List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7328547/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Interrogating the relationship between the microstructure of amphiphilic poly(ethylene) Tj ETQq1 1 0.784314 rgE	BT /Overlc	ck 10 Tf 50
1	Journal of Colloid and Interface Science, 2022, 606, 1140-1152.	0.0	0
2	The effect of emulsifier type on the secondary crystallisation of monoacylglycerol and triacylglycerols in model dairy emulsions. Journal of Colloid and Interface Science, 2022, 608, 2839-2848.	5.0	5
3	Injectable Diels–Alder cycloaddition hydrogels with tuneable gelation, stiffness and degradation for the sustained release of T-lymphocytes. Journal of Materials Chemistry B, 2022, 10, 3329-3343.	2.9	10
4	Long-term adherence of human brain cells inÂvitro is enhanced by charged amine-based plasma polymer coatings. Stem Cell Reports, 2022, 17, 489-506.	2.3	11
5	Influence of Aqueous Phase Composition on Double Emulsion Stability and Colour Retention of Encapsulated Anthocyanins. Foods, 2022, 11, 34.	1.9	8
6	Incorporation and antimicrobial activity of nisin Z within carrageenan/chitosan multilayers. Scientific Reports, 2021, 11, 1690.	1.6	28
7	Interfacial Tension Sensor for Low Dosage Surfactant Detection. Colloids and Interfaces, 2021, 5, 9.	0.9	8
8	Mechanical properties of thin films at the dodecane-water interface, for multilayered emulsion applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 626, 127051.	2.3	3
9	Polyelectrolyte multilayer formation on protein layer supports. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 629, 127470.	2.3	3
10	Can small air bubbles probe very low frother concentration faster?. Soft Matter, 2021, 17, 9916-9925.	1.2	3
11	ATR FTIR Study of the Interaction of TiO ₂ Nanoparticle Films with β-Lactoglobulin and Bile Salts. Langmuir, 2021, 37, 13278-13290.	1.6	7
12	Incorporation of FGF-2 into Pharmaceutical Grade Fucoidan/Chitosan Polyelectrolyte Multilayers. Marine Drugs, 2020, 18, 531.	2.2	8
13	Lysozyme uptake into pharmaceutical grade fucoidan/chitosan polyelectrolyte multilayers under physiological conditions. Journal of Colloid and Interface Science, 2020, 565, 555-566.	5.0	15
14	Adsorption of Carboxymethyl Cellulose onto Titania Particle Films Studied with in Situ IR Spectroscopic Analysis. Langmuir, 2019, 35, 10734-10743.	1.6	5
15	Odd-even effects on hydration of natural polyelectrolyte multilayers: An in situ synchrotron FTIR microspectroscopy study. Journal of Colloid and Interface Science, 2019, 553, 720-733.	5.0	14
16	<i>S</i> -Nitrosothiol Plasma-Modified Surfaces for the Prevention of Bacterial Biofilm Formation. ACS Biomaterials Science and Engineering, 2019, 5, 5881-5887.	2.6	14
17	Recent advances in studies of bubble-solid interactions and wetting film stability. Current Opinion in Colloid and Interface Science, 2019, 44, 48-58.	3.4	24
18	Antibiofilm Nitric Oxide-Releasing Polydopamine Coatings. ACS Applied Materials & Interfaces, 2019, 11, 7320-7329.	4.0	71

#	Article	IF	CITATIONS
19	Controlling Bubble–Solid Surface Interactions with Environmentally Benign Interfacial Modifiers. Journal of Physical Chemistry C, 2019, 123, 3645-3656.	1.5	12
20	Mobile or Immobile? Rise Velocity of Air Bubbles in High-Purity Water. Journal of Physical Chemistry C, 2019, 123, 15131-15138.	1.5	38
21	The influence of pH on the interfacial behaviour of Quillaja bark saponin at the air-solution interface. Colloids and Surfaces B: Biointerfaces, 2019, 176, 412-419.	2.5	15
22	Fractionation and characterisation of hard milk fat crystals using atomic force microscopy. Food Chemistry, 2019, 279, 98-104.	4.2	8
23	Revealing the Nanostructure of Glyceryl Tristearate Crystals by Atomic Force Microscopy. Crystal Growth and Design, 2019, 19, 513-519.	1.4	2
24	Adsorption of ionic liquids onto silver studied by XPS. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 544, 78-85.	2.3	35
25	Dynamic wetting of imidazolium-based ionic liquids on gold and glass. Physical Chemistry Chemical Physics, 2018, 20, 2084-2093.	1.3	22
26	A Novel Soft Contact Piezo-Controlled Liquid Cell for Probing Polymer Films under Confinement using Synchrotron FTIR Microspectroscopy. Scientific Reports, 2018, 8, 17804.	1.6	8
27	Adsorption of a Polyethoxylated Surfactant from Aqueous Solution to Silica Nanoparticle Films Studied with In Situ Attenuated Total Reflection Infrared Spectroscopy and Colloid Probe Atomic Force Microscopy. Langmuir, 2018, 34, 13481-13490.	1.6	3
28	Recent Advances in Macro ATR-FTIR Microspectroscopic Technique for High Resolution Surface Characterisation at Australian Synchrotron IR Beamline. , 2018, , .		0
29	Diffusing wave spectroscopy (DWS) methods applied to double emulsions. Current Opinion in Colloid and Interface Science, 2018, 37, 74-87.	3.4	21
30	Interfacial characterisation for flotation: 1. Solid-liquid interface. Current Opinion in Colloid and Interface Science, 2018, 37, 61-73.	3.4	17
31	Low-Bandgap Conjugated Polymer Dots for Near-Infrared Fluorescence Imaging. ACS Applied Nano Materials, 2018, 1, 4801-4808.	2.4	19
32	Interfacial characterisation for flotation: 2. Air-water interface. Current Opinion in Colloid and Interface Science, 2018, 37, 115-127.	3.4	16
33	Formation and tribology of fucoidan/chitosan polyelectrolyte multilayers on PDMS substrates. Biotribology, 2017, 12, 15-23.	0.9	6
34	Formation and enzymatic degradation of poly-l-arginine/fucoidan multilayer films. Colloids and Surfaces B: Biointerfaces, 2017, 159, 468-476.	2.5	16
35	The influence of polyanion molecular weight on polyelectrolyte multilayers at surfaces: protein adsorption and protein–polysaccharide complexation/stripping on natural polysaccharide films on solid supports. Physical Chemistry Chemical Physics, 2017, 19, 23790-23801.	1.3	21
36	The influence of polyanion molecular weight on polyelectrolyte multilayers at surfaces: elasticity and susceptibility to saloplasticity of strongly dissociated synthetic polymers at fluid–fluid interfaces. Physical Chemistry Chemical Physics, 2017, 19, 23781-23789.	1.3	15

#	Article	IF	CITATIONS
37	Haptotatic Plasma Polymerized Surfaces for Rapid Tissue Regeneration and Wound Healing. ACS Applied Materials & Interfaces, 2016, 8, 32675-32687.	4.0	9
38	Organic energy devices from ionic liquids and conducting polymers. Journal of Materials Chemistry C, 2016, 4, 1550-1556.	2.7	15
39	Static and dynamic wetting behaviour of ionic liquids. Advances in Colloid and Interface Science, 2015, 222, 162-171.	7.0	52
40	Tuning polyelectrolyte multilayer structure by exploiting natural variation in fucoidan chemistry. Soft Matter, 2015, 11, 2110-2124.	1.2	39
41	Spectroscopic study of ionic liquid adsorption from solution onto gold. Physical Chemistry Chemical Physics, 2015, 17, 4199-4209.	1.3	29
42	In Situ ATR FTIR Spectroscopic Study of the Formation and Hydration of a Fucoidan/Chitosan Polyelectrolyte Multilayer. Langmuir, 2015, 31, 11249-11259.	1.6	35
43	Bubble–surface interactions with graphite in the presence of adsorbed carboxymethylcellulose. Soft Matter, 2015, 11, 587-599.	1.2	22
44	Dynamics of capillary-driven liquid–liquid displacement in open microchannels. Physical Chemistry Chemical Physics, 2014, 16, 24473-24478.	1.3	27
45	Carboxymethylcellulose Adsorption on Molybdenite: The Effect of Electrolyte Composition on Adsorption, Bubble–Surface Collisions, and Flotation. Langmuir, 2014, 30, 11975-11984.	1.6	45
46	Challenges in imaging of soft layers and structures at solid surfaces using atomic force microscopy. Surface Innovations, 2014, 2, 151-159.	1.4	9
47	Cascade partial coalescence phenomena at electrolyte–oil interfaces and determination of bounds for the surface potential. Soft Matter, 2013, 9, 4516.	1.2	3
48	Influence of adsorbed gas at liquid/solid interfaces on heterogeneous cavitation. Chemical Science, 2013, 4, 248-256.	3.7	53
49	Influence of n-octanol and α-terpineol on thin film stability and bubble attachment to hydrophobic surface. Physical Chemistry Chemical Physics, 2013, 15, 2586.	1.3	42
50	Molecularly-Thin Precursor Films of Imidazolium-Based Ionic Liquids on Mica. Journal of Physical Chemistry C, 2013, 117, 23676-23684.	1.5	46
51	Role of Surface Charge and Hydrophobicity in the Three-Phase Contact Formation and Wetting Film Stability under Dynamic Conditions. Journal of Physical Chemistry C, 2012, 116, 3071-3078.	1.5	40
52	Hydrodynamics in nanoscale confinement: SFA and colloid probe AFM liquid drainage experiments. Journal of Physics: Conference Series, 2012, 392, 012009.	0.3	2
53	Ultrathin Wetting Films on Hydrophilic Titania Surfaces: Equilibrium and Dynamic Behavior. Journal of Physical Chemistry C, 2011, 115, 11065-11076.	1.5	14
54	Dynamics of Capillary-Driven Flow in Open Microchannels. Journal of Physical Chemistry C, 2011, 115, 18761-18769.	1.5	120

#	Article	IF	CITATIONS
55	Influence of n-hexanol and n-octanol on wetting properties and air entrapment at superhydrophobic surfaces. Physical Chemistry Chemical Physics, 2011, 13, 9452.	1.3	10
56	The unusual surface chemistry of Î \pm -Al2O3 (0001). Physical Chemistry Chemical Physics, 2010, 12, 13724.	1.3	52
57	Electrostatic attraction between a hydrophilic solid and a bubble. Physical Chemistry Chemical Physics, 2010, 12, 14527.	1.3	30
58	Interaction force between an air bubble and a hydrophilic spherical particle in water, measured by the colloid probe technique. International Journal of Mineral Processing, 2009, 92, 121-127.	2.6	35
59	Air at hydrophobic surfaces and kinetics of three phase contact formation. Advances in Colloid and Interface Science, 2009, 147-148, 155-169.	7.0	110
60	Probing of polyelectrolyte monolayers by zeta potential and wettability measurements. Journal of Colloid and Interface Science, 2008, 326, 301-304.	5.0	7
61	Air-Facilitated Three-Phase Contact Formation at Hydrophobic Solid Surfaces under Dynamic Conditions. Langmuir, 2007, 23, 549-557.	1.6	53
62	Influence of Polyelectrolyte Layers Deposited on Mica Surface on Wetting Film Stability and Bubble Attachment. Journal of Physical Chemistry C, 2007, 111, 5743-5749.	1.5	27
63	Wetting films in attachment of the colliding bubble. Advances in Colloid and Interface Science, 2007, 134-135, 138-150.	7.0	55
64	Kinetics of bubble collision and attachment to hydrophobic solids: I. Effect of surface roughness. International Journal of Mineral Processing, 2007, 81, 205-216.	2.6	94
65	Influence of Bubble Kinetic Energy on its Bouncing During Collisions with Various Interfaces. Canadian Journal of Chemical Engineering, 2007, 85, 669-678.	0.9	54
66	Isoelectric state and stability of foam films, bubbles and foams from PEO–PPO–PEO triblock copolymer (P85). Colloid and Polymer Science, 2006, 284, 475-481.	1.0	11
67	Influence of surface active substances on bubble motion and collision with various interfaces. Advances in Colloid and Interface Science, 2005, 114-115, 205-225.	7.0	188
68	Adhesion between silica particles in an alcohol medium. Journal of Adhesion Science and Technology, 2003, 17, 1945-1956.	1.4	1
69	Bubbles Rising In Solutions; Local And Terminal Velocities, Shape Variations And Collisions With Free Surface. , 0, , 243-292.		10
70	Nano-Mechanical Analyses of Native and Cross-Linked Collagen I Matrices Reveal the Mechanical Complexity of Homogenous Samples. Frontiers in Physics, 0, 10, .	1.0	0