Abdelmottaleb Ouederni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7327541/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fast Production of Activated Carbon from Pomegranate Peels by Combining Microwave Heating and Phosphoric Acid Activation for Paracetamol Adsorption. Environmental Engineering Science, 2022, 39, 441-452.	0.8	4
2	From pomegranate peels waste to one-step alkaline carbonate activated carbons. Prospect as sustainable adsorbent for the renewable energy production. Journal of Environmental Chemical Engineering, 2022, 10, 107010.	3.3	23
3	Adsorption/ Regeneration Coupling Process Using Ozone on Cobalt Supported on Activated Carbon for Nitrobenzene Degradation. Ozone: Science and Engineering, 2021, 43, 32-47.	1.4	2
4	Towards a more efficient Hydrothermal Carbonization: Processing water recirculation under different conditions. Waste Management, 2021, 132, 115-123.	3.7	17
5	BIOSORPTION OF LEAD HEAVY METAL ON PRICKLY PEAR CACTUS BIOMATERIAL: KINETIC, THERMODYNAMIC AND REGENERATION STUDIES. Cellulose Chemistry and Technology, 2021, 55, 919-932.	0.5	5
6	Thermal behaviour of impregnated olive stones with phosphoric acid via TGA-MS. Comptes Rendus Chimie, 2021, 24, 149-162.	0.2	3
7	Pine cone pyrolysis: Optimization of temperature for energy recovery. Environmental Progress and Sustainable Energy, 2020, 39, 13272.	1.3	16
8	Hydrogen sulfide removal from the waste gas of phosphoric acid plant. Environmental Progress and Sustainable Energy, 2020, 39, 13304.	1.3	3
9	Oxygen-promoted hydrogen adsorption on activated and hybrid carbon materials. International Journal of Hydrogen Energy, 2020, 45, 30767-30782.	3.8	25
10	Hydrothermal carbonization as a preliminary step to pine cone pyrolysis for bioenergy production. Comptes Rendus Chimie, 2020, 23, 607-621.	0.2	3
11	Catalytic and photocatalytic ozonation with activated carbon as technologies in the removal of aqueous micropollutants. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 382, 111961.	2.0	16
12	Clopyralid degradation using solar-photocatalytic/ozone process with olive stone activated carbon. Journal of Environmental Chemical Engineering, 2019, 7, 102900.	3.3	14
13	Removal of aqueous Clopyralid by Photoctalytic-ozonation process on Activated carbon under solar radiation: Catalyst characterization and kinetic study. E3S Web of Conferences, 2019, 95, 02005.	0.2	0
14	Elaboration of porous carbon/nickel nanocomposites for selective gas storage. Solid State Sciences, 2019, 93, 37-43.	1.5	8
15	Foam and granular olive stone-derived activated carbons for NO2 filtration from indoor air. Journal of Environmental Chemical Engineering, 2019, 7, 103005.	3.3	11
16	Combined Effect of Spirulina Platensis and Punica Granatum Peel Extacts: Phytochemical Content and Antiphytophatogenic Activity. Applied Sciences (Switzerland), 2019, 9, 5475.	1.3	23
17	Synergism between non-thermal plasma and photocatalysis: Implicationsin the post discharge of ozone at a pilot scale in a catalytic fixed-bed reactor. Applied Catalysis B: Environmental, 2019, 241, 227-235.	10.8	37
18	Pyrolysis technologies for pomegranate (Punica granatum L.) peel wastes. Prospects in the bioenergy sector. Renewable Energy, 2019, 136, 373-382.	4.3	35

#	Article	IF	CITATIONS
19	An Optimization Study of Cobalt Supported on Activated Carbon for the Catalytic Ozonation of Oxalic Acid: Effect of Operating Parameters and Synergetic Combination. Ozone: Science and Engineering, 2019, 41, 274-285.	1.4	6
20	Pomegranate Peels Activated Carbon by Phosphoric Acid Activation: Preparation, Characterization and Evaluation of Adsorptive Properties. Journal of Engineering and Applied Sciences, 2019, 14, 6731-6741.	0.2	6
21	Optimization of extraction process and chemical characterization of pomegranate peel extract. Chemical Papers, 2018, 72, 2087-2100.	1.0	27
22	CO2 Adsorption on Activated Carbon Based Olive Stone: A Comparison of Langmuir and Freundlich Models. Advances in Science, Technology and Innovation, 2018, , 1099-1100.	0.2	1
23	Abatement of ammonia and butyraldehyde under non-thermal plasma and photocatalysis: Oxidation processes for the removal of mixture pollutants at pilot scale. Chemical Engineering Journal, 2018, 344, 165-172.	6.6	55
24	How the activation process modifies the hydrogen storage behavior of biomass-derived activated carbons. Journal of Porous Materials, 2018, 25, 221-234.	1.3	21
25	The severity factor as a useful tool for producing hydrochars and derived carbon materials. Environmental Science and Pollution Research, 2018, 25, 1497-1507.	2.7	13
26	Factors Influencing NO2 Adsorption/Reduction on Microporous Activated Carbon: Porosity vs. Surface Chemistry. Materials, 2018, 11, 622.	1.3	16
27	Study of methane and carbon dioxide adsorption capacity by synthetic nanoporous carbon based on pyrogallol-formaldehyde. International Journal of Hydrogen Energy, 2017, 42, 8905-8913.	3.8	17
28	Evaluation of activated carbons based on olive stones as catalysts during hydrogen production by thermocatalytic decomposition of methane. International Journal of Hydrogen Energy, 2017, 42, 8712-8720.	3.8	25
29	Toward sustainable hydrogen storage and carbon dioxide capture in post-combustion conditions. Journal of Environmental Chemical Engineering, 2017, 5, 1628-1637.	3.3	19
30	Study of synergetic effect, catalytic poisoning and regeneration using dielectric barrier discharge and photocatalysis in a continuous reactor: Abatement of pollutants in air mixture system. Applied Catalysis B: Environmental, 2017, 213, 53-61.	10.8	64
31	Nitrobenzene degradation in aqueous solution using ozone/cobalt supported activated carbon coupling process: A kinetic approach. Separation and Purification Technology, 2017, 184, 308-318.	3.9	39
32	Comments on "Comments on †Characterization and adsorption capacity of raw pomegranate peel biosorbent for copper removal'― Journal of Cleaner Production, 2017, 154, 269-275.	4.6	2
33	Pyrolysis of Olive Pomace: Degradation Kinetics, Gaseous Analysis and Char Characterization. Waste and Biomass Valorization, 2017, 8, 1689-1697.	1.8	35
34	Simultaneous adsorption behavior of heavy metals onto microporous olive stones activated carbon: analysis of metal interactions. Euro-Mediterranean Journal for Environmental Integration, 2017, 2, 1.	0.6	44
35	Functionalized and metal-doped biomass-derived activated carbons for energy storage application. Journal of Energy Storage, 2017, 13, 268-276.	3.9	26
36	Ozone Decomposition over Cobalt Supported on Olive Stones Activated Carbon: Effect of Preparation Method on Catalyst Activity. Ozone: Science and Engineering, 2017, 39, 435-446.	1.4	5

#	Article	IF	CITATIONS
37	CO ₂ activation of olive bagasse for hydrogen storage. Environmental Progress and Sustainable Energy, 2017, 36, 315-324.	1.3	17
38	High added-value products from the hydrothermal carbonisation of olive stones. Environmental Science and Pollution Research, 2017, 24, 9859-9869.	2.7	26
39	Characterization and adsorption capacity of raw pomegranate peel biosorbent for copper removal. Journal of Cleaner Production, 2017, 142, 3809-3821.	4.6	264
40	Effects of nitrogen plasma treatment on the surface characteristics of olive stone-based activated carbon. Environmental Technology (United Kingdom), 2017, 38, 956-966.	1.2	10
41	Amoxicillin removal from aqueous solution using activated carbon prepared by chemical activation of olive stone. Environmental Science and Pollution Research, 2017, 24, 9993-10004.	2.7	86
42	The Potential of Activated Carbon Made of Agro-Industrial Residues in NOx Immissions Abatement. Energies, 2017, 10, 1508.	1.6	39
43	Production of activated carbon pellets from olive stones for CO _{2 adsorption. International Journal of Environmental Engineering, 2016, 8, 110.}	0.1	0
44	Optimization of biomass-based carbon materials for hydrogen storage. Journal of Energy Storage, 2016, 5, 77-84.	3.9	43
45	Effect of the both texture and electrical properties of activated carbon on the CO 2 adsorption capacity. Materials Research Bulletin, 2016, 73, 130-139.	2.7	12
46	Improvement of oxygen-containing functional groups on olive stones activated carbon by ozone and nitric acid for heavy metals removal from aqueous phase. Environmental Science and Pollution Research, 2016, 23, 15852-15861.	2.7	49
47	Production of activated carbon pellets from olive stones for CO _{2 adsorption. International Journal of Environmental Engineering, 2016, 8, 110.}	0.1	0
48	Influence of the raw material and nickel oxide on the CH4 capture capacity behaviors of microporous carbon. International Journal of Hydrogen Energy, 2015, 40, 13690-13701.	3.8	20
49	Evaluation of an activated carbon from olive stones used as an adsorbent for heavy metal removal from aqueous phases. Comptes Rendus Chimie, 2015, 18, 88-99.	0.2	136
50	Copper supported on porous activated carbon obtained by wetness impregnation: Effect of preparation conditions on the ozonation catalyst's characteristics. Comptes Rendus Chimie, 2015, 18, 100-109.	0.2	52
51	Competitive adsorption of ibuprofen and amoxicillin mixtures from aqueous solution on activated carbons. Journal of Colloid and Interface Science, 2015, 449, 252-260.	5.0	112
52	Activated carbon prepared by physical activation of olive stones for the removal of NO2 at ambient temperature. Comptes Rendus Chimie, 2015, 18, 63-74.	0.2	103
53	New fuzzy bi-clustering technique applied to the voltage stabilization of an electrical network. Journal of Intelligent and Fuzzy Systems, 2014, 26, 1857-1868.	0.8	2
54	Pomegranate peels as a precursor for activated carbon by phosphoric acid and steam activation:		1

#	Article	IF	CITATIONS
55	Influence of Nitric Acid Concentration on Characteristics of Olive Stone Based Activated Carbon. Chinese Journal of Chemical Engineering, 2013, 21, 1425-1430.	1.7	36
56	High pressure methane adsorption on microporous carbon monoliths prepared by olives stones. Materials Letters, 2013, 99, 184-187.	1.3	31
57	Methane storage on olive stones-based activated carbons under high pressure. , 2012, , .		0
58	Synthesis and characterization of electrical conducting nanoporous carbon structures. Physica B: Condensed Matter, 2007, 395, 104-110.	1.3	30
59	Activated carbon from olive stones by a two step process: influence of production parameters on textural characteristics. European Journal of Control, 2006, 31, 151-167.	1.6	9
60	Adsorption of dyes onto activated carbon prepared from olive stones. Journal of Environmental Sciences, 2005, 17, 998-1003.	3.2	10
61	APPLICATION OF ACTIVATED CARBON PREPARED FROM OLIVE STONES IN THE REMOVAL OF TWO BASIC DYES FROM WATER. Global Journal of Pure and Applied Sciences, 2004, 10, 91.	0.1	0
62	Decomposition of Dissolved Ozone in the Presence of Activated Carbon: An Experimental Study. Ozone: Science and Engineering, 2004, 26, 299-307.	1.4	28
63	Ozone decomposition on glass and silica. Ozone: Science and Engineering, 1996, 18, 385-416.	1.4	21
64	Practical heat transfer model for oxygenâ€fed ozone generators. Ozone: Science and Engineering, 1996, 18, 461-468.	1.4	3
65	Removal of Color and Organic Matter in Industrial Phosphoric Acid by Ozone: Effect on Activated Carbon Treatment. Ozone: Science and Engineering, 1995, 17, 637-645.	1.4	6
66	The Use of the Thermal and Electronic Effect in a Cold Plasma Reactor for Ozone Synthesis. Ozone: Science and Engineering, 1987, 9, 247-258.	1.4	14
67	Ozone Absorption in Water: Mass Transfer and Solubility. Ozone: Science and Engineering, 1987, 9, 1-12.	1.4	27
68	Single and binary adsorption of some heavy metal ions from aqueous solutions by activated carbon derived from olive stones. Desalination and Water Treatment, 0, , 1-7.	1.0	8
69	Treatment of dissolved sulfides in water by combined process using ozone and activated carbon. Desalination and Water Treatment, 0, , 1-8.	1.0	2
70	Removal of dissolved sulfides from synthetic and industrial solutions by activated carbon derived from Tunisian olive stone. Environmental Progress and Sustainable Energy, 0, , e13759.	1.3	1
71	An optimization study of nickel catalyst supported on activated carbon for the 2-nitrophenol catalytic ozonation. , 0, 112, 242-249.		2
72	Olive stones based carbon foam: synthesis, characterization and application on post-combustion CO2 adsorption. Journal of Porous Materials, 0, , 1.	1.3	0