
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7328335/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Using Local Climate Zones to investigate Spatio-temporal evolution of thermal environment at the urban regional level: A case study in Xi'an, China. Sustainable Cities and Society, 2022, 76, 103495.	5.1	29
2	Study on dual-objective optimization method of life cycle energy consumption and economy of office building based on HypE genetic algorithm. Energy and Buildings, 2022, 256, 111749.	3.1	16
3	Country-level evaluation of solar radiation data sets using ground measurements in China. Energy, 2022, 241, 122938.	4.5	16
4	Towards low-carbon cities through building-stock-level carbon emission analysis: a calculating and mapping method. Sustainable Cities and Society, 2022, 78, 103633.	5.1	49
5	Human thermal comfort under lateral radiant asymmetries. Energy and Built Environment, 2022, , .	2.9	1
6	Physiological and subjective thermal responses to heat exposure in northern and southern Chinese people. Building Simulation, 2021, 14, 1619-1631.	3.0	14
7	Hot box method to investigate U-values for straw bale walls with various structures. Energy and Buildings, 2021, 234, 110706.	3.1	6
8	Applicability of passive design strategies in China promoted under global warming in past half century. Building and Environment, 2021, 195, 107777.	3.0	27
9	Thermal storage performance of building envelopes for nearly-zero energy buildings during cooling season in Western China: An experimental study. Building and Environment, 2021, 194, 107709.	3.0	36
10	Influences of vernacular building spaces on human thermal comfort in China's arid climate areas. Energy and Buildings, 2021, 244, 110978.	3.1	19
11	Thermal comfort in naturally ventilated university classrooms: A seasonal field study in Xi'an, China. Energy and Buildings, 2021, 247, 111126.	3.1	31
12	A new TMY generation method based on the entropy-based TOPSIS theory for different climatic zones in China. Energy, 2021, 231, 120723.	4.5	47
13	Investigation on the distribution patterns and predictive model of solar radiation in urban street canyons with panorama images. Sustainable Cities and Society, 2021, 75, 103275.	5.1	15
14	Dynamic heat preservation at night for a Trombe wall with a built-in panel curtain in Western China. Solar Energy, 2021, 213, 284-299.	2.9	12
15	Effects of Different Surface Heat Transfer Coefficients on Predicted Heating and Cooling Loads towards Sustainable Building Design. Buildings, 2021, 11, 609.	1.4	1
16	Climatic and seasonal suitability of phase change materials coupled with night ventilation for office buildings in Western China. Renewable Energy, 2020, 147, 356-373.	4.3	53
17	Preferred temperatures with and without air movement during moderate exercise. Energy and Buildings, 2020, 207, 109565.	3.1	29
18	Adaptive thermal comfort and climate responsive building design strategies in dry–hot and dry–cold areas: Case study in Turpan, China. Energy and Buildings, 2020, 209, 109678.	3.1	59

#	Article	IF	CITATIONS
19	Comparison of daily diffuse radiation models in regions of China without solar radiation measurement. Energy, 2020, 191, 116571.	4.5	39
20	Prediction of embodied carbon emissions from residential buildings with different structural forms. Sustainable Cities and Society, 2020, 54, 101946.	5.1	36
21	Thermal comfort and physiological responses with standing and treadmill workstations in summer. Building and Environment, 2020, 185, 107238.	3.0	19
22	Solar radiation zoning and daily global radiation models for regions with only surface meteorological measurements in China. Energy Conversion and Management, 2020, 225, 113447.	4.4	21
23	A new method for calculating the embodied carbon emissions from buildings in schematic design: Taking "building element―as basic unit. Building and Environment, 2020, 185, 107306.	3.0	40
24	Effects of external insulation component on thermal performance of a Trombe wall with phase change materials. Solar Energy, 2020, 204, 115-133.	2.9	43
25	Experimental Investigation of PCM Wallboard in Artificial Controlled Environment with Different Climate Conditions. Environmental Science and Engineering, 2020, , 107-115.	0.1	0
26	Urban heat island effects of various urban morphologies under regional climate conditions. Science of the Total Environment, 2020, 743, 140589.	3.9	87
27	Micro-/macro-level optimization of phase change material panel in building envelope. Energy, 2020, 195, 116932.	4.5	27
28	Building climate zoning in China using supervised classification-based machine learning. Building and Environment, 2020, 171, 106663.	3.0	39
29	The coupled effect of temperature, humidity, and air movement on human thermal response in hot–humid and hot–arid climates in summer in China. Building and Environment, 2020, 177, 106898.	3.0	32
30	Using machine learning algorithms to predict occupants' thermal comfort in naturally ventilated residential buildings. Energy and Buildings, 2020, 217, 109937.	3.1	65
31	A new approach to develop a climate classification for building energy efficiency addressing Chinese climate characteristics. Energy, 2020, 195, 116982.	4.5	35
32	A Quantitative Process-Based Inventory Study on Material Embodied Carbon Emissions of Residential, Office, and Commercial Buildings in China. Journal of Thermal Science, 2019, 28, 1236-1251.	0.9	30
33	Using personally controlled air movement to improve comfort after simulated summer commute. Building and Environment, 2019, 165, 106329.	3.0	26
34	Difference in the thermal response of the occupants living in northern and southern China. Energy and Buildings, 2019, 204, 109475.	3.1	16
35	Reduced-scale experiments on the thermal performance of phase change material wallboard in different climate conditions. Building and Environment, 2019, 160, 106191.	3.0	30
36	Transient human thermophysiological and comfort responses indoors after simulated summer commutes. Building and Environment, 2019, 157, 257-267.	3.0	44

#	Article	IF	CITATIONS
37	Applicability of different energy efficiency calculation methods of residential buildings in severe cold and cold zones of China. IOP Conference Series: Earth and Environmental Science, 2019, 238, 012029.	0.2	1
38	Optimization of phase change material component and its application in buildings. Journal of Physics: Conference Series, 2019, 1369, 012014.	0.3	0
39	Hygrothermal properties of compressed earthen bricks. Construction and Building Materials, 2018, 162, 576-583.	3.2	48
40	A novel building energy efficiency evaluation index: Establishment of calculation model and application. Energy Conversion and Management, 2018, 166, 522-533.	4.4	53
41	Review of adaptive thermal comfort models in built environmental regulatory documents. Building and Environment, 2018, 137, 73-89.	3.0	175
42	Indirect calorimetry on the metabolic rate of sitting, standing and walking office activities. Building and Environment, 2018, 145, 77-84.	3.0	57
43	Preferred temperature with standing and treadmill workstations. Building and Environment, 2018, 138, 63-73.	3.0	28
44	Development of the ASHRAE Global Thermal Comfort Database II. Building and Environment, 2018, 142, 502-512.	3.0	279
45	A kind of PCMs-based lightweight wallboards: Artificial controlled condition experiments and thermal design method investigation. Building and Environment, 2018, 144, 194-207.	3.0	49
46	Thermal adaptive models in the residential buildings in different climate zones of Eastern China. Energy and Buildings, 2017, 141, 28-38.	3.1	72
47	A porous building approach for modelling flow and heat transfer around and inside an isolated building on night ventilation and thermal mass. Energy, 2017, 141, 1914-1927.	4.5	28
48	Thermal conductivity of cement stabilized earth blocks. Construction and Building Materials, 2017, 151, 504-511.	3.2	85
49	Annual energy saving potential for integrated application of phase change envelopes and HVAC in Western China. Procedia Engineering, 2017, 205, 2470-2477.	1.2	10
50	The Impacts of Energy Efficiency Design Parameters on Office Buildings Energy Consumption in Different Climate Zones in China. Procedia Engineering, 2017, 205, 2478-2484.	1.2	6
51	Analysis of behaviour patterns and thermal responses to a hot–arid climate in rural China. Journal of Thermal Biology, 2016, 59, 92-102.	1.1	32
52	Influence of outdoor temperature on the indoor environment and thermal adaptation in Chinese residential buildings during the heating season. Energy and Buildings, 2016, 116, 133-140.	3.1	44
53	Embodied carbon emissions of office building: A case study of China's 78 office buildings. Building and Environment, 2016, 95, 365-371.	3.0	106
54	Levels of Adaptation in Dry-Hot and Dry-Cold Climate Zone and its Implications in Evaluation for Indoor Thermal Environment. Procedia Engineering, 2015, 121, 143-150.	1.2	2

1

#	Article	IF	CITATIONS
55	Analysis on Human Adaptive Levels in Different Kinds of Indoor Thermal Environment. Procedia Engineering, 2015, 121, 151-157.	1.2	12
56	Thermal Adaptive Models in Built Environment and Its Energy Implications in Eastern China. Energy Procedia, 2015, 75, 1413-1418.	1.8	16
57	Thermal comfort and building energy consumption implications – A review. Applied Energy, 2014, 115, 164-173.	5.1	962
58	Residential thermal environment in cold climates at high altitudes and building energy use implications. Energy and Buildings, 2013, 62, 139-145.	3.1	64
59	Zero energy buildings and sustainable development implications – A review. Energy, 2013, 54, 1-10.	4.5	415
60	Impact of climate change on energy use in the built environment in different climate zones – A review. Energy, 2012, 42, 103-112.	4.5	276
61	A new method to develop typical weather years in different climates for building energy use studies. Energy, 2011, 36, 6121-6129.	4.5	63
62	Climate classifications and building energy use implications in China. Energy and Buildings, 2010, 42, 1463-1471.	3.1	51
63	Energy performance of building envelopes in different climate zones in China. Applied Energy, 2008, 85, 800-817.	5.1	190
64	Climatic influences on solar modelling in China. Renewable Energy, 2008, 33, 1591-1604.	4.3	25
65	An analysis of thermal and solar zone radiation models using an Angstrom–Prescott equation and artificial neural networks. Energy, 2008, 33, 1115-1127.	4.5	45
66	Building energy efficiency in different climates. Energy Conversion and Management, 2008, 49, 2354-2366.	4.4	134
67	Sensitivity analysis and energy conservation measures implications. Energy Conversion and Management, 2008, 49, 3170-3177.	4.4	124
68	Analysis of typical meteorological years in different climates of China. Energy Conversion and Management, 2007, 48, 654-668.	4.4	60
69	Climate classification and passive solar design implications in China. Energy Conversion and Management, 2007, 48, 2006-2015.	4.4	60
70	Development of passive design zones in China using bioclimatic approach. Energy Conversion and Management, 2006, 47, 746-762.	4.4	90
71	Bioclimatic Building Designs for Different Climates in China. Architectural Science Review, 2005, 48, 187-194.	1.1	20

72 Building Envelope with Phase Change Materials. , 0, , .