Shuangning Xiu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7328004/publications.pdf

Version: 2024-02-01

567281 610901 1,644 27 15 24 citations h-index g-index papers 27 27 27 2229 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Bio-oil production and upgrading research: A review. Renewable and Sustainable Energy Reviews, 2012, 16, 4406-4414.	16.4	847
2	Hydrothermal pyrolysis of swine manure to bio-oil: Effects of operating parameters on products yield and characterization of bio-oil. Journal of Analytical and Applied Pyrolysis, 2010, 88, 73-79.	5.5	171
3	Investigation of Ni/Fe/Mg zeolite-supported catalysts in steam reforming of tar using simulated-toluene as model compound. Fuel, 2018, 211, 566-571.	6.4	94
4	Effectiveness and mechanisms of crude glycerol on the biofuel production from swine manure through hydrothermal pyrolysis. Journal of Analytical and Applied Pyrolysis, 2010, 87, 194-198.	5.5	57
5	Characterization, Modification and Application of Biochar for Energy Storage and Catalysis: A Review. Trends in Renewable Energy, 2017, 3, 86-101.	0.3	56
6	Enhanced bio-oil production from swine manure co-liquefaction with crude glycerol. Energy Conversion and Management, 2011, 52, 1004-1009.	9.2	47
7	Techno-economic analysis for the biochemical conversion of Miscanthus x giganteus into bioethanol. Biomass and Bioenergy, 2017, 98, 85-94.	5.7	45
8	Swine manure/Crude glycerol co-liquefaction: Physical properties and chemical analysis of bio-oil product. Bioresource Technology, 2011, 102, 1928-1932.	9.6	44
9	Catalytic cracking of crude bio-oil from glycerol-assisted liquefaction of swine manure. Energy Conversion and Management, 2014, 87, 378-384.	9.2	40
10	Development of Green Biorefinery for Biomass Utilization: A Review. Trends in Renewable Energy, 2015, , 4-15.	0.3	37
11	Co-liquefaction of swine manure and crude glycerol to bio-oil: Model compound studies and reaction pathways. Bioresource Technology, 2012, 104, 783-787.	9.6	35
12	Characterization of the physical and chemical properties of the distillate fractions of crude bio-oil produced by the glycerol-assisted liquefaction of swine manure. Fuel, 2014, 130, 251-256.	6.4	34
13	Effects of fertilizer application and dry/wet processing of Miscanthus x giganteus on bioethanol production. Bioresource Technology, 2016, 204, 98-105.	9.6	23
14	Green biorefinery of fresh cattail for microalgal culture and ethanol production. Bioresource Technology, 2015, 185, 436-440.	9.6	21
15	Uses of miscanthus press juice within a green biorefinery platform. Bioresource Technology, 2016, 207, 285-292.	9.6	15
16	Combustion characteristics of bio-oil from swine manure/crude glycerol co-liquefaction by thermogravimetric analysis technology. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2016, 38, 2250-2257.	2.3	13
17	Co-liquefaction of swine manure with waste vegetable oil for enhanced bio-oil production. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2016, 38, 459-465.	2.3	12
18	Liquid Hot Water Pretreatment of Miscanthus X giganteus for the Sustainable Production of Bioethanol. BioResources, 2015, 10 , .	1.0	12

#	Article	IF	CITATIONS
19	Validation of kinetic parameter values for prediction of pyrolysis behaviour of corn stalks in a horizontal entrained-flow reactor. Biosystems Engineering, 2008, 100, 79-85.	4.3	10
20	Green Biorefinery of Giant Miscanthus for Growing Microalgae and Biofuel Production. Fermentation, 2017, 3, 66.	3.0	9
21	Low thermal conductivity carbon material from electrospinning and subsequent chemical activation. Carbon Letters, 2020, 30, 289-296.	5.9	7
22	Biorefinery Processes for Biomass Conversion to Liquid Fuel., 0, , .		5
23	Characterization of Solid Residues Obtained from Supercritical Ethanol Liquefaction of Swine Manure. American Journal of Engineering and Applied Sciences, 2015, 8, 465-470.	0.6	5
24	Production of Biochar Based Porous Carbon Nanofibers for High-Performance Supercapacitor Applications. Trends in Renewable Energy, 2019, 5, 151-164.	0.3	4
25	Development of fluorine-intercalated biochar material for radiation shielding. Journal of Analytical and Applied Pyrolysis, 2021, 155, 105038.	5.5	1
26	Thermogravimetric Characterization of Bio-oil from Swine manure/Crude glycerol Co-lique faction as Combustion Feedstock. , $2011,\ldots$		0
27	Separate Hydrolysis and Fermentation of Untreated and Pretreated Alfalfa Cake to Produce Ethanol. , 2016, , 233-240.		0