
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7329343/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Stimuli-responsive nanocarriers for drug delivery. Nature Materials, 2013, 12, 991-1003.	13.3	5,084
2	Design, functionalization strategies and biomedical applications of targeted biodegradable/biocompatible polymer-based nanocarriers for drug delivery. Chemical Society Reviews, 2013, 42, 1147-1235.	18.7	1,104
3	Nanotheranostics for personalized medicine. Advanced Drug Delivery Reviews, 2012, 64, 1394-1416.	6.6	408
4	Multicellular spheroid based on a triple co-culture: A novel 3D model to mimic pancreatic tumor complexity. Acta Biomaterialia, 2018, 78, 296-307.	4.1	179
5	Multicellular tumor spheroids: a relevant 3D model for the in vitro preclinical investigation of polymer nanomedicines. Polymer Chemistry, 2017, 8, 4947-4969.	1.9	161
6	Penetration enhancer-containing vesicles (PEVs) as carriers for cutaneous delivery of minoxidil. International Journal of Pharmaceutics, 2009, 380, 72-79.	2.6	139
7	Versatile and Efficient Targeting Using a Single Nanoparticulate Platform: Application to Cancer and Alzheimer's Disease. ACS Nano, 2012, 6, 5866-5879.	7.3	127
8	Antibody-functionalized polymer nanoparticle leading to memory recovery in Alzheimer's disease-like transgenic mouse model. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 609-618.	1.7	109
9	Influence of surface charge on the potential toxicity of PLGA nanoparticles towards Calu-3 cells. International Journal of Nanomedicine, 2011, 6, 2591.	3.3	108
10	Aptamer-guided siRNA-loaded nanomedicines for systemic gene silencing in CD-44 expressing murine triple-negative breast cancer model. Journal of Controlled Release, 2018, 271, 98-106.	4.8	102
11	Lipid prodrug nanocarriers in cancer therapy. Journal of Controlled Release, 2015, 208, 25-41.	4.8	94
12	Development and characterization of liposomes containing glycols as carriers for diclofenac. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 342, 53-58.	2.3	92
13	Biodegradable Nanoparticles Meet the Bronchial Airway Barrier: How Surface Properties Affect Their Interaction with Mucus and Epithelial Cells. Biomacromolecules, 2011, 12, 4136-4143.	2.6	91
14	Liposomes and niosomes as potential carriers for dermal delivery of minoxidil. Journal of Drug Targeting, 2007, 15, 101-108.	2.1	88
15	Degradable and Comb-Like PEG-Based Copolymers by Nitroxide-Mediated Radical Ring-Opening Polymerization. Biomacromolecules, 2013, 14, 3769-3779.	2.6	87
16	Conjugation of squalene to gemcitabine as unique approach exploiting endogenous lipoproteins for drug delivery. Nature Communications, 2017, 8, 15678.	5.8	86
17	Facile Synthesis of Innocuous Comb-Shaped Polymethacrylates with PEG Side Chains by Nitroxide-Mediated Radical Polymerization in Hydroalcoholic Solutions. Macromolecules, 2010, 43, 9291-9303.	2.2	70
18	Dexamethasone palmitate nanoparticles: An efficient treatment for rheumatoid arthritis. Journal of Controlled Release, 2019, 296, 179-189.	4.8	70

#	Article	IF	CITATIONS
19	Chitosomes as drug delivery systems for C-phycocyanin: Preparation and characterization. International Journal of Pharmaceutics, 2010, 392, 92-100.	2.6	68
20	Polyisoprenoyl gemcitabine conjugates self assemble as nanoparticles, useful for cancer therapy. Cancer Letters, 2013, 334, 346-353.	3.2	65
21	A new painkiller nanomedicine to bypass the blood-brain barrier and the use of morphine. Science Advances, 2019, 5, eaau5148.	4.7	61
22	Transcutol containing vesicles for topical delivery of minoxidil. Journal of Drug Targeting, 2011, 19, 189-196.	2.1	58
23	Light sheet fluorescence microscopy versus confocal microscopy: in quest of a suitable tool to assess drug and nanomedicine penetration into multicellular tumor spheroids. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 142, 195-203.	2.0	56
24	Peptide-functionalized nanoparticles for selective targeting of pancreatic tumor. Journal of Controlled Release, 2014, 192, 29-39.	4.8	48
25	Compared <i>in vivo</i> toxicity in mice of lung delivered biodegradable and non-biodegradable nanoparticles. Nanotoxicology, 2016, 10, 292-302.	1.6	45
26	Improving Oral Bioavailability and Pharmacokinetics of Liposomal Metformin by Glycerolphosphate–Chitosan Microcomplexation. AAPS PharmSciTech, 2013, 14, 485-496.	1.5	41
27	Novel Isoprenoyl Nanoassembled Prodrug for Paclitaxel Delivery. Bioconjugate Chemistry, 2013, 24, 1840-1849.	1.8	40
28	Near infrared labeling of PLGA for in vivo imaging of nanoparticles. Polymer Chemistry, 2012, 3, 694.	1.9	39
29	Circulating Lipoproteins: A Trojan Horse Guiding Squalenoylated Drugs to LDL-Accumulating Cancer Cells. Molecular Therapy, 2017, 25, 1596-1605.	3.7	39
30	Peptide Conjugation: Before or After Nanoparticle Formation?. Bioconjugate Chemistry, 2014, 25, 1971-1983.	1.8	35
31	Facile Synthesis of Multicompartment Micelles Based on Biocompatible Poly(3â€hydroxyalkanoate). Macromolecular Rapid Communications, 2013, 34, 362-368.	2.0	32
32	How can nanomedicines overcome cellular-based anticancer drug resistance?. Journal of Materials Chemistry B, 2016, 4, 5078-5100.	2.9	32
33	Simple Synthesis of Cladribine-Based Anticancer Polymer Prodrug Nanoparticles with Tunable Drug Delivery Properties. Chemistry of Materials, 2016, 28, 6266-6275.	3.2	30
34	Rational design for multifunctional non-liposomal lipid-based nanocarriers for cancer management: theory to practice. Journal of Nanobiotechnology, 2013, 11, S6.	4.2	29
35	Penetration enhancer-containing vesicles (PEVs) as carriers for cutaneous delivery of minoxidil: <i>in vitro</i> evaluation of drug permeation by infrared spectroscopy. Pharmaceutical Development and Technology, 2013, 18, 1339-1345.	1.1	29
36	Low-Density Lipoproteins and Human Serum Albumin as Carriers of Squalenoylated Drugs: Insights from Molecular Simulations. Molecular Pharmaceutics, 2018, 15, 585-591.	2.3	29

#	Article	IF	CITATIONS
37	Protein-functionalized nanoparticles derived from end-functional polymers and polymer prodrugs for crossing the blood-brain barrier. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 142, 70-82.	2.0	26
38	Lung Toxicity of Biodegradable Nanoparticles. Journal of Biomedical Nanotechnology, 2014, 10, 2852-2864.	0.5	25
39	Immunotoxicity of poly (lactic-co-glycolic acid) nanoparticles: influence of surface properties on dendritic cell activation. Nanotoxicology, 2019, 13, 606-622.	1.6	25
40	In Vivo FRET Imaging to Predict the Risk Associated with Hepatic Accumulation of Squaleneâ€Based Prodrug Nanoparticles. Advanced Healthcare Materials, 2018, 7, 1700830.	3.9	22
41	A facile route to heterotelechelic polymer prodrug nanoparticles for imaging, drug delivery and combination therapy. Journal of Controlled Release, 2018, 286, 425-438.	4.8	22
42	Heterotelechelic polymer prodrug nanoparticles: Adaptability to different drug combinations and influence of the dual functionalization on the cytotoxicity. Journal of Controlled Release, 2019, 295, 223-236.	4.8	21
43	Dual delivery of nucleic acids and PEGylated-bisphosphonates via calcium phosphate nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 142, 142-152.	2.0	20
44	From poly(alkyl cyanoacrylate) to squalene as core material for the design of nanomedicines. Journal of Drug Targeting, 2019, 27, 470-501.	2.1	20
45	An approach to rheological and electrokinetic behaviour of lipidic vesicles covered with chitosan biopolymer. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 323, 149-154.	2.3	19
46	Synthesis and Cytotoxic Activity of Selfâ€Assembling Squalene Conjugates of 3â€[(Pyrrolâ€2â€yl)methylidene]â€2,3â€dihydroâ€1 <i>H</i> â€indolâ€2â€one Anticancer Agents. European Jou Organic Chemistry, 2015, 2015, 202-212.	urnaløf	19
47	Desmoplastic Reaction in 3Dâ€Pancreatic Cancer Tissues Suppresses Molecular Permeability. Advanced Healthcare Materials, 2017, 6, 1700057.	3.9	19
48	Drug-Initiated Synthesis of Heterotelechelic Polymer Prodrug Nanoparticles for <i>in Vivo</i> Imaging and Cancer Cell Targeting. Biomacromolecules, 2019, 20, 2464-2476.	2.6	17
49	Squalene versus cholesterol: Which is the best nanocarrier for the delivery to cells of the anticancer drug gemcitabine?. Comptes Rendus Chimie, 2018, 21, 974-986.	0.2	10
50	Lipidâ€Conjugation of Endogenous Neuropeptides: Improved Biotherapy against Human Pancreatic Cancer. Advanced Healthcare Materials, 2015, 4, 1015-1022.	3.9	9
51	Gemcitabine Lipid Prodrugs: The Key Role of the Lipid Moiety on the Self-Assembly into Nanoparticles. Bioconjugate Chemistry, 2021, 32, 782-793.	1.8	9
52	Investigation of squalene-doxorubicin distribution and interactions within single cancer cell using Raman microspectroscopy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2021, 35, 102404.	1.7	9
53	Before in vivo studies: In vitro screening of sphingomyelin nanosystems using a relevant 3D multicellular pancreatic tumor spheroid model. International Journal of Pharmaceutics, 2022, 617, 121577.	2.6	9
54	Synthesis of a deuterated probe for the confocal Raman microscopy imaging of squalenoyl nanomedicines. Beilstein Journal of Organic Chemistry, 2016, 12, 1127-1135.	1.3	8

#	Article	IF	Citations
55	Squalenoyl-gemcitabine/edelfosine nanoassemblies: Anticancer activity in pediatric cancer cells and pharmacokinetic profile in mice. International Journal of Pharmaceutics, 2020, 582, 119345.	2.6	8
56	Gemcitabine lipid prodrug nanoparticles: Switching the lipid moiety and changing the fate in the bloodstream. International Journal of Pharmaceutics, 2021, 609, 121076.	2.6	7
57	Targeted Delivery Using Biodegradable Polymeric Nanoparticles. , 2012, , 255-288.		6
58	InÂvitro investigation of multidrug nanoparticles for combined therapy with gemcitabine and a tyrosine kinase inhibitor: Together is not better. Biochimie, 2016, 130, 4-13.	1.3	6
59	Structure-pDNA complexation and structure–cytotoxicity relationships of PEGylated, cationic aminoethyl-based polyacrylates with tunable topologies. Polymer Chemistry, 2019, 10, 1968-1977.	1.9	6
60	Composite soy lecithin–decylpolyglucoside vesicles: A theoretical and experimental study. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 323, 175-179.	2.3	5
61	When drug nanocarriers miss their target: extracellular diffusion and cell uptake are not enough to be effective. Biomaterials Science, 2021, 9, 5407-5414.	2.6	4
62	Nanoparticles: Blood Components Interactions. , 2014, , 1-10.		3