Sonja C Vernes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7326757/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Towards complete and error-free genome assemblies of all vertebrate species. Nature, 2021, 592, 737-746.	27.8	1,139
2	A Functional Genetic Link between Distinct Developmental Language Disorders. New England Journal of Medicine, 2008, 359, 2337-2345.	27.0	626
3	Identification of FOXP2 Truncation as a Novel Cause of Developmental Speech and Language Deficits. American Journal of Human Genetics, 2005, 76, 1074-1080.	6.2	438
4	ldentification of the Transcriptional Targets of FOXP2, a Gene Linked to Speech and Language, in Developing Human Brain. American Journal of Human Genetics, 2007, 81, 1144-1157.	6.2	262
5	Foxp2 Regulates Gene Networks Implicated in Neurite Outgrowth in the Developing Brain. PLoS Genetics, 2011, 7, e1002145.	3.5	256
6	High-Throughput Analysis of Promoter Occupancy Reveals Direct Neural Targets of FOXP2, a Gene Mutated in Speech and Language Disorders. American Journal of Human Genetics, 2007, 81, 1232-1250.	6.2	232
7	Shining a light on CNTNAP2: complex functions to complex disorders. European Journal of Human Genetics, 2014, 22, 171-178.	2.8	219
8	Six reference-quality genomes reveal evolution of bat adaptations. Nature, 2020, 583, 578-584.	27.8	210
9	Bat Biology, Genomes, and the Bat1K Project: To Generate Chromosome-Level Genomes for All Living Bat Species. Annual Review of Animal Biosciences, 2018, 6, 23-46.	7.4	166
10	Functional genetic analysis of mutations implicated in a human speech and language disorder. Human Molecular Genetics, 2006, 15, 3154-3167.	2.9	159
11	The era of reference genomes in conservation genomics. Trends in Ecology and Evolution, 2022, 37, 197-202.	8.7	138
12	Taking turns: bridging the gap between human and animal communication. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20180598.	2.6	106
13	Molecular networks implicated in speech-related disorders: FOXP2 regulates the SRPX2/uPAR complex. Human Molecular Genetics, 2010, 19, 4848-4860.	2.9	103
14	FOXP2 Targets Show Evidence of Positive Selection in European Populations. American Journal of Human Genetics, 2013, 92, 696-706.	6.2	88
15	DNA methylation predicts age and provides insight into exceptional longevity of bats. Nature Communications, 2021, 12, 1615.	12.8	80
16	The Efficacy of Epidermal Growth Factor Receptor–Specific Antibodies against Glioma Xenografts Is Influenced by Receptor Levels, Activation Status, and Heterodimerization. Clinical Cancer Research, 2007, 13, 1911-1925.	7.0	64
17	Characterisation of CASPR2 deficiency disorder - a syndrome involving autism, epilepsy and language impairment. BMC Medical Genetics, 2016, 17, 8.	2.1	61
18	A direct molecular link between the autism candidate gene RORa and the schizophrenia candidate MIR137. Scientific Reports, 2014, 4, 3994.	3.3	50

SONJA C VERNES

#	Article	IF	CITATIONS
19	What bats have to say about speech and language. Psychonomic Bulletin and Review, 2017, 24, 111-117.	2.8	49
20	Vocal learning: a language-relevant trait in need of a broad cross-species approach. Current Opinion in Behavioral Sciences, 2018, 21, 209-215.	3.9	49
21	Understanding Neurodevelopmental Disorders: The Promise of Regulatory Variation in the 3′UTRome. Biological Psychiatry, 2018, 83, 548-557.	1.3	48
22	A Modular Approach to Vocal Learning: Disentangling the Diversity of a Complex Behavioral Trait. Neuron, 2019, 104, 87-99.	8.1	47
23	Genome wide identification of Fruitless targets suggests a role in upregulating genes important for neural circuit formation. Scientific Reports, 2014, 4, 4412.	3.3	41
24	Genetics and the Language Sciences. Annual Review of Linguistics, 2015, 1, 289-310.	2.3	40
25	Largeâ€scale genome sampling reveals unique immunity and metabolic adaptations in bats. Molecular Ecology, 2021, 30, 6449-6467.	3.9	40
26	Assessing the impact of FOXP1 mutations on developmental verbal dyspraxia. European Journal of Human Genetics, 2009, 17, 1354-1358.	2.8	39
27	The DISC1 promoter: characterization and regulation by FOXP2. Human Molecular Genetics, 2012, 21, 2862-2872.	2.9	39
28	Behaviour, biology and evolution of vocal learning in bats. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190061.	4.0	37
29	The multi-dimensional nature of vocal learning. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200236.	4.0	33
30	FOXP2 drives neuronal differentiation by interacting with retinoic acid signaling pathways. Frontiers in Cellular Neuroscience, 2014, 8, 305.	3.7	31
31	Volitional control of social vocalisations and vocal usage learning in bats. Journal of Experimental Biology, 2018, 221, .	1.7	30
32	Mapping the distribution of language related genes <i>FoxP1</i> , <i>FoxP2</i> , and <i>CntnaP2</i> in the brains of vocal learning bat species. Journal of Comparative Neurology, 2018, 526, 1235-1266.	1.6	28
33	Unravelling neurogenetic networks implicated in developmental language disorders. Biochemical Society Transactions, 2009, 37, 1263-1269.	3.4	20
34	Foxp2 loss of function increases striatal direct pathway inhibition via increased GABA release. Brain Structure and Function, 2018, 223, 4211-4226.	2.3	20
35	A chromosomal rearrangement in a child with severe speech and language disorder separates FOXP2 from a functional enhancer. Molecular Cytogenetics, 2015, 8, 69.	0.9	19
36	Mapping of Human FOXP2 Enhancers Reveals Complex Regulation. Frontiers in Molecular Neuroscience, 2018, 11, 47.	2.9	19

SONJA C VERNES

#	Article	IF	CITATIONS
37	A novel approach identifies the first transcriptome networks in bats: a new genetic model for vocal communication. BMC Genomics, 2015, 16, 836.	2.8	18
38	Genome-wide investigation of an ID cohort reveals de novo 3′UTR variants affecting gene expression. Human Genetics, 2018, 137, 717-721.	3.8	18
39	Vocal production learning in the pale spear-nosed bat, <i>Phyllostomus discolor</i> . Biology Letters, 2020, 16, 20190928.	2.3	18
40	Vocal learning in animals and humans. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200234.	4.0	14
41	Hearing sensitivity and amplitude coding in bats are differentially shaped by echolocation calls and social calls. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20202600.	2.6	12
42	Tissue Collection of Bats for -Omics Analyses and Primary Cell Culture. Journal of Visualized Experiments, 2019, , .	0.3	10
43	The Vocal Repertoire of Pale Spear-Nosed Bats in a Social Roosting Context. Frontiers in Ecology and Evolution, 2019, 7, .	2.2	10
44	The vocal development of the pale spear-nosed bat is dependent on auditory feedback. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200253.	4.0	9
45	Contradictory Phylogenetic Signals in the Laurasiatheria Anomaly Zone. Genes, 2022, 13, 766.	2.4	7
46	Early developmental gene enhancers affect subcortical volumes in the adult human brain. Human Brain Mapping, 2016, 37, 1788-1800.	3.6	6
47	Retinoic Acid Signaling: A New Piece in the Spoken Language Puzzle. Frontiers in Psychology, 2015, 6, 1816.	2.1	5
48	Hyperkinetic stereotyped movements in a boy with biallelic CNTNAP2 variants. Italian Journal of Pediatrics, 2021, 47, 208.	2.6	5
49	Neuroanatomy of the grey seal brain: bringing pinnipeds into the neurobiological study of vocal learning. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200252.	4.0	4
50	Genetic Pathways Implicated in Speech and Language. , 2013, , 13-40.		4
51	Functional Genomic Dissection of Speech and Language Disorders. Advances in Neurobiology, 2011, , 253-278.	1.8	1