene expression during differentiation is lost in cohesin-mutated myeloid malignancies. Blood, 2019, 134, 2195-2208.	1.4	39
68	The incidences of trisomy 8, trisomy 9 and D20S108 deletion in polycythaemia vera: an analysis of blood granulocytes using interphase fluorescence <i>in situ</i> hybridization. British Journal of Haematology, 2000, 110, 839-846.	2.5	38
69	Constitutively activated FGFR3 mutants signal through PLCÎ ³ -dependent and -independent pathways for hematopoietic transformation. Blood, 2005, 106, 328-337.	1.4	38
70	Cytogenetics of chronic myeloid leukaemia. Best Practice and Research in Clinical Haematology, 2001, 14, 553-571.	1.7	36
71	Characterization of the imprinted polycomb gene <i>L3MBTL</i> , a candidate 20q tumour suppressor gene, in patients with myeloid malignancies. British Journal of Haematology, 2004, 127, 509-518.	2.5	36
72	Genetic modification of primary human B cells to model high-grade lymphoma. Nature Communications, 2019, 10, 4543.	12.8	36

Brian Huntly

#	Article	IF	CITATIONS
73	A novel mouse model identifies cooperating mutations and therapeutic targets critical for chronic myeloid leukemia progression. Journal of Experimental Medicine, 2015, 212, 1551-1569.	8.5	35
74	Mll-AF4 Confers Enhanced Self-Renewal and Lymphoid Potential during a Restricted Window in Development. Cell Reports, 2016, 16, 1039-1054.	6.4	34
75	BET bromodomain inhibitors in leukemia. Experimental Hematology, 2015, 43, 718-731.	0.4	33
76	Blasts from the past. Cancer Cell, 2004, 6, 199-201.	16.8	30
77	Detailed molecular characterisation of acute myeloid leukaemia with a normal karyotype using targeted DNA capture. Leukemia, 2013, 27, 1820-1825.	7.2	29
78	Genome-Wide Analysis of Transcriptional Reprogramming in Mouse Models of Acute Myeloid Leukaemia. PLoS ONE, 2011, 6, e16330.	2.5	27
79	HOX Gene Regulation in Acute Myeloid Leukemia: CDX Marks the Spot?. Cell Cycle, 2007, 6, 2241-2245.	2.6	26
80	KAT7 is a genetic vulnerability of acute myeloid leukemias driven by MLL rearrangements. Leukemia, 2021, 35, 1012-1022.	7.2	26
81	Loss of Kat2a enhances transcriptional noise and depletes acute myeloid leukemia stem-like cells. ELife, 2020, 9, .	6.0	26
82	Size matters: the prognostic implications of large and small deletions of the derivative 9 chromosome in chronic myeloid leukemia. Haematologica, 2006, 91, 952-5.	3.5	26
83	Cystine uptake inhibition potentiates front-line therapies in acute myeloid leukemia. Leukemia, 2022, 36, 1585-1595.	7.2	24
84	Novel epigenetic therapies in hematological malignancies: Current status and beyond. Seminars in Cancer Biology, 2018, 51, 198-210.	9.6	22
85	Somatic drivers of B-ALL in a model of ETV6-RUNX1; Pax5 +/â^ leukemia. BMC Cancer, 2015, 15, 585.	2.6	21
86	Molecular Landscape of Acute Myeloid Leukemia: Prognostic and Therapeutic Implications. Current Oncology Reports, 2020, 22, 61.	4.0	21
87	Defining the Optimal Total Number of Chemotherapy Courses in Younger Patients With Acute Myeloid Leukemia: A Comparison of Three Versus Four Courses. Journal of Clinical Oncology, 2021, 39, 890-901.	1.6	20
88	Mutational synergy during leukemia induction remodels chromatin accessibility, histone modifications and three-dimensional DNA topology to alter gene expression. Nature Genetics, 2021, 53, 1443-1455.	21.4	19
89	Realâ€world tyrosine kinase inhibitor treatment pathways, monitoring patterns and responses in patients with chronic myeloid leukaemia in the United Kingdom: the UK TARGET CML study. British Journal of Haematology, 2021, 192, 62-74.	2.5	18
90	Novel and Rare Fusion Transcripts Involving Transcription Factors and Tumor Suppressor Genes in Acute Myeloid Leukemia. Cancers, 2019, 11, 1951.	3.7	17

#	Article	IF	CITATIONS
91	Detection of cytoplasmic nucleophosmin expression by imaging flow cytometry. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2012, 81A, 896-900.	1.5	15
92	Histone modifiers are oxygen sensors. Science, 2019, 363, 1148-1149.	12.6	15
93	Cdx4 is dispensable for murine adult hematopoietic stem cells but promotes MLL-AF9-mediated leukemogenesis. Haematologica, 2010, 95, 1642-1650.	3.5	14
94	Mutation and methylation analysis of the transforming growth factor \hat{I}^2 receptor II gene in polycythaemia vera. British Journal of Haematology, 2001, 115, 872-880.	2.5	13
95	Molecular cytogenetics of polycythaemia vera: lack of occult rearrangements detectable by 20q LSP screening, CGH, and M-FISH. Leukemia, 2003, 17, 1419-1421.	7.2	13
96	HOX-mediated LMO2 expression in embryonic mesoderm is recapitulated in acute leukaemias. Oncogene, 2013, 32, 5471-5480.	5.9	13
97	Dissecting the early steps of MLL induced leukaemogenic transformation using a mouse model of AML. Nature Communications, 2020, 11, 1407.	12.8	13
98	A Phase I Study of Molibresib (GSK525762), a Selective Bromodomain (BRD) and Extra Terminal Protein (BET) Inhibitor: Results from Part 1 of a Phase I/II Open Label Single Agent Study in Subjects with Non-Hodgkin's Lymphoma (NHL). Blood, 2018, 132, 1682-1682.	1.4	12
99	Unbiased cell surface proteomics identifies SEMA4A as an effective immunotherapy target for myeloma. Blood, 2022, 139, 2471-2482.	1.4	12
100	Deletions of the derivative chromosome 9 do not account for the poor prognosis associated with Philadelphia-positive acute lymphoblastic leukemia. Blood, 2002, 99, 2274-2275.	1.4	11
101	Variant Philadelphia translocations in chronic myeloid leukaemia can mimic typical blast crisis chromosome abnormalities or classic t(9;22): a report of two cases. British Journal of Haematology, 2001, 113, 439-442.	2.5	9
102	KAT2A complexes ATAC and SAGA play unique roles in cell maintenance and identity in hematopoiesis and leukemia. Blood Advances, 2022, 6, 165-180.	5.2	9
103	Determining the contribution of NPM1 heterozygosity to NPM-ALK-induced lymphomagenesis. Laboratory Investigation, 2011, 91, 1298-1303.	3.7	8
104	Genetic Vulnerabilities of DNMT3AR882H in Myeloid Malignancies. Blood, 2019, 134, 111-111.	1.4	8
105	Disordered Signaling in Myeloproliferative Neoplasms. Hematology/Oncology Clinics of North America, 2012, 26, 1017-1035.	2.2	7
106	Characterization of AMN107, a selective inhibitor of native and mutant Bcr-Abl. Cancer Cell, 2005, 7, 399.	16.8	6
107	FOXO transcription factor activity is partially retained in quiescent CML stem cells and induced by tyrosine kinase inhibitors in CML progenitor cells. Blood, 2009, , .	1.4	6
108	A Phase I/II Open-Label, Dose Escalation Study to Investigate the Safety, Pharmacokinetics, Pharmacodynamics and Clinical Activity of GSK525762 in Subjects with Relapsed, Refractory Hematologic Malignancies. Blood, 2016, 128, 5223-5223.	1.4	6

#	Article	IF	CITATIONS
109	Unrelated bone-marrow transplantation in adults. Blood Reviews, 1996, 10, 220-230.	5.7	5
110	Acute myeloid leukemia: leukemia stem cells write a prognostic signature. Stem Cell Research and Therapy, 2011, 2, 21.	5.5	5
111	Independence of epigenetic and genetic diversity in AML. Nature Medicine, 2016, 22, 708-709.	30.7	5
112	Sialic acidâ€binding immunoglobulinâ€like lectin (Siglec)â€15 is a rapidly internalised cellâ€surface antigen expressed by acute myeloid leukaemia cells. British Journal of Haematology, 2021, 193, 946-950.	2.5	5
113	Foxo Transcription Factor Activity Is Retained in Quiescent Chronic Myeloid Leukaemia Stem Cells and Activated by Tyrosine Kinase Inhibitors to Mediate "induced-quiescence―in More Mature progenitors Blood, 2009, 114, 187-187.	1.4	5
114	PKC412 Inhibits the ZNF198-FGFR1 Fusion Tyrosine Kinase and Is Efficacious in Treatment of t(8;13)(p11;q12) Associated Stem Cell Myeloproliferative Disease Blood, 2004, 104, 2549-2549.	1.4	4
115	Functional and Molecular Consequences of the Dnmt3aR882H Mutation in Acute Myeloid Leukaemia. Blood, 2015, 126, 2424-2424.	1.4	3
116	Cdx4 Upregulates Hox Gene Expression and Generates Acute Myeloid Leukemia Alone and in Cooperation with Meis1a in a Murine Model Blood, 2006, 108, 10-10.	1.4	3
117	An acquired translocation in JAK2 Val617Phe-negative essential thrombocythemia associated with autosomal spread of X-inactivation. Haematologica, 2006, 91, 1100-4.	3.5	3
118	Intratumoral Heterogeneity: Tools to Understand and Exploit Clone Wars in AML. Cancer Cell, 2018, 34, 533-535.	16.8	2
119	Prognostic Models Turn the Heat(IT)up on FLT3ITD-Mutated AML. Clinical Cancer Research, 2019, 25, 460-462.	7.0	2
120	CML: new tools to answer old questions. Blood, 2020, 135, 2327-2328.	1.4	2
121	Outcomes of Relapsed/Refractory Patients with IDH1/2 Mutated AML Treated with Non-Targeted Therapy: Results from the NCRI AML Trials. Blood, 2018, 132, 664-664.	1.4	2
122	Mutational Synergy Coordinately Remodels Chromatin Accessibility, Enhancer Landscape and 3-Dimensional DNA Topology to Alter Gene Expression during Leukemia Induction. Blood, 2019, 134, 278-278.	1.4	2
123	AMD107: Efficacy as a Selective Inhibitor of the Tyrosine Kinase Activity of BCR-ABL in Murine Leukemia Models Blood, 2004, 104, 551-551.	1.4	2
124	Harmony Alliance Provides a Machine Learning Researching Tool to Predict the Risk of Relapse after First Remission in AML Patients Treated without Allogeneic Haematopoietic Stem Cell Transplantation. Blood, 2021, 138, 4041-4041.	1.4	2
125	BETs Need Greens: Folate Deficiency and Resistance to MYC-Targeted Therapies. Cancer Discovery, 2020, 10, 1791-1793.	9.4	1
126	Targeting Chromatin Regulation in Acute Myeloid Leukemia. HemaSphere, 2021, 5, e589.	2.7	1

#	Article	IF	CITATIONS
127	The Genomic Landscape of Myeloproliferative Neoplasms: Somatic Calr Mutations in the Majority of JAK2-Wildtype Patients. Blood, 2013, 122, LBA-2-LBA-2.	1.4	1
128	A Crispr/Cas9 Drop-out Screen Identifies Genome-Wide Genetic Valnerubilities in Acute Myeloid Leukaemia. Blood, 2015, 126, 554-554.	1.4	1
129	Early Loss of CREBBP Confers Malignant Stem Cell Properties on Lymphoid Progenitors. Blood, 2016, 128, 460-460.	1.4	1
130	PKC412 Effectively Inhibits Constitutively Activated FGFR3 Mutants in Murine Leukemia Models and t(4;14) Myeloma Cell Lines Blood, 2004, 104, 2448-2448.	1.4	1
131	FoxO Are Critical Mediators of Hematopoietic Stem Cell Resistance to Physiologic Oxidative Stress Blood, 2006, 108, 439-439.	1.4	1
132	Loss of BCOR Protein in Development of Acute Myeloid Leukaemia. Blood, 2015, 126, 2433-2433.	1.4	1
133	Mannose Metabolism Is a Metabolic Vulnerability Unveiled By Standard and Novel Therapies in Acute Myeloid Leukemia. Blood, 2021, 138, 508-508.	1.4	1
134	Targeting AML at the intersection of epigenetics and signaling. Science Signaling, 2022, 15, eabo0059.	3.6	1
135	Targeting Leukemia Stem Cells and Stem Cell Pathways in ALL. , 2011, , 143-166.		0
136	The Pathogenesis, Diagnosis, and Treatment of Polycythaemia Vera. , 2013, , 135-153.		0
137	An unexpected finding after a fall from a horse. BMJ, The, 2013, 346, f724-f724.	6.0	0
138	Diffner E, Beck D, Gudgin E, et al. Activity of a heptad of transcription factors is associated with stem cell programs and clinical outcome in acute myeloid leukemia. Blood. 2013;121(12):2289-2300 Blood, 2014, 123, 2901-2901.	1.4	0
139	Metabolic adaptations to targeted therapy in FLT3 mutated acute myeloid leukaemia. Lancet, The, 2017, 389, S37.	13.7	0
140	Hematopoietic stem cells made BETter by inhibition. Haematologica, 2018, 103, 919-921.	3.5	0
141	Kinase Networks Regulate Metabolism: I'D(H1) Never Have Guessed!. Cancer Discovery, 2019, 9, 699-701.	9.4	0
142	Protein condensates provide a platform for controlling chromatin. Nature, 2021, 597, 642-644.	27.8	0
143	Constitutively Activated FGFR3 Mutants Signal through PLCÎ ³ - Dependent and -Independent Pathways for Hematopoietic Transformation Blood, 2004, 104, 1423-1423.	1.4	0
144	TEL/PDGFβR Tyrosine Kinase Fusion Specifically Activates Myeloid Differentiation Programs, and Converts Lymphoid Progenitors into the Myeloid Lineage Blood, 2004, 104, 387-387.	1.4	0

#	Article	IF	CITATIONS
145	Lineage Instruction by Oncogenic Tyrosine Kinase Fusions Blood, 2005, 106, 643-643.	1.4	0
146	Leukemogenic FLT3 Mutations Confer Enhanced Proliferation and Survival Properties to Multipotent Progenitor Cells in a Murine Model of Chronic Myelomonocytic Leukemia Blood, 2007, 110, 1613-1613.	1.4	0
147	Cdx4 Is Dispensable for Murine Hematopoiesis and MLL-AF9 Mediated Leukemogenesis Blood, 2008, 112, 1404-1404.	1.4	0
148	Common Self-Renewal Pathways Contribute to the Induction of Acute Myeloid Leukemias Associated with Different Oncogenes. Blood, 2008, 112, 505-505.	1.4	0
149	Activity of a Heptad of Transcription Factors Is Associated with Stem Cell Programs and Clinical Outcome in Acute Myeloid Leukaemia. Blood, 2012, 120, 3525-3525.	1.4	0
150	Role of Epigenetic Readers in Pathogenesis and Therapy of Acute Leukemias. Blood, 2013, 122, SCI-20-SCI-20.	1.4	0
151	The Epigenetic Regulators CBP and p300 Facilitate Leukemogenesis and Represent Therapeutic Targets In Acute Myeloid Leukemia (AML). Blood, 2013, 122, 3732-3732.	1.4	0
152	Modelling Cellular and Molecular Progression Of CML In The Mouse. Blood, 2013, 122, 2706-2706.	1.4	0
153	Modelling Resistance to Emerging Epigenetic Therapies. Blood, 2014, 124, 3546-3546.	1.4	0
154	Mll-AF4 Induction during Ontogeny Reveals Early Changes in Myeloid and Lymphoid potential and Results in Hematopoietic Malignancies in Adult Mice. Blood, 2014, 124, 892-892.	1.4	0
155	R.I.S.C.L: A Holistic Molecular Diagnostic Tool for Myeloid Malignancies. Blood, 2014, 124, 2342-2342.	1.4	0
156	SRPK1 Is a Therapeutic Vulnerability in Acute Myeloid Leukemia through Its Effects on Alternative Isoforms of Epigenetic Regulators Including BRD4. Blood, 2017, 130, 781-781.	1.4	0
157	Single Cell RNA-Seq Characterises Pre-Leukemic Transformation Driven By CEBPA N321D in the Hoxb8-FL Cell Line. Blood, 2018, 132, 3887-3887.	1.4	0
158	Does RAD21 Co-Mutation Have a Role in DNMT3A Mutated AML? Results of Harmony Alliance AML Database. Blood, 2021, 138, 608-608.	1.4	0
159	Pan-Stakeholder Core Outcome Set (COS) Definition for Selected Hematological Malignancies - Results of the Harmony Alliance. Blood, 2021, 138, 5031-5031.	1.4	0
160	Impact of Gender on Molecular AML Subclasses - a Harmony Alliance Study. Blood, 2021, 138, 3438-3438.	1.4	0
161	Transcriptional Heterogeneity Governs Cell Fate Diversification during Pre-Leukemia to Leukemia Progression. Blood, 2020, 136, 31-32.	1.4	0