

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7327369/publications.pdf Version: 2024-02-01

Mei Yu

#	Article	IF	CITATIONS
1	Effects of macrophage regulation on fat grafting survival: Improvement, mechanisms, and potential application—A review. Journal of Cosmetic Dermatology, 2022, 21, 54-61.	1.6	4
2	Nucleophosmin3 carried by small extracellular vesicles contribute to white adipose tissue browning. Journal of Nanobiotechnology, 2022, 20, 165.	9.1	7
3	Comparison of two cell-free therapeutics derived from adipose tissue: small extracellular vesicles versus conditioned medium. Stem Cell Research and Therapy, 2022, 13, 86.	5.5	10
4	Diverse RNAs in adipose-derived extracellular vesicles and their therapeutic potential. Molecular Therapy - Nucleic Acids, 2021, 26, 665-677.	5.1	7
5	Preservation of Small Extracellular Vesicle in Gelatin Methacryloyl Hydrogel Through Reduced Particles Aggregation for Therapeutic Applications. International Journal of Nanomedicine, 2021, Volume 16, 7831-7846.	6.7	12
6	<p>Comparison of the Therapeutic Effect of Allogeneic and Xenogeneic Small Extracellular Vesicles in Soft Tissue Repair</p> . International Journal of Nanomedicine, 2020, Volume 15, 6975-6991.	6.7	19
7	Phenotype-related drug sensitivity analysis of single CTCs for medicine evaluation. Chemical Science, 2020, 11, 8895-8900.	7.4	12
8	Identification of Novel Adipokines through Proteomic Profiling of Small Extracellular Vesicles Derived from Adipose Tissue. Journal of Proteome Research, 2020, 19, 3130-3142.	3.7	20
9	Optimizing adipose tissue extract isolation with stirred suspension culture. Connective Tissue Research, 2019, 60, 178-188.	2.3	9
10	Effect of canonical NF-κB signaling pathway on the differentiation of rat dental epithelial stem cells. Stem Cell Research and Therapy, 2019, 10, 139.	5.5	8
11	Recent developments and clinical potential on decellularized adipose tissue. Journal of Biomedical Materials Research - Part A, 2018, 106, 2563-2574.	4.0	19
12	Wnt5a regulates the cell proliferation and adipogenesis via MAPKâ€independent pathway in early stage of obesity. Cell Biology International, 2018, 42, 63-74.	3.0	24
13	GSK3β regulates ameloblast differentiation via Wnt and TGFâ€Î² pathways. Journal of Cellular Physiology, 2018, 233, 5322-5333.	4.1	20
14	Physioxia: a more effective approach for culturing human adipose-derived stem cells for cell transplantation. Stem Cell Research and Therapy, 2018, 9, 148.	5.5	21
15	Treated dentin matrix paste as a novel pulp capping agent for dentin regeneration. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 3428-3436.	2.7	40
16	miR-450a-5p within rat adipose tissue exosome-like vesicles promotes adipogenic differentiation by targeting WISP2. Journal of Cell Science, 2017, 130, 1158-1168.	2.0	78
17	Exosome-Like Vesicles Derived from Adipose Tissue Provide Biochemical Cues for Adipose Tissue Regeneration. Tissue Engineering - Part A, 2017, 23, 1221-1230.	3.1	53
18	Schwann cells secrete extracellular vesicles to promote and maintain the proliferation and multipotency of <scp>hDPC</scp> s. Cell Proliferation, 2017, 50, .	5.3	19

Μει Υυ

#	Article	IF	CITATIONS
19	Metabolic reprogramming by <scp>HIF</scp> â€l activation enhances survivability of human adiposeâ€derived stem cells in ischaemic microenvironments. Cell Proliferation, 2017, 50, .	5.3	38
20	Therapeutic applications of conditioned medium from adipose tissue. Cell Proliferation, 2016, 49, 561-567.	5.3	15
21	Physiological and pathological impact of exosomes of adipose tissue. Cell Proliferation, 2016, 49, 3-13.	5.3	96
22	DNA Demethylation Rescues the Impaired Osteogenic Differentiation Ability of Human Periodontal Ligament Stem Cells in High Glucose. Scientific Reports, 2016, 6, 27447.	3.3	34
23	Disruption of kif3a results in defective osteoblastic differentiation in dental mesenchymal stem/precursor cells via the Wnt signaling pathway. Molecular Medicine Reports, 2016, 14, 1891-1900.	2.4	13
24	Inhibition of Ape1 Redox Activity Promotes Odonto/osteogenic Differentiation of Dental Papilla Cells. Scientific Reports, 2015, 5, 17483.	3.3	15
25	A Therapeutic Strategy for Spinal Cord Defect: Human Dental Follicle Cells Combined with Aligned PCL/PLGA Electrospun Material. BioMed Research International, 2015, 2015, 1-12.	1.9	33
26	Combination of aligned PLGA/Gelatin electrospun sheets, native dental pulp extracellular matrix and treated dentin matrix as substrates for tooth root regeneration. Biomaterials, 2015, 52, 56-70.	11.4	113
27	Comparison of human dental follicle cells and human periodontal ligament cells for dentin tissue regeneration. Regenerative Medicine, 2015, 10, 461-479.	1.7	27
28	CAD based design sensitivity analysis and shape optimization ofÂscaffolds for bio-root regeneration in swine. Biomaterials, 2015, 57, 59-72.	11.4	46
29	Improved Fat Graft Survival by Different Volume Fractions of Platelet-Rich Plasma and Adipose-Derived Stem Cells. Aesthetic Surgery Journal, 2015, 35, 319-333.	1.6	64
30	Comparison of the Odontogenic Differentiation Potential of Dental Follicle, Dental Papilla, and Cranial Neural Crest Cells. Journal of Endodontics, 2015, 41, 1091-1099.	3.1	22
31	Tumorigenicity analysis of heterogeneous dental stem cells and its self-modification for chromosome instability. Cell Cycle, 2015, 14, 3396-3407.	2.6	8
32	Biomechanical analysis and comparison of 12 dental implant systems using 3D finite element study. Computer Methods in Biomechanics and Biomedical Engineering, 2015, 18, 1340-1348.	1.6	18
33	Expression of Nfic during root formation in first mandibular molar of rat. Journal of Molecular Histology, 2014, 45, 619-626.	2.2	14
34	The Potential of Dental Stem Cells Differentiating into Neurogenic Cell Lineage after Cultivation in Different Modes <i>In Vitro</i> . Cellular Reprogramming, 2014, 16, 379-391.	0.9	17
35	Secretory Factors From Rat Adipose Tissue Explants Promote Adipogenesis and Angiogenesis. Artificial Organs, 2014, 38, E33-45.	1.9	24
36	<i>In vitro</i> threeâ€dimensional development of mouse molar tooth germs in a rotary cell culture system. International Journal of Paediatric Dentistry, 2014, 24, 175-183.	1.8	3

Μει Υυ

#	Article	IF	CITATIONS
37	Hertwig's epithelial root sheath cells regulate osteogenic differentiation of dental follicle cells through the Wnt pathway. Bone, 2014, 63, 158-165.	2.9	35
38	TGF-β1 and FGF2 Stimulate the Epithelial-Mesenchymal Transition of HERS Cells Through a MEK-Dependent Mechanism. Journal of Cellular Physiology, 2014, 229, 1647-1659.	4.1	63
39	Cryopreserved dentin matrix as a scaffold material for dentin-pulp tissue regeneration. Biomaterials, 2014, 35, 4929-4939.	11.4	66
40	Expression and roles of syndecan-4 in dental epithelial cell differentiation. International Journal of Molecular Medicine, 2014, 34, 1301-1308.	4.0	8
41	Comparison of Odontogenic Differentiation of Human Dental Follicle Cells and Human Dental Papilla Cells. PLoS ONE, 2013, 8, e62332.	2.5	62
42	Choristoneura fumiferana multiple nucleopolyhedrovirus LEF-3–P143 complex can complement DNA replication and budded virus in an AcMNPV LEF-3–P143 double knockout bacmid. Journal of General Virology, 2012, 93, 383-388.	2.9	8
43	Characterization of an Autographa californica multiple nucleopolyhedrovirus mutant lacking the ac39(p43) gene. Virus Research, 2011, 155, 300-306.	2.2	4
44	Functional analysis of Spodoptera litura nucleopolyhedrovirus p49 gene during Autographa californica nucleopolyhedrovirus infection of SpLi-221 cells. Virus Genes, 2010, 41, 441-449.	1.6	14
45	Identification of a Domain of the Baculovirus <i>Autographa californica</i> Multiple Nucleopolyhedrovirus Single-Strand DNA-Binding Protein LEF-3 Essential for Viral DNA Replication. Journal of Virology, 2010, 84, 6153-6162.	3.4	15
46	Characterization of a baculovirus nuclear localization signal domain in the late expression factor 3 protein. Virology, 2009, 385, 209-217.	2.4	20
47	Autographa californica Multiple Nucleopolyhedrovirus Nucleocapsid Assembly Is Interrupted upon Deletion of the 38K Gene. Journal of Virology, 2006, 80, 11475-11485.	3.4	113
48	Characterization of p24 Gene of Spodoptera litura Multicapsid Nucleopolyhedrovirus. Virus Genes, 2005, 30, 349-356.	1.6	12
49	Identification of the Apoptosis Inhibitor Gene p49 of Spodoptera litura Multicapsid Nucleopolyhedrovirus. Virus Genes, 2005, 31, 145-151.	1.6	16
50	Characterization of gp41 gene of Spodoptera litura multicapsid nucleopolyhedrovirus. Virus Research, 2005, 110, 73-79.	2.2	17
51	Characterization of bro-a Gene of Spodoptera litura Multicapsid Nucleopolyhedrovirus. Virus Genes, 2004, 28, 231-238.	1.6	4