Shadpour Mallakpour

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7326379/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Worldwide fight against COVID-19 using nanotechnology, polymer science, and 3D printing technology. Polymer Bulletin, 2023, 80, 165-183.	1.7	12
2	Potential of tragacanth gum in the industries: a short journey from past to the future. Polymer Bulletin, 2023, 80, 4643-4662.	1.7	5
3	Novel methodologies and materials for facile fabrication of nanofiltration membranes. Emergent Materials, 2022, 5, 1263-1288.	3.2	5
4	Alginate/TiO2@LDH microspheres: A promising bioactive scaffold with cytocompatibility and antibacterial activity. Ceramics International, 2022, 48, 2045-2057.	2.3	4
5	Nanofiltration membranes for food and pharmaceutical industries. Emergent Materials, 2022, 5, 1329-1343.	3.2	11
6	Application of MOF materials as drug delivery systems for cancer therapy and dermal treatment. Coordination Chemistry Reviews, 2022, 451, 214262.	9.5	253
7	A new trend of using poly(vinyl alcohol) in 3D and 4D printing technologies: Process and applications. Advances in Colloid and Interface Science, 2022, 301, 102605.	7.0	23
8	Antibacterial nanocomposite films based on Poly(vinyl alcohol)/TiO2-Folic acid: Study of physicochemical, optical, and thermal characteristics. Materials Chemistry and Physics, 2022, 281, 125809.	2.0	5
9	Development of sodium alginate-pectin/TiO2 nanocomposites: Antibacterial and bioactivity investigations. Carbohydrate Polymers, 2022, 285, 119226.	5.1	20
10	Removal of the Anionic Dye Congo Red from an Aqueous Solution Using a Crosslinked Poly(vinyl) Tj ETQq0 0 (D rgBT /Over	lock 10 Tf 50
10	Linear Forms of Isotherms and Kinetics. Langmuir, 2022, 38, 4065-4076.	1.6	8
11	Optimization of chitosan/tannic acid@ ZnFe layered double hydroxide bionanocomposite film for removal of reactive blue 4 using a response surface methodology. International Journal of Biological Macromolecules, 2022, 209, 747-762.	3.6	11
12	Fabrication of air filters with advanced filtration performance for removal of viral aerosols and control the spread of COVID-19. Advances in Colloid and Interface Science, 2022, 303, 102653.	7.0	28
13	Single-Atoms on Covalent or Metal–Organic Frameworks: Current Findings and Perspectives for Pollutants Abatement, Hydrogen Evolution, and Reduction of CO2. Topics in Current Chemistry, 2022, 380, 7.	3.0	5
14	Environmental applications of MnO2 nanocrystals and their derivatives: from lab to real-time utilization. , 2022, , 135-150.		0
15	Recent progress in the wastewater sanitization from pollutants using sponges. , 2022, , 425-461.		0
16	Physicochemical inspection and in vitro bioactivity behavior of bio-nanocomposite alginate hydrogels filled by magnesium fluoro-hydroxyapatite. Polymer Bulletin, 2021, 78, 359-375.	1.7	6
17	Green and plant-based adsorbent from tragacanth gum and carboxyl-functionalized carbon nanotube hydrogel bionanocomposite for the super removal of methylene blue dye. International Journal of Biological Macromolecules, 2021, 166, 722-729.	3.6	41
18	Recent progress in hybrid nanocomposites containing chitosan/metal oxide as innovative adsorbents for water remediation. , 2021, , 437-454.		0

Shadpour Mallakpour

#	Article	IF	CITATIONS
19	Application of gum polysaccharide nanocomposites in the removal of industrial organic and inorganic pollutants. , 2021, , 503-528.		6
20	Fight against COVID-19 pandemic with the help of carbon-based nanomaterials. New Journal of Chemistry, 2021, 45, 8832-8846.	1.4	22
21	Waste-mediated synthesis of polymer nanocomposites and assessment of their industrial potential exploitations. , 2021, , 147-167.		2
22	Utilization of starch and starch/carbonaceous nanocomposites for removal of pollutants from wastewater. , 2021, , 477-502.		1
23	Bionanocomposites Derived from Polysaccharides: Green Fabrication and Applications. Advances in Science, Technology and Innovation, 2021, , 193-214.	0.2	0
24	Metal–organic frameworks/biopolymer nanocomposites: from fundamentals toward recent applications in modern technology. New Journal of Chemistry, 2021, 45, 8409-8426.	1.4	14
25	Current achievements in 3D bioprinting technology of chitosan and its hybrids. New Journal of Chemistry, 2021, 45, 10565-10576.	1.4	12
26	MOF/COF-based materials using 3D printing technology: applications in water treatment, gas removal, biomedical, and electronic industries. New Journal of Chemistry, 2021, 45, 13247-13257.	1.4	29
27	Natural polymer–based organic–inorganic hybrid nanosorbents. , 2021, , 159-193.		1
28	Metal Oxides and Biopolymer/Metal Oxides Bionanocomposites as Green Nanomaterials for Heavy Metal Ions Removal. Environmental Chemistry for A Sustainable World, 2021, , 55-95.	0.3	0
29	Polymer nanocomposites based on alginate and their blends for remediation of pollutants from wastewater. , 2021, , 307-332.		0
30	Current development in poly(vinyl alcohol) nanocomposites for heavy metal ions removal. , 2021, , 455-476.		0
31	A journey to the world of fascinating ZnO nanocomposites made of chitosan, starch, cellulose, and other biopolymers: Progress in recent achievements in eco-friendly food packaging, biomedical, and water remediation technologies. International Journal of Biological Macromolecules, 2021, 170, 201716	3.6	33
32	Hydroxyapatite mineralization of chitosan-tragacanth blend/ZnO/Ag nanocomposite films with enhanced antibacterial activity. International Journal of Biological Macromolecules, 2021, 175, 330-340.	3.6	24
33	Adsorption of Methyl Orange from Aqueous Solution Using PVOH Composite Films Cross-Linked by Glutaraldehyde and Reinforced with Modified α-MnO ₂ . Langmuir, 2021, 37, 5151-5160.	1.6	7
34	Polycaprolactone/ZnO-folic acid nanocomposite films: Fabrication, characterization, in-vitro bioactivity, and antibacterial assessment. Materials Chemistry and Physics, 2021, 263, 124378.	2.0	10
35	Adsorptive performance of alginate/carbon nanotube-carbon dot-magnesium fluorohydroxyapatite hydrogel for methylene blue-contaminated water. Journal of Environmental Chemical Engineering, 2021, 9, 105170.	3.3	31
36	Sustainable plant and microbes-mediated preparation of Fe3O4 nanoparticles and industrial application of its chitosan, starch, cellulose, and dextrin-based nanocomposites as catalysts. International Journal of Biological Macromolecules, 2021, 179, 429-447.	3.6	22

#	Article	IF	CITATIONS
37	Recent advancements in 3D bioprinting technology of carboxymethyl cellulose-based hydrogels: Utilization in tissue engineering. Advances in Colloid and Interface Science, 2021, 292, 102415.	7.0	52
38	Current advances on polymer-layered double hydroxides/metal oxides nanocomposites and bionanocomposites: Fabrications and applications in the textile industry and nanofibers. Applied Clay Science, 2021, 206, 106054.	2.6	31
39	Methylene blue contaminated water sanitization with alginate/compact discs waste-derived activated carbon composite beads: Adsorption studies. International Journal of Biological Macromolecules, 2021, 180, 28-35.	3.6	15
40	State-of-the-art of 3D printing technology of alginate-based hydrogels—An emerging technique for industrial applications. Advances in Colloid and Interface Science, 2021, 293, 102436.	7.0	79
41	Protection, disinfection, and immunization for healthcare during the COVID-19 pandemic: Role of natural and synthetic macromolecules. Science of the Total Environment, 2021, 776, 145989.	3.9	27
42	Chitosan, alginate, hyaluronic acid, gums, and β-glucan as potent adjuvants and vaccine delivery systems for viral threats including SARS-CoV-2: A review. International Journal of Biological Macromolecules, 2021, 182, 1931-1940.	3.6	41
43	Tragacanth gum mediated green fabrication of mesoporous titania nanomaterials: Application in photocatalytic degradation of crystal violet. Journal of Environmental Management, 2021, 291, 112680.	3.8	13
44	Polyurethane sponge modified by alginate and activated carbon with abilities of oil absorption, and selective cationic and anionic dyes clean-up. Journal of Cleaner Production, 2021, 312, 127513.	4.6	27
45	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e967" altimg="si55.svg"> <mml:msup><mml:mrow /><mml:mrow>2<mml:mo>+</mml:mo></mml:mrow></mml:mrow </mml:msup> : Study of isotherm, kinetic models, and phenomenology. Environmental Technology and Innovation.	3.0	7
46	2021, 23, 101723. 3D and 4D printing: From innovation to evolution. Advances in Colloid and Interface Science, 2021, 294, 102482.	7.0	48
47	Effective adsorption of methylene blue dye from water solution using renewable natural hydrogel bionanocomposite based on tragacanth gum: Linear-nonlinear calculations. International Journal of Biological Macromolecules, 2021, 187, 319-324.	3.6	14
48	Sawdust, a versatile, inexpensive, readily available bio-waste: From mother earth to valuable materials for sustainable remediation technologies. Advances in Colloid and Interface Science, 2021, 295, 102492.	7.0	31
49	MXenes-based materials: Structure, synthesis, and various applications. Ceramics International, 2021, 47, 26585-26597.	2.3	22
50	Recent breakthroughs of antibacterial and antiviral protective polymeric materials during COVID-19 pandemic and after pandemic: Coating, packaging, and textile applications. Current Opinion in Colloid and Interface Science, 2021, 55, 101480.	3.4	54
51	The latest strategies in the fight against the COVID-19 pandemic: the role of metal and metal oxide nanoparticles. New Journal of Chemistry, 2021, 45, 6167-6179.	1.4	38
52	Emerging new-generation hybrids based on covalent organic frameworks for industrial applications. New Journal of Chemistry, 2021, 45, 7014-7046.	1.4	16
53	Green synthesis of nano-Al ₂ O ₃ , recent functionalization, and fabrication of synthetic or natural polymer nanocomposites: various technological applications. New Journal of Chemistry, 2021, 45, 4885-4920.	1.4	10
54	Polymer/layered double hydroxide nanocomposites: Modern industrial applications. , 2021, , 325-355.		0

#	Article	IF	CITATIONS
55	Microwave-assisted synthesis of chiral polymeric materials: Properties and applications. , 2021, , 679-694.		0
56	Chitosan/carbon nanotube hybrids: recent progress and achievements for industrial applications. New Journal of Chemistry, 2021, 45, 3756-3777.	1.4	19
57	Recent advancements in synthesis and drug delivery utilization of polysaccharides-based nanocomposites: The important role of nanoparticles and layered double hydroxides. International Journal of Biological Macromolecules, 2021, 193, 183-204.	3.6	20
58	Applications of Selectfluor for the Oxidation of Sulfides, Urazoles and Alcohols Under the Solvent-free Conditions. Current Organocatalysis, 2021, 8, 211-216.	0.3	5
59	An eco-friendly method for the preparation of poly(N-vinyl-2-pyrrolidone)–poly(vinyl alcohol) blend nanocomposite films containing vitamin B1-modified silica nanoparticles to enhance thermal and wettability properties. Polymer Bulletin, 2020, 77, 1489-1502.	1.7	4
60	Fabrication technologies of layered double hydroxide polymer nanocomposites. , 2020, , 103-155.		7
61	Microscopic characterization techniques for layered double hydroxide polymer nanocomposites. , 2020, , 157-203.		0
62	Spectroscopic characterization techniques for layered double hydroxide polymer nanocomposites. , 2020, , 231-280.		7
63	Polymer layered double hydroxide hybrid nanocomposites. , 2020, , 531-564.		1
64	Electrical and electronic applications of layered double-hydroxide polymer nanocomposites. , 2020, , 565-597.		2
65	Applications of layered double hydroxide biopolymer nanocomposites. , 2020, , 599-676.		2
66	Layered double hydroxide polymer nanocomposites for water purification. , 2020, , 781-803.		6
67	Layered double hydroxide polymer nanocomposites for catalysis. , 2020, , 805-834.		3
68	Preparation, characterization, and in vitro bioactivity study of glutaraldehyde crosslinked chitosan/poly(vinyl alcohol)/ascorbic acid-MWCNTs bionanocomposites. International Journal of Biological Macromolecules, 2020, 144, 389-402.	3.6	42
69	Recent innovations in functionalized layered double hydroxides: Fabrication, characterization, and industrial applications. Advances in Colloid and Interface Science, 2020, 283, 102216.	7.0	89
70	Production of the ZnO-folic acid nanoparticles and poly(vinyl alcohol) nanocomposites: investigation of morphology, wettability, thermal, and antibacterial properties. Journal of Polymer Research, 2020, 27, 1.	1.2	13
71	Modification of polyurethane sponge with waste compact disc-derived activated carbon and its application in organic solvents/oil sorption. New Journal of Chemistry, 2020, 44, 15609-15616.	1.4	10
72	Environmentally benign production of cupric oxide nanoparticles and various utilizations of their polymeric hybrids in different technologies. Coordination Chemistry Reviews, 2020, 419, 213378.	9.5	60

#	Article	IF	CITATIONS
73	A green strategy toward the preparation of poly(vinyl chloride) nanocomposites reinforced with MnO ₂ @layered double hydroxide nanohybrids as efficient UV shielding materials. New Journal of Chemistry, 2020, 44, 11566-11576.	1.4	6
74	Green fabrication of chitosan/tragacanth gum bionanocomposite films having TiO2@Ag hybrid for bioactivity and antibacterial applications. International Journal of Biological Macromolecules, 2020, 162, 512-522.	3.6	28
75	Design and identification of poly(vinyl chloride)/layered double hydroxide@MnO ₂ nanocomposite films and evaluation of the methyl orange uptake: linear and non-linear isotherm and kinetic adsorption models. New Journal of Chemistry, 2020, 44, 6510-6523.	1.4	16
76	Application of trityl moieties in chemical processes: part I. Journal of the Iranian Chemical Society, 2020, 17, 2737-2843.	1.2	3
77	Sonochemical approach for the synthesis of organo-modified layered double hydroxides and their applications. , 2020, , 257-286.		0
78	Sonochemical protocol for the organo-synthesis of TiO2 and its hybrids: Properties and applications. , 2020, , 287-323.		4
79	Hydroxyapatite mineralization on chitosan-tragacanth gum/silica@silver nanocomposites and their antibacterial activity evaluation. International Journal of Biological Macromolecules, 2020, 151, 909-923.	3.6	32
80	Highly capable and cost-effective chitosan nanocomposite films containing folic acid-functionalized layered double hydroxide and their in vitro bioactivity performance. Materials Chemistry and Physics, 2020, 250, 123044.	2.0	21
81	Green organo-modification of cyclodextrin metal oxide hybrids: Characterization, properties, and applications. , 2020, , 379-406.		0
82	Environmentally sustainable organo-modification of selected metal oxides and their hybrids: Characterization, properties, and utilizations. , 2020, , 351-377.		0
83	Synthesis of alginate/carbon nanotube/carbon dot/fluoroapatite/TiO2 beads for dye photocatalytic degradation under ultraviolet light. Carbohydrate Polymers, 2019, 224, 115138.	5.1	49
84	Structure and properties of nylon-6/amino acid modified nanoclay composite fibers. Journal of the Textile Institute, 2019, 110, 1336-1342.	1.0	6
85	Linear and nonlinear behavior of crosslinked chitosan/N-doped graphene quantum dot nanocomposite films in cadmium cation uptake. Science of the Total Environment, 2019, 690, 1245-1253.	3.9	50
86	Carbon Nanotubes for Dyes Removal. , 2019, , 211-243.		41
87	Tragacanth gum based hydrogel nanocomposites for the adsorption of methylene blue: Comparison of linear and non-linear forms of different adsorption isotherm and kinetics models. International Journal of Biological Macromolecules, 2019, 133, 754-766.	3.6	78
88	Carbon Nanotubes for Heavy Metals Removal. , 2019, , 181-210.		36
89	Using sonochemistry for the production of poly(vinyl alcohol)/MWCNT–vitamin B ₁ nanocomposites: exploration of morphology, thermal and mechanical properties. New Journal of Chemistry, 2019, 43, 7502-7510.	1.4	14
90	Cross-linked poly(vinyl alcohol)/modified α-manganese dioxide composite as an innovative adsorbent for lead(II) ions. Journal of Cleaner Production, 2019, 224, 592-602.	4.6	15

#	Article	IF	CITATIONS
91	An effective, low-cost and recyclable bio-adsorbent having amino acid intercalated LDH@Fe3O4/PVA magnetic nanocomposites for removal of methyl orange from aqueous solution. Applied Clay Science, 2019, 174, 127-137.	2.6	59
92	Poly(vinyl alcohol)/Vitamin C-multi walled carbon nanotubes composites and their applications for removal of methylene blue: Advanced comparison between linear and nonlinear forms of adsorption isotherms and kinetics models. Polymer, 2019, 160, 115-125.	1.8	54
93	Fabrication and characterization of pH-sensitive bio-nanocomposite beads havening folic acid intercalated LDH and chitosan: Drug release and mechanism evaluation. International Journal of Biological Macromolecules, 2019, 122, 157-167.	3.6	35
94	Employment of ultrasonic waves for the preparation of PVA/TiO ₂ â€BSA nanocomposites: Mechanical, thermal, and optical properties. Journal of Applied Polymer Science, 2018, 135, 46558.	1.3	3
95	Synthesis of mesoporous recycled poly(ethylene terephthalate)/MWNT/carbon quantum dot nanocomposite from sustainable materials using ultrasonic waves: Application for methylene blue removal. Journal of Cleaner Production, 2018, 190, 525-537.	4.6	67
96	Capturing Cd ²⁺ ions from wastewater using PVA/α-MnO ₂ –oleic acid nanocomposites. New Journal of Chemistry, 2018, 42, 4297-4307.	1.4	11
97	Application of Vitamin B1-Coated Carbon Nanotubes for the Production of Starch Nanocomposites with Enhanced Structural, Optical, Thermal and Cd(II) Adsorption Properties. Journal of Polymers and the Environment, 2018, 26, 2954-2963.	2.4	7
98	Preparation of polystyrene/MWCNTâ€Valine composites: Investigation of optical, morphological, thermal, and electrical conductivity properties. Polymers for Advanced Technologies, 2018, 29, 1182-1190.	1.6	11
99	Biocompatible and biodegradable Chitosan nanocomposites loaded with carbon nanotubes. , 2018, , 187-221.		28
100	Sonochemical synthesis of PVA/PVP blend nanocomposite containing modified CuO nanoparticles with vitamin B1 and their antibacterial activity against Staphylococcus aureus and Escherichia coli. Ultrasonics Sonochemistry, 2018, 43, 91-100.	3.8	36
101	Citric Acid and Vitamin C as Coupling Agents for the Surface Coating of ZrO2 Nanoparticles and Their Behavior on the Optical, Mechanical, and Thermal Properties of Poly(vinyl alcohol) Nanocomposite Films. Journal of Polymers and the Environment, 2018, 26, 2813-2824.	2.4	16
102	An ultrasonic assisted process for the synthesis of poly(vinyl alcohol)-poly(N -vinyl-2-pyrrolidone) nanocomposites filled with modified nano-Zirconia. Progress in Organic Coatings, 2018, 121, 120-129.	1.9	5
103	Polymer/SiO2 nanocomposites: Production and applications. Progress in Materials Science, 2018, 97, 409-447.	16.0	144
104	Chitosan/CaCO3-silane nanocomposites: Synthesis, characterization, in vitro bioactivity and Cu(II) adsorption properties. International Journal of Biological Macromolecules, 2018, 114, 149-160.	3.6	28
105	The Effects of Poly(amide–imide)/SiO ₂ Nanocomposite Containing <i>N</i> â€Trimellitylimidoâ€ <scp>I</scp> â€Methionine Diacid as a Filler on the Thermal and Morphological Properties of Poly(vinyl pyrrolidone) Composites. Advances in Polymer Technology, 2018, 37, 113-119.	0.8	5
106	Surface Modification of ZrO ₂ Nanoparticles with Biosafe Coupling Agents, Preparation of Poly(vinyl pyrrolidone) Nanocomposites: Optical, Thermal, and Morphological Studies. Advances in Polymer Technology, 2018, 37, 586-595.	0.8	1
107	Evaluation of Nanostructure, optical absorption, and thermal behavior of poly(vinyl alcohol)/poly (<i>N</i> â€vinylâ€2â€pyrrolidone) based nanocomposite films containing coated SiO ₂ nanoparticles with citric acid and <scp>I</scp> (+)â€ascorbic acid. Polymer Composites, 2018, 39, 2012-2018	2.3	5
108	Production and characterization of novel nanocomposites based on poly(amideâ€imide) containing <i>N</i> â€trimellitylimidoâ€ <scp>l</scp> â€alanine diacid and 4,4′â€diaminodiphenylmethan segments reinforced with grafted nanoâ€ZnO by citric acid as a biological ligand. Polymer Composites, 2018, 39, 2394-2402.	2.3	2

#	Article	IF	CITATIONS
109	Preparation and Characterization of Polyvinylpyrrolidone/L-leucine Amino Acid–Modified Montmorillonite/Chiral Diacid–Functionalized Mg-Substituted Fluorapatite Nanocomposites by Ultrasonic-Assisted Rapid Process. Polymer-Plastics Technology and Engineering, 2018, 57, 28-37.	1.9	3
110	Evaluation of ZnO-Vitamin B ₁ Nanoparticles on Bioactivity and Physiochemical Properties of the Polycaprolactone-Based Nanocomposites. Polymer-Plastics Technology and Engineering, 2018, 57, 46-58.	1.9	14
111	Production of bionanocomposites based on poly(vinyl pyrrolidone) using modified TiO2 nanoparticles with citric acid and ascorbic acid and study of their physicochemical properties. Polymer Bulletin, 2018, 75, 1441-1456.	1.7	10
112	Green Synthesis of Amino Acid Functionalized Multi-walled Carbon Nanotubes/Poly(amide–imide) Based on N-Trimellitylimido-S-valine Nanocomposites by Sonochemical Technique. Journal of Polymers and the Environment, 2018, 26, 1635-1641.	2.4	2
113	Ultrasonic-assisted fabrication of starch/MWCNT-glucose nanocomposites for drug delivery. Ultrasonics Sonochemistry, 2018, 40, 402-409.	3.8	71
114	Ultrasonication synthesis of PVA/PVP/α-MnO2-stearic acid blend nanocomposites for adsorbing CdII ion. Ultrasonics Sonochemistry, 2018, 40, 410-418.	3.8	34
115	Novel poly(vinyl chloride) nanocomposite films containing α-Al2O3 nanoparticles capped with vitamin B1: preparation, morphological, and thermal characterization. Polymer Bulletin, 2018, 75, 1895-1914.	1.7	4
116	Surface modified SiO2 nanoparticles by thiamine and ultrasonication synthesis of PCL/SiO2-VB1 NCs: Morphology, thermal, mechanical and bioactivity investigations. Ultrasonics Sonochemistry, 2018, 41, 527-537.	3.8	28
117	Ultrasonic-assisted manufacturing of new hydrogel nanocomposite biosorbent containing calcium carbonate nanoparticles and tragacanth gum for removal of heavy metal. Ultrasonics Sonochemistry, 2018, 41, 572-581.	3.8	61
118	Employment of ultrasonic irradiation for production of poly(vinyl pyrrolidone)/modified alpha manganese dioxide nanocomposites: Morphology, thermal and optical characterization. Ultrasonics Sonochemistry, 2018, 41, 163-171.	3.8	5
119	Ultrasound-assisted surface treatment of ZrO2 with BSA and incorporating in PVC to improve the properties of the obtained nanocomposites: Fabrication and characterization. Ultrasonics Sonochemistry, 2018, 41, 350-360.	3.8	9
120	Ultrasonic-promoted rapid preparation of PVC/TiO2-BSA nanocomposites: Characterization and photocatalytic degradation of methylene blue. Ultrasonics Sonochemistry, 2018, 41, 361-374.	3.8	39
121	A simple method for the sonochemical synthesis of PVA/ZrO2-vitamin B1 nanocomposites: Morphology, mechanical, thermal and wettability investigations. Ultrasonics Sonochemistry, 2018, 40, 881-889.	3.8	16
122	The influence of bovine serum albumin-modified silica on the physicochemical properties of poly(vinyl) Tj ETQq0 0 41, 1-10.	0 rgBT /C 3.8	verlock 10 T 35
123	Nanocomposite materials based on poly(vinyl chloride) and bovine serum albumin modified ZnO through ultrasonic irradiation as a green technique: Optical, thermal, mechanical and morphological properties. Ultrasonics Sonochemistry, 2018, 41, 85-99.	3.8	28
124	Microwave and ultrasound-assisted synthesis of poly(vinyl chloride)/riboflavin modified MWCNTs: Examination of thermal, mechanical and morphology properties. Ultrasonics Sonochemistry, 2018, 41, 27-36.	3.8	26
125	Using Green Process for the Synthesis of Poly(Vinyl Alcohol)/α-Al2O3-Thiamine Nanocomposite: Thermal, Mechanical, Contact Angle, and Morphological Studies. Polymer-Plastics Technology and Engineering, 2018, 57, 1035-1044.	1.9	5
126	Preparation and characterization of starch nanocomposite embedded with functionalized <scp>MWCNT</scp> : Investigation of optical, morphological, thermal, and copper ions adsorption properties. Advances in Polymer Technology, 2018, 37, 2195-2203.	0.8	11

#	Article	IF	CITATIONS
127	Fructose functionalized MWCNT as a filler for starch nanocomposites: Fabrication and characterizations. Progress in Organic Coatings, 2018, 114, 244-249.	1.9	15
128	Improvement of PVC/α-MnO ₂ –LVA nanocomposites properties: A promising adsorbent for Pb(II) uptake. International Journal of Polymer Analysis and Characterization, 2018, 23, 142-155.	0.9	8
129	Host recycled poly(ethylene terephthalate) and guest PVA-grafted ZnO nanoparticles: prepared nanocomposites characterization. Polymer Bulletin, 2018, 75, 1715-1730.	1.7	6
130	Application of ultrasonic irradiation as a benign method for production of glycerol plasticized-starch/ascorbic acid functionalized MWCNTs nanocomposites: Investigation of methylene blue adsorption and electrical properties. Ultrasonics Sonochemistry, 2018, 40, 419-432.	3.8	37
131	Sonochemical assisted synthesis and characterization of magnetic PET/Fe3O4, CA, AS nanocomposites: Morphology and physiochemical properties. Ultrasonics Sonochemistry, 2018, 40, 611-618.	3.8	12
132	Fabrication of poly(vinyl alcohol) nanocomposites having different contents of modified SiO ₂ by vitamin B ₁ as biosafe and novel coupling agent to improve mechanical and thermal properties. Polymer Composites, 2018, 39, E1589.	2.3	18
133	Functionalization of Graphite with the Diels–Alder Reaction to Fabricate Metalâ€Free Electrocatalysts for Highly Efficient Hydrogen Evolution Reaction. ChemistrySelect, 2018, 3, 13070-13075.	0.7	5
134	Applications of biodegradable polymer/layered double hydroxide nanocomposites. , 2018, , 265-296.		3
135	Construction of crosslinked chitosan/nitrogen-doped graphene quantum dot nanocomposite for hydroxyapatite biomimetic mineralization. International Journal of Biological Macromolecules, 2018, 120, 1451-1460.	3.6	35
136	Green and eco-friendly route for the synthesis of Ag@Vitamin B9-LDH hybrid and its chitosan nanocomposites: Characterization and antibacterial activity. Polymer, 2018, 154, 188-199.	1.8	32
137	Comprehensive study on reinforcement of poly(vinyl chloride) nanocomposite films with ZnO nanoparticles modified by citric acid and vitamin C. International Journal of Polymer Analysis and Characterization, 2018, 23, 415-429.	0.9	5
138	Poly(vinyl alcohol)/carbon nanotube nanocomposites. , 2018, , 297-315.		7
139	LDH-VB9-TiO2 and LDH-VB9-TiO2/crosslinked PVA nanocomposite prepared via facile and green technique and their photo-degradation application for methylene blue dye under ultraviolet illumination. Applied Clay Science, 2018, 163, 235-248.	2.6	26
140	Polycaprolactone/metal oxide nanocomposites. , 2018, , 223-263.		3
141	Ultrasonic treatment as recent and environmentally friendly route for the synthesis and characterization of polymer nanocomposite having PVA and biosafe BSAâ€modified ZnO nanoparticles. Polymers for Advanced Technologies, 2018, 29, 2174-2183.	1.6	10
142	Fabrication of amino acid-based graphene-zinc oxide (ZnO) hybrid and its application for poly(ester–amide)/graphene-ZnO nanocomposite synthesis. Journal of Thermoplastic Composite Materials, 2017, 30, 358-380.	2.6	19
143	A Benign and Simple Strategy for Surface Modification of Al ₂ O ₃ Nanoparticles with Citric Acid and L(+)â€Ascorbic Acid and Its Application for the Preparation of Novel Poly(vinyl chloride) Nanocomposite Films. Advances in Polymer Technology, 2017, 36, 409-417.	0.8	13
144	Surface treatment of copper (II) oxide nanoparticles using citric acid and ascorbic acid as biocompatible molecules and their utilization for the preparation of poly(vinyl chloride) novel nanocomposite films. Journal of Thermoplastic Composite Materials, 2017, 30, 1267-1284.	2.6	8

#	Article	IF	CITATIONS
145	Effective strategy for the production of novel magnetite poly(vinyl chloride) nanocomposite films with iron oxide nanoparticles doubleâ€capped through citric acid and vitamin C. Journal of Vinyl and Additive Technology, 2017, 23, E4.	1.8	3
146	A simple and environmentally friendly method for surface modification of ZrO2 nanoparticles by biosafe citric acid as well as ascorbic acid (vitamin C) and its application for the preparation of poly(vinyl chloride) nanocomposite films. Polymer Composites, 2017, 38, 1756-1765.	2.3	22
147	Effective methodology for the production of novel nanocomposite films based on poly(vinyl) Tj ETQq1 1 0.784314 2017, 38, 1800-1809.	4 rgBT /Ov 2.3	verlock 10 T 8
148	Exploration of the role of modified titania nanoparticles with citric acid and vitamin C in improvement of thermal stability, optical property, and mechanical behavior of novel poly(vinyl) Tj ETQq0 0 0 rgB1	D everloc	k 1 0 Tf 50 6
149	Polyethylene-based nanocomposite: Structure and properties of poly(vinyl) Tj ETQq1 1 0.784314 rgBT /Overlock 1 Analysis and Characterization, 2017, 22, 237-246.	.0 Tf 50 5 0.9	87 Td (alcol 4
150	Graphene oxide supported copper coordinated amino acids as novel heterogeneous catalysts for epoxidation of norbornene. Catalysis Communications, 2017, 92, 109-113.	1.6	42
151	Microwave-assisted treatment of MWCNTs with vitamin B 2 : Study on morphology, tensile and thermal behaviors of poly(vinyl alcohol) based nanocomposites. European Polymer Journal, 2017, 87, 277-285.	2.6	12
152	Bio-functionalizing of α-MnO2 nanorods with natural l-amino acids: A favorable adsorbent for the removal of Cd(II) ions. Materials Chemistry and Physics, 2017, 191, 188-196.	2.0	33
153	The synthesis of poly(vinyl chloride) nanocomposite films containing ZrO ₂ nanoparticles modified with vitamin B ₁ with the aim of improving the mechanical, thermal and optical properties. Designed Monomers and Polymers, 2017, 20, 378-388.	0.7	32
154	Application of recycled PET/carboxylated multi-walled carbon nanotube composites for Cd2+ adsorption from aqueous solution: a study of morphology, thermal stability, and electrical conductivity. Colloid and Polymer Science, 2017, 295, 453-462.	1.0	22
155	Facile synthesis of glucose-functionalized reduced graphene oxide (GFRGO)/poly(vinyl alcohol) nanocomposites for improving thermal and mechanical properties. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2017, 217, 26-35.	1.7	36
156	Use of PVA/α-MnO2-stearic acid nanocomposite films prepared by sonochemical method as a potential sorbent for adsorption of Cd (II) ion from aqueous solution. Ultrasonics Sonochemistry, 2017, 37, 623-633.	3.8	57
157	Preparation and characterization of chitosan-poly(vinyl alcohol) nanocomposite films embedded with functionalized multi-walled carbon nanotube. Carbohydrate Polymers, 2017, 166, 377-386.	5.1	61
158	Use of vitamin B1 for the surface treatment of silica (SiO2) and synthesis of poly(vinyl chloride)/SiO2 nanocomposites with advanced properties. Polymer Bulletin, 2017, 74, 3579-3594.	1.7	12
159	Improved covalent functionalization of multi-walled carbon nanotubes using ascorbic acid for poly(amide–imide) composites having dopamine linkages. Bulletin of Materials Science, 2017, 40, 213-222.	0.8	8
160	Synergetic effect of synthesized sulfonated polyaniline/quaternized graphene and its application as a high-performance supercapacitor electrode. Journal of Materials Science, 2017, 52, 9683-9695.	1.7	30
161	Facile and green methodology for surfaceâ€grafted Al ₂ O ₃ nanoparticles with biocompatible molecules: preparation of the poly(vinyl alcohol)@poly(vinyl pyrrolidone) nanocomposites. Polymers for Advanced Technologies, 2017, 28, 1719-1729.	1.6	18
162	Facile and cost-effective preparation of PVA/modified calcium carbonate nanocomposites via ultrasonic irradiation: Application in adsorption of heavy metal and oxygen permeation property. Ultrasonics Sonochemistry, 2017, 39, 430-438.	3.8	54

#	Article	IF	CITATIONS
163	Surface Functionalization of Al ₂ O ₃ Nanoparticles with Biocompatible Modifiers, Preparation and Characterization of Poly(Vinyl Pyrrolidone)/Modified Al ₂ O ₃ Nanocomposites. Polymer-Plastics Technology and Engineering, 2017, 56, 1866-1873.	1.9	3
164	Ultrasonic-assisted biosurface modification of multi-walled carbon nanotubes with Thiamine and its influence on the properties of PVC/Tm-MWCNTs nanocomposite films. Ultrasonics Sonochemistry, 2017, 39, 589-596.	3.8	30
165	Water Sanitization by the Elimination of Cd ²⁺ Using Recycled PET/MWNT/LDH Composite: Morphology, Thermal, Kinetic, and Isotherm Studies. ACS Sustainable Chemistry and Engineering, 2017, 5, 5746-5757.	3.2	43
166	Sono-assisted preparation of bio-nanocomposite for removal of Pb2+ ions: Study of morphology, thermal and wettability properties. Ultrasonics Sonochemistry, 2017, 39, 872-882.	3.8	13
167	Poly(vinyl alcohol)/ <scp>C</scp> a <scp>CO</scp> ₃ â€diacid nanocomposite: Investigation of physical and wetting properties and application in heavy metal adsorption. Journal of Applied Polymer Science, 2017, 134, 45414.	1.3	19
168	Effects of citric acid-functionalized ZnO nanoparticles on the structural, mechanical, thermal and optical properties of polycaprolactone nanocomposite films. Materials Chemistry and Physics, 2017, 197, 129-137.	2.0	18
169	Ultrasonic-assisted fabrication and characterization of PVC-SiO2 nanocomposites having bovine serum albumin as a bio coupling agent. Ultrasonics Sonochemistry, 2017, 39, 686-697.	3.8	27
170	Starch/MWCNT-vitamin C nanocomposites: Electrical, thermal properties and their utilization for removal of methyl orange. Carbohydrate Polymers, 2017, 169, 23-32.	5.1	46
171	Condensation polymer/layered double hydroxide NCs: Preparation, characterization, and utilizations. European Polymer Journal, 2017, 90, 273-300.	2.6	46
172	Enhancement of Poly(Vinyl Alcohol)–Poly(Vinyl Pyrrolidone) Blend Properties using Modified Copper (II) Oxide and Ultrasonic Irradiation. Polymer-Plastics Technology and Engineering, 2017, 56, 1059-1067.	1.9	16
173	Investigation of thermal, mechanical behavior, and contact angle measurements of poly(vinyl) Tj ETQq1 1 0.7843 Bulletin, 2017, 74, 3213-3228.	14 rgBT /0 1.7	Overlock 10 6
174	Utilization of ultrasonic irradiation as a green and effective strategy to prepare poly(N-vinyl-2-pyrrolidone)/modified nano-copper (II) oxide nanocomposites. Ultrasonics Sonochemistry, 2017, 37, 128-135.	3.8	28
175	Polymer Nanocomposites based on Modified ZrO ₂ NPs and Poly(vinyl alcohol)/Poly(vinyl) Tj ETQq1 Engineering, 2017, 56, 1136-1145.	l 0.78431 1.9	4 rgBT /Over 21
176	Facile synthetic route for the preparation of PVC/α-MnO2-PVA nanocomposites: morphology, thermal, mechanical and Cd(II) adsorption properties. Polymer Bulletin, 2017, 74, 2957-2973.	1.7	13
177	Biosafe organic diacid intercalated LDH/PVC nanocomposites versus pure LDH and organic diacid intercalated LDH: Synthesis, characterization and removal behaviour of Cd 2+ from aqueous test solution. Applied Clay Science, 2017, 149, 28-40.	2.6	35
178	Application of CuO nanoparticles modified with vitamin B ₁ for the production of poly(vinyl alcohol)/CuO nanocomposite films with enhanced optical, thermal and mechanical properties. Polymers for Advanced Technologies, 2017, 28, 1823-1830.	1.6	6
179	Preparation and Evaluation of Edge Selective Sulfonated Graphene by Chlorosulfuric Acid as an Active Metal―Free Electrocatalyst for Oxygen Reduction Reaction in Alkaline Media. ChemistrySelect, 2017, 2, 11211-11217.	0.7	20
180	Chitosan reinforced with modified CaCO3 nanoparticles to enhance thermal, hydrophobicity properties and removal of cu(II) and cd(II) ions. Journal of Polymer Research, 2017, 24, 1.	1.2	25

#	Article	IF	CITATIONS
181	Synthesis and characterization of new nanocomposites films using alanine-Cu-functionalized graphene oxide as nanofiller and PVA as polymeric matrix for improving of their properties. Journal of Solid State Chemistry, 2017, 253, 398-405.	1.4	39
182	Recycled PET/MWCNT-ZnO quantum dot nanocomposites: Adsorption of Cd(II) ion, morphology, thermal and electrical conductivity properties. Chemical Engineering Journal, 2017, 313, 873-881.	6.6	37
183	Role of surface modification of SiO2 with bio-safe citric acid on the morphological and thermal properties of nanocomposites based on N-trimellitylimido-l-methionine diacid and 4,4′-diaminodiphenyl ether: using ultrasound irradiation and ionic liquid. Polymer Bulletin, 2017, 74, 2203-2215.	1.7	1
184	Preparation of PVA/α-MnO2-KH550 nanocomposite films and study of their morphology, thermal, mechanical and Pb(II) adsorption properties. Progress in Organic Coatings, 2017, 103, 135-142.	1.9	44
185	A new polyamide adjusted triazinyl-β-cyclodextrin side group embedded magnetic nanoparticles for bacterial capture. Chemical Engineering Journal, 2017, 309, 321-329.	6.6	17
186	Antimicrobial, mechanical, optical and thermal properties of PVC/ZnOâ€EDTA nanocomposite films. Polymers for Advanced Technologies, 2017, 28, 393-403.	1.6	9
187	Effect of Starch-MWCNT@Valine Nanocomposite on the Optical, Morphological, Thermal, and Adsorption Properties of Chitosan. Journal of Polymers and the Environment, 2017, 25, 875-883.	2.4	8
188	Production, characterization, and surface morphology of novel aromatic poly(amide-ester-imide)/functionalized TiO2 nanocomposites via ultrasonication assisted process. Polymer Bulletin, 2017, 74, 2465-2477.	1.7	5
189	Preparation of hydrophilic dimethyl 5â€sodium sulfoisophthalate/poly(ethylene terephthalate) nanofiber composite membranes for improving antifouling properties. Journal of Applied Polymer Science, 2017, 134, .	1.3	2
190	Surface modification of alumina with biosafe molecules: Nanostructure, thermal, and mechanical properties of PVA nanocomposites. Journal of Applied Polymer Science, 2017, 134, .	1.3	9
191	Morphology and thermal properties of nanocomposites based on chiral poly(ester-imide) matrix reinforced by vitamin B1 functionalized multiwalled carbon nanotubes. Journal of Composite Materials, 2017, 51, 2291-2300.	1.2	7
192	Investigation on morphology, properties, and applications of hybrid poly(vinyl chloride)/metal oxide composites. , 2017, , 343-377.		9
193	Opportunities and challenges in the use of layered double hydroxide to produce hybrid polymer composites. , 2017, , 235-261.		4
194	Green hybrid nanocomposites from metal oxides, poly(vinyl alcohol) and poly(vinyl pyrrolidone). , 2017, , 263-289.		5
195	Recent developments in the synthesis of hybrid polymer/clay nanocomposites. , 2017, , 227-265.		6
196	Using recycled polymers for the preparation of polymer nanocomposites. , 2017, , 197-226.		3
197	Hybrid optically active polymer/metal oxide composites. , 2017, , 379-406.		3
198	Recent progress and perspectives on biofunctionalized CNT hybrid polymer nanocomposites. , 2017, , 311-341.		4

#	Article	IF	CITATIONS
199	Bionanocomposite materials from layered double hydroxide/ <i>N</i> -trimellitylimido- <scp>I</scp> -isoleucine hybrid and poly(vinyl alcohol). Journal of Thermoplastic Composite Materials, 2016, 29, 623-637.	2.6	10
200	Microwave assisted functionalization of carboxylatedâ€multiwalled carbon nanotubes with 5â€aminoisophthalic acid and its application for the preparation of chiral poly(esterâ€imide)/ <scp>CNT</scp> nanocomposites. Polymer Composites, 2016, 37, 835-843.	2.3	7
201	Application of chiral diacid <i>N</i> -trimellitylimido- <scp>l</scp> -valine for the surface modification of copper oxide as inorganic filler and preparation of poly(amide–imide)/cupric oxide nanocomposites. Journal of Thermoplastic Composite Materials, 2016, 29, 234-248.	2.6	7
202	Study on morphology, thermal, mechanical and Cd(II) adsorption properties of PVC/α-MnO2-stearic acid nanocomposites: production and application. Journal of Polymer Research, 2016, 23, 1.	1.2	18
203	Preparation of dopamine-functionalized multi-wall carbon nanotube/poly(amide-imide) composites and their thermal and mechanical properties. New Carbon Materials, 2016, 31, 18-30.	2.9	16
204	Sonochemical Preparation and Characterization of Modified CuO Nanocrystalline With Bioactive Chiral Diacids Derived From Different Natural Amino Acids. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2016, 46, 1685-1690.	0.6	3
205	Modification of morphological, mechanical, optical and thermal properties in polycaprolactone-based nanocomposites by the incorporation of diacid-modified ZnO nanoparticles. Journal of Materials Science, 2016, 51, 6400-6410.	1.7	22
206	Design of one-pot green protocol for the synthesis of novel modified LDHs with diacids based on amino acids: morphology and thermal examinations. Journal of the Iranian Chemical Society, 2016, 13, 1635-1642.	1.2	9
207	Carbon nanotube–metal oxide nanocomposites: Fabrication, properties and applications. Chemical Engineering Journal, 2016, 302, 344-367.	6.6	242
208	Preparation, morphological and thermal characterization of novel nanocomposites based on poly (amide-ester-imide) containing amino acid and nano-Mg-doped fluorapatite surface modified with biodegradable diacid N-trimellitylimido-L-leucine. Journal of Polymer Research, 2016, 23, 1.	1.2	2
209	Nanocomposites based on biosafe nano ZnO and different polymeric matrixes for antibacterial, optical, thermal and mechanical applications. European Polymer Journal, 2016, 84, 377-403.	2.6	73
210	Synthesis, morphology investigation and thermal mechanical properties of dopamine-functionalized multi-walled carbon nanotube/poly(amide-imide) composites. Reactive and Functional Polymers, 2016, 106, 112-119.	2.0	22
211	Production of polyvinylpyrrolidone/chiral diacid modified nanocrystalline <scp>M</scp> gâ€substituted fluorapatite nanocomposites: Morphological and thermal characterization. Journal of Applied Polymer Science, 2016, 133, .	1.3	5
212	Thiamine hydrochloride (vitamin B ₁) as modifier agent for TiO ₂ nanoparticles and the optical, mechanical, and thermal properties of poly(vinyl chloride) composite films. RSC Advances, 2016, 6, 92596-92604.	1.7	31
213	Use of Valine Amino Acid Functionalized α-MnO ₂ /Chitosan Bionanocomposites as Potential Sorbents for the Removal of Lead(II) Ions from Aqueous Solution. Industrial & Engineering Chemistry Research, 2016, 55, 8349-8356.	1.8	36
214	Surface functionalization of carbon nanotubes: fabrication and applications. RSC Advances, 2016, 6, 109916-109935.	1.7	255
215	Preparation and characterization of nanocomposites based on poly(vinyl alcohol) and vitamin B1-modified TiO2 and evaluation of the optical, mechanical, and thermal properties. Colloid and Polymer Science, 2016, 294, 2099-2107.	1.0	18
216	Using Mgâ€Alâ€layered double hydroxide intercalated with chiral dicarboxylic acid for the reinforcement of isoleucine amino acid containing poly(amideâ€imide). Polymer Composites, 2016, 37, 3288-3295.	2.3	6

#	Article	IF	CITATIONS
217	Chemical surface coating of <scp>MWCNT</scp> s with riboflavin and its application for the production of poly(esterâ€imide)/ <scp>MWCNT</scp> s composites containing 4,4′â€thiobis(2â€tertâ€butylâ€5â€methylphenol) linkages: Thermal and morphological properties. Journal of Applied Polymer Science, 2016, 133.	1.3	4
218	Covalent surface modification of α-MnO ₂ nanorods with <scp>l</scp> -valine amino acid by solvothermal strategy, preparation of PVA/α-MnO ₂ - <scp>l</scp> -valine nanocomposite films and study of their morphology, thermal, mechanical, Pb(<scp>ii</scp>) and Cd(<scp>ii</scp>) adsorption properties. RSC Advances, 2016, 6, 62602-62611.	1.7	24
219	Synthesis and properties of novel brominated chiral polyamides derived from 5-[4-(2-tetrabromophthalimidylpropanoylamino)benzoylamino]isophthalic acid and aromatic diamines. Polymer Bulletin, 2016, 73, 1951-1964.	1.7	11
220	Preparation and characterization of thermally stable poly(amide–ester–imide) nanocomposites based on N,N′-(1,3,5,7-tetraoxo-5,7-dihydropyrrolo [3,4-f]isoindole-2,6-(1H,3H)-diyl)bis-(4-hydroxybenzamide) and surface-coated TiO2 nanoparticles. Polymer Bulletin, 2016, 73, 3019-3032.	1.7	1
221	The thermal, optical, flame retardant, and morphological consequence of embedding diacidâ€capped ZnO into the recycled PET matrix. Journal of Applied Polymer Science, 2016, 133, .	1.3	3
222	Novel nanocomposites obtained by dispersion of <scp>LDH</scp> modified with <i>N</i> â€tetrabromophthaloylâ€glutamic in poly(amideâ€imide) having <i>N</i> â€trimellitylimidoâ€ <scp>l</scp> â€leucine and 4,4′â€diaminodiphenylether units. Polymer Composite 2016, 37, 1323-1329.	2.3 2s,	7
223	Novel poly(<i>N</i> -vinyl-2-pyrrolidone) nanocomposites containing poly(amide–imide)/aluminum oxide nanostructure hybrid as a filler. High Performance Polymers, 2016, 28, 55-63.	0.8	9
224	Preparation and properties of high-performance poly(amide–imide) composite films based on glucose-functionalized multiwalled carbon nanotubes. High Performance Polymers, 2016, 28, 14-25.	0.8	7
225	The fabrication and characterization of nanocomposites containing new poly(amide–imide) based on 4,4-methylenebis(3-chloro-2,6-diethyl trimellitimidobenzene) and carboxylic acid-functionalized multiwalled carbon nanotubes. High Performance Polymers, 2016, 28, 255-262.	0.8	5
226	Fabrication and characterization of novel polyvinylpyrrolidone nanocomposites having SiO2 nanoparticles modified with citric acid and L(+)-ascorbic acid. Polymer, 2016, 90, 295-301.	1.8	25
227	Production of PVC/α-MnO 2 -KH550 nanocomposite films: Morphology, thermal, mechanical and Pb (II) adsorption properties. European Polymer Journal, 2016, 78, 141-152.	2.6	49
228	Functionalized-MnO 2 /chitosan nanocomposites: A promising adsorbent for the removal of lead ions. Carbohydrate Polymers, 2016, 147, 53-59.	5.1	53
229	Synthesis and Structural Characterization of Novel Nanostructured Aromatic Optically Active Poly(Ester–Amide)s Derived from S-tyrosine Containing Symmetric Diol and Aromatic Diacid Chlorides. Polymer-Plastics Technology and Engineering, 2016, 55, 911-919.	1.9	5
230	Effect of modified ZnO nanoparticles with biosafe molecule on the morphology and physiochemical properties of novel polycaprolactone nanocomposites. Polymer, 2016, 89, 94-101.	1.8	60
231	Vitamin C functionalized multi-walled carbon nanotubes and its reinforcement on poly(ester-imide) nanocomposites containing L-isoleucine amino acid moiety. Composite Interfaces, 2016, 23, 209-221.	1.3	16
232	Characterization of nanocomposite laminates fabricated from aqueous dispersion of polyvinylpyrrolidone and l-leucine amino acid modified-montmorillonite. Polymer Bulletin, 2016, 73, 2677-2688.	1.7	4
233	Chemical adsorption of D-sucrose on MWCNTs for compatibility improvement with alanine-based poly(amide-imide) matrix: morphology examination and thermal stability study. Colloid and Polymer Science, 2016, 294, 239-246.	1.0	3
234	The potential use of recycled PET bottle in nanocomposites manufacturing with modified ZnO nanoparticles capped with citric acid: preparation, thermal, and morphological characterization. RSC Advances, 2016, 6, 15039-15047.	1.7	21

#	Article	IF	CITATIONS
235	Manufacture and characterization of nanocomposite materials obtained from incorporation of <scp>d</scp> -glucose functionalized MWCNTs into the recycled poly(ethylene terephthalate). Designed Monomers and Polymers, 2016, 19, 283-289.	0.7	18
236	Application of SiO2 nanoparticles with double layer coverage consist of citric acid and l(+)-ascorbic acid for the production of poly(vinyl chloride)/SiO2 nanocomposite films with enhanced optical and thermal properties. Polymer Bulletin, 2016, 73, 1701-1717.	1.7	13
237	An Efficient Preparation and Characterization of Nanocomposite Films Based on Poly(vinyl chloride) and Modified ZnO Quantum Dot with an Optically Active Diacid Containing Amino Acid as Coupling Agent. Polymer-Plastics Technology and Engineering, 2016, 55, 498-509.	1.9	10
238	Enhanced interfacial interaction for effective reinforcement of chitosan nanocomposites at different loading of modified multiwalled carbon nanotubes with vitamin C. Journal of Elastomers and Plastics, 2016, 48, 600-613.	0.7	7
239	Mechanical, thermal and optical properties of nanocomposite films prepared by solution mixing of poly(vinyl alcohol) with titania nanoparticles modified with citric acid and vitamin C. Journal of Plastic Film and Sheeting, 2016, 32, 293-316.	1.3	14
240	Structure and Thermal Degradation Properties of Nanocomposites of Alanine Amino Acid-based Poly(amide–imide) Reinforced with Carboxymethyl-β-cyclodextrin Intercalated in a Layered Double Hydroxide. Polymer-Plastics Technology and Engineering, 2016, 55, 223-230.	1.9	4
241	Improved solubilization of multiwalled carbon nanotubes (MWCNTs) in water by surface functionalization with <scp>d</scp> -glucose and <scp>d</scp> -fructose. High Performance Polymers, 2016, 28, 936-944.	0.8	10
242	An eco-friendly approach for the synthesis of biocompatible poly(vinyl alcohol) nanocomposite with aid of modified CuO nanoparticles with citric acid and vitamin C: mechanical, thermal and optical properties. Journal of the Iranian Chemical Society, 2016, 13, 509-518.	1.2	24
243	Design and preparation of poly(vinyl alcohol) flexible nanocomposite films containing silica nanoparticles with citric acid and ascorbic acid linkages as a novel nanofiller through a green route. International Journal of Polymer Analysis and Characterization, 2016, 21, 29-43.	0.9	17
244	Improving interfacial interaction of <scp>l</scp> â€phenylalanineâ€functionalized graphene nanofiller and poly(vinyl alcohol) nanocomposites for obtaining significant membrane properties: Morphology, thermal, and mechanical studies. Polymer Composites, 2016, 37, 1924-1935.	2.3	33
245	The use of poly(amide-imide)/CuO as a filler for the preparation of poly(vinyl pyrrolidone) nanocomposites: Thermal and morphological studies. Journal of Composite Materials, 2016, 50, 1181-1188.	1.2	13
246	The Special Modifiers Containing N-Trimellitylimido-L-Amino Acids for the Surface Modification of Nano ZrO2. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2016, 46, 394-399.	0.6	2
247	The surface modification of CuO nanoparticles with a flame retardant coupling agent and their influence on the thermal stability of poly(amide-imide)/CuO nanocomposites. Journal of Composite Materials, 2016, 50, 1971-1979.	1.2	8
248	Synthesis, structural characterization, and tensile properties of fructose functionalized multi-walled carbon nanotubes/chitosan nanocomposite films. Journal of Plastic Film and Sheeting, 2016, 32, 56-73.	1.3	12
249	<i>p</i> -Amino phenol immobilized on multi-walled carbon nanotubes for the preparation of chitosan nanocomposites. Journal of Composite Materials, 2016, 50, 403-411.	1.2	6
250	Effects of glucoseâ€functionalized multiwalled carbon nanotubes on the structural, mechanical, and thermal properties of chitosan nanocomposite films. Journal of Applied Polymer Science, 2015, 132, .	1.3	17
251	Surface modification of MWCNTs with glucose and their utilization for the production of environmentally friendly nanocomposites using biodegradable poly(amideâ€imide) based on Nâ€trimellitylimidoâ€5â€valine matrix. Polymers for Advanced Technologies, 2015, 26, 1141-1147.	1.6	7
252	Grafting of Citric Acid as a Green Coupling Agent on the Surface of CuO Nanoparticle and its Application for Synthesis and Characterization of Novel Nanocomposites Based on Poly(amide-imide) Containing <i>N</i> -trimellitylimido-L-valine Linkage. Polymer-Plastics Technology and Engineering, 2015, 54, 594-602.	1.9	13

#	Article	IF	CITATIONS
253	Effect of organically modified Ni–Al layered double hydroxide loading on the thermal and morphological properties of l-methionine containing poly(amide-imide) nanocomposites. RSC Advances, 2015, 5, 28007-28013.	1.7	22
254	Preparation of Poly(Vinyl Alcohol) Nanocomposite Films Reinforced with Poly(Amide–Imide)/CuO HavingN-trimellitylimido-L-valine Linkages for the Improvement of Mechanical and Thermal Properties. Polymer-Plastics Technology and Engineering, 2015, 54, 1625-1633.	1.9	4
255	Novel polyvinylpyrrolidone nanocomposites with dispersed poly(amide-imide)/nano-ZrO2 as new nano-filler: morphology, thermal and optical properties. Polymer Bulletin, 2015, 72, 2421-2433.	1.7	11
256	A review of current coupling agents for modification of metal oxide nanoparticles. Progress in Organic Coatings, 2015, 86, 194-207.	1.9	232
257	Highly stable polyimide composite films based on 1,2,4-triazole ring reinforced with multi-walled carbon nanotubes: Study on thermal, mechanical, and morphological properties. Progress in Organic Coatings, 2015, 80, 142-149.	1.9	22
258	The influence of acid-treated multi-walled carbon nanotubes on the surface morphology and thermal properties of alanine-based poly(amide–imide)/MWCNT nanocomposites system. Colloid and Polymer Science, 2015, 293, 333-339.	1.0	21
259	Design and Fabrication of Well-Dispersed Polyvinylpyrrolidone/TiO ₂ -Modified With Diacid <i>N</i> -Trimellitylimido-L-Leucine Nanohybrid via Ultrasonic Process. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2015, 45, 210-216.	0.6	1
260	Spectral, surface and thermal properties of poly(vinylpyrrolidone)/organo-modified-TiO ₂ /organo-modified-layered silicate ternary nanocomposites containing <scp>l</scp> -leucine amino acid fabricated by sonication process. Journal of Composite Materials, 2015, 49, 351-361.	1.2	8
261	Exfoliation and dispersion of nano-sized modified-LDH particles in poly(amide-imide)s containing N-trimellitylimido-I-methionine and 3,5-diamino-N-(pyridin-3-yl)benzamide linkages. Polymer Bulletin, 2015, 72, 977-991.	1.7	9
262	Synthesis and properties of chiral poly(ester–imide)/multiwalled carbon nanotube nanocomposites containing 4,4â€2-thiobis(2- <i>tert</i> -butyl-5-methylphenol) and <i>s</i> -valine amino acid moieties. High Performance Polymers, 2015, 27, 259-266.	0.8	0
263	Production of NiAl-layered double hydroxide intercalated with bio-safe amino acid containing organic dianion and its utilization in formation of LDH/poly(amide-imide) nanocomposites. Journal of Polymer Research, 2015, 22, 1.	1.2	18
264	Studies of Surface Functional Modification of α-Al2O3 Nanoparticles Using Organic Chain Dicarboxylic Acid Containing Trimellitylimido-Amino Acid-Based Diacids Via Post Modification Method. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2015, 45, 1773-1779.	0.6	3
265	Environmentally friendly functionalization of multiwalled carbon nanotube using ascorbic acid and efficient dispersion in chiral poly(ester-imide) containing 4,4′-thiobis(2-tert-butyl-5-methylphenol) moiety: thermal and morphological studies. Colloid and Polymer Science, 2015, 293, 1141-1149.	1.0	4
266	Intercalation of amino acid containing chiral dicarboxylic acid between Mg–Al layered double hydroxide. Journal of Thermal Analysis and Calorimetry, 2015, 119, 1123-1130.	2.0	33
267	Poly(vinyl alcohol) Chains Grafted onto the Surface of Copper Oxide Nanoparticles: Application in Synthesis and Characterization of Novel Optically Active and Thermally Stable Nanocomposites Based on Poly(amide-imide) Containing <i>N</i> -trimellitylimido-L-valine Linkage. International Journal of Polymer Analysis and Characterization. 2015. 20. 82-97.	0.9	35
268	Synthesis of Layered Double Hydroxides Containing a Biodegradable Amino Acid Derivative and Their Application for Effective Removal of Cyanide from Industrial Wastes. Industrial & Engineering Chemistry Research, 2015, 54, 1093-1102.	1.8	29
269	Valine amino acid-functionalized multiwalled carbon nanotube/chitosan green nanocomposite membranes. High Performance Polymers, 2015, 27, 793-801.	0.8	8
270	Effective preparation of clay/waterborne Azo-containing polyurethane nanocomposite dispersions incorporated anionic groups in the chain termini. Designed Monomers and Polymers, 2015, 18, 303-314.	0.7	10

#	Article	IF	CITATIONS
271	Hybrids of Mg–Al-layered double hydroxide and multiwalled carbon nanotube as a reinforcing filler in the l-phenylalanine-based polymer nanocomposites. Journal of Thermal Analysis and Calorimetry, 2015, 119, 1905-1912.	2.0	25
272	An investigation on the effects of functionalized multi-walled carbon nanotube on mechanical and thermal properties of dopamine-bearing poly(amide–imide) composite films. Journal of Thermoplastic Composite Materials, 2015, 28, 1644-1661.	2.6	8
273	Novel nanocomposites of poly(vinyl alcohol) and Mg–Al layered double hydroxide intercalated with diacid N-tetrabromophthaloyl-aspartic. Journal of Thermal Analysis and Calorimetry, 2015, 120, 1293-1302.	2.0	31
274	Surface Treatment of ZrO ₂ Nanoparticles with Biosafe Citric Acid and Its Utilization for the Synthesis of L-leucine Based Poly(Amide–Imide) Nanocomposites. Polymer-Plastics Technology and Engineering, 2015, 54, 1634-1643.	1.9	5
275	Recent development in the synthesis of polymer nanocomposites based on nano-alumina. Progress in Polymer Science, 2015, 51, 74-93.	11.8	160
276	An innovative strategy for the production of novel magnetite poly(vinyl alcohol) nanocomposite films with double-capped synthesized Fe ₃ O ₄ nanoparticles with citric acid and vitamin C. Composite Interfaces, 2015, 22, 867-884.	1.3	10
277	Design and characterization of novel poly(vinyl chloride) nanocomposite films with zinc oxide immobilized with biocompatible citric acid. Colloid and Polymer Science, 2015, 293, 2565-2573.	1.0	28
278	l-Phenylalanine edge functionalized graphite nanoplatelets as a nanoscale filler for poly(ester–amide–imide) matrix. Journal of the Iranian Chemical Society, 2015, 12, 2065-2073.	1.2	2
279	One pot fabrication of optically active and efficient antibacterial poly(amide-benzimidazole-imide)/Ag bionanocomposite. Journal of Polymer Research, 2015, 22, 1.	1.2	11
280	Potentially eco-friendly poly (amide–ester–imide)/diacid-grafted titanium dioxide/modified montmorillonite nanocomposites containing natural amino acids. High Performance Polymers, 2015, 27, 332-341.	0.8	2
281	In Situ Synthesis of Silver Nanoparticles in Novel L-Phenylalanine Based Poly(Amide-Benzimidazole-imide) Matrix Through Metal Complexation Method Using <i>N,N</i> â€2-Dimethylformamide as a Reaction Medium and Reducing Agent. Polymer-Plastics Technology and Engineering, 2015, 54, 1002-1008.	1.9	2
282	Effect of Functionalized TiO ₂ on Mechanical, Thermal and Swelling Properties of Chitosan-Based Nanocomposite Films. Polymer-Plastics Technology and Engineering, 2015, 54, 1035-1042.	1.9	25
283	Biosafe, Renewable, and Optically Active Diacids Containing Amino Acid as Coupling Agents for the Modification of ZnO Nanoparticles. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2015, 45, 1039-1044.	0.6	7
284	Polymer Nanocomposites ContainingN-Trimellitylimido-L-phenylalanine Dicarboxylic Acid Moieties Reinforced with α-Al2O3Nanoparticles Modified with Citric Acid: Synthesis and Characterization. Polymer-Plastics Technology and Engineering, 2015, 54, 532-540.	1.9	8
285	Green Route for the Synthesis of Alanine-based Poly(amide-imide) Nanocomposites Reinforced with the Modified ZnO by Poly(vinyl alcohol) as a Biocompatible Coupling Agent. Polymer-Plastics Technology and Engineering, 2015, 54, 1448-1456.	1.9	16
286	Sono-assisted Synthesis of MgAl-layered Double Hydroxide Nanosheet/multiwalled Carbon Nanotube Filler for the Fabricating of L-isoleucine Amino Acid Based Polymer Nanocomposites. Polymer-Plastics Technology and Engineering, 2015, 54, 1439-1447.	1.9	4
287	The utilization of poly(amide-imide)/SiO2 nanocomposite as nanofiller for strengthening of mechanical and thermal properties of poly(vinyl alcohol) nanocomposite films. Progress in Organic Coatings, 2015, 85, 60-67.	1.9	11
288	A general and efficient route to covalently surface modification of MWCNTs by dopamine and their synergistic reinforcing effects in chitosan films. Progress in Organic Coatings, 2015, 85, 131-137.	1.9	12

#	Article	IF	CITATIONS
289	Surface coating of α-Al2O3 nanoparticles with poly(vinyl alcohol) as biocompatible coupling agent for improving properties of bio-active poly(amide-imide) based nanocomposites having l-phenylalanine linkages. Progress in Organic Coatings, 2015, 85, 138-145.	1.9	18
290	A facile, efficient, and green fabrication of nanocomposites based on l-leucine containing poly(amide-imide) and PVA-modified Ag nanoparticles by ultrasonic irradiation. Colloid and Polymer Science, 2015, 293, 1827-1833.	1.0	5
291	Sonochemical production and characterization of d-fructose functionalized MWCNTs/alanine-based poly(amide-imide) nanocomposites. Colloid and Polymer Science, 2015, 293, 1817-1826.	1.0	8
292	Glucose-functionalized multi-walled carbon nanotubes dispersing and hosting nanotubes for poly(amide–imide) bionanocomposites containing N,N'-(pyromellitoyl)-bis-S-valine. Journal of Polymer Research, 2015, 22, 1.	1.2	4
293	Exfoliation and dispersion of LDH modified with N-tetrabromophthaloyl-glutamic in poly(vinyl) Tj ETQq1 1 0.7843	814 rgBT /	Overlock 10
294	Novel ternary poly(vinyl pyrrolidone)/poly(amide-imide)/ZnO nanocomposite: Synthesis, characterization, thermal and optical performance. Progress in Organic Coatings, 2015, 86, 18-24.	1.9	15
295	A facile and green method for the production of novel and potentially biocompatible poly(amide-imide)/ZrO2–poly(vinyl alcohol) nanocomposites containing trimellitylimido-l-leucine linkages. Progress in Organic Coatings, 2015, 86, 11-17.	1.9	16
296	Composites of Semiaromatic Poly(Amide-Ester-Imide) Based on Bioactive Diacid and Oragnomodified Nanoclay Produced by Solution Intercalation Method: Thermal and Morphological Study. Polymer-Plastics Technology and Engineering, 2015, 54, 541-547.	1.9	4
297	A facile and simple synthetic strategy for the preparation of modified NiAl-layered double hydroxide as nanofiller for L-phenylalanine containing poly(amide-imide)s based nanocomposites. Designed Monomers and Polymers, 2015, 18, 550-556.	0.7	5
298	Surface modification of Mg-doped fluoridated hydroxyapatite nanoparticles using bioactive amino acids as the coupling agent for biomedical applications. Ceramics International, 2015, 41, 10079-10086.	2.3	26
299	Organo-Modification of Mesoporous SBA-15 with Chiral Diacid and its Utilization for the Preparation of L-Phenylalanine-Based Poly(amide-imide) Nanocomposites. Polymer-Plastics Technology and Engineering, 2015, 54, 549-555.	1.9	7
300	Role of Carboxylic Acid-Functionalized MWCNTs in Potentially Biodegradable Poly(Amide–Imide) Nanocomposites Based onN,Nâ€2-(Pyromellitoyl)-bis-S-valine: Preparation, Thermal and Morphological Properties. Polymer-Plastics Technology and Engineering, 2015, 54, 1653-1660.	1.9	3
301	A facile approach towards functionalization of MWCNTs with vitamin B2 for reinforcing of biodegradable and chiral poly(ester-imide) having L-phenylalanine linkages: morphological and thermal investigations. Journal of Polymer Research, 2015, 22, 1.	1.2	12
302	Efficient heavy metal ion removal by triazinyl-β-cyclodextrin functionalized iron nanoparticles. RSC Advances, 2015, 5, 90602-90608.	1.7	26
303	Functionalized Multi-Walled Carbon Nanotubes with Vitamin C Structures: Characterization and Fabrication of Thiazole Containing Poly(amide–imide)-based Composites. Polymer-Plastics Technology and Engineering, 2015, 54, 1644-1652.	1.9	4
304	Surface functionalization of GO, preparation and characterization of PVA/TRIS-GO nanocomposites. Polymer, 2015, 81, 140-150.	1.8	61
305	Development of novel chiral poly(amide–imide)/bionanocomposites containing <i>N</i> , <i>N′</i> -(pyromellitoyl)-bis-phenylalanine units reinforced by organoclay and modified TiO ₂ . Journal of Thermoplastic Composite Materials, 2015, 28, 3-18.	2.6	7
306	Preparation of new fluorophore lanthanide complexes-Cloisite nanohybrids using the tricationic Pr(III), Gd(III) and Dy(III) complexes with 9,10-phenanthrenequinone. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 137, 1206-1212.	2.0	5

#	Article	IF	CITATIONS
307	Preparation and characterization of optically active and flame-retardant poly(amide–imide)/SiO ₂ nanocomposites having <i>N</i> -trimellitylimido- <scp>I</scp> -methionine linkages using ultrasonic irradiation. Designed Monomers and Polymers. 2015, 18, 137-144.	0.7	7
308	Development of carboxylated multi-walled carbon nanotubes reinforced potentially biodegradable poly(amide–imide) based on N-trimellitylimido-S-valine matrixes: Preparation, processing, and thermal properties. Progress in Organic Coatings, 2015, 80, 71-76.	1.9	12
309	Functionalization of TiO ₂ nanoparticles with bio-safe poly(vinyl alcohol) to obtain new poly(amide-imide) nanocomposites containing <i>N</i> , <i>N′-</i> (pyromellitoyl)-bis-L-leucine linkages. High Performance Polymers, 2015, 27, 458-468.	0.8	13
310	Morphology and thermal properties of environmental friendly nanocomposites using biodegradable poly(amide–imide) based on N-trimellitylimido-S-valine matrix reinforced by fructose-functionalized multi-walled carbon nanotubes. Colloid and Polymer Science, 2015, 293, 545-553.	1.0	4
311	Manufacture of zinc oxide/chiral poly(amide-imide)-functionalized amino acid and thiazole bionanocomposites. Journal of Thermoplastic Composite Materials, 2015, 28, 672-685.	2.6	5
312	An Effective and Environmentally Friendly Method for Surface Modification of Amorphous Silica Nanoparticles by Biodegradable Diacids Derived From Different Amino Acids. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2015, 45, 376-380.	0.6	17
313	Effect of modified ZnO capped with <i>N</i> -trimellitylimido-L-alanine diacid as an optically active coupling agent on the morphology and thermal properties of poly (amide-imide)/ZnO nanocomposites. Designed Monomers and Polymers, 2015, 18, 79-88.	0.7	10
314	Preparation and characterization of reinforced poly(vinyl alcohol) films by a nanostructured, chiral, L-leucine based poly(amide-imide)/ZrO2 nanocomposite through a green method. Progress in Organic Coatings, 2015, 78, 35-41.	1.9	10
315	High-performance polymer nanocomposites having a biosafe amino acid by incorporating modified nanozirconia with a flame-retardant coupling agent. High Performance Polymers, 2015, 27, 85-93.	0.8	5
316	Influence of biosafe amino acid-functionalized multiwalled carbon nanotubes on the morphology and thermal properties of the poly(amide–imide) nanocomposites containing <i>N</i> , <i>N</i> â€2-(pyromellitoyl)-bis- <i>S</i> valine segments. High Performance Polymers, 2015, 27, 371-378.	0.8	2
317	Ultrasonic assisted organo-modification of mesoporous SBA-15 with N-trimellitylimido-l-methionine and preparation of the poly(amide–imide)/SBA nanocomposites. Progress in Organic Coatings, 2015, 78, 300-306.	1.9	20
318	Thermoplastic Nonvinyl Polymers: From Macro to Nanostructure. Polymer-Plastics Technology and Engineering, 2014, 53, 564-587.	1.9	8
319	Structural Characterization and Thermal Properties of Chiral Poly(amide-imide)/Modified MgAl Layered Double Hydroxide Nanocomposites Prepared via Solution Intercalation. Polymer-Plastics Technology and Engineering, 2014, 53, 1047-1055.	1.9	18
320	Effect of amino acid-functionalized multi-walled carbon nanotubes on the properties of dopamine-based poly(amide-imide) composites: An experimental study. Bulletin of Materials Science, 2014, 37, 1065-1077.	0.8	11
321	Biological Activity of the Nanostructure Poly(Ester-Imide)s Containing a Tyrosine-Based Diol: Wheat Seedling Growth and Fungal Biodegradation. Polymer-Plastics Technology and Engineering, 2014, 53, 459-464.	1.9	2
322	Facile Approach to Prepare Poly(amide–imide)/ZnO Nanocomposites Derived from L-leucine-Based Diacid and 4,4′-Sulfonyldianiline: Using Ultrasound Irradiation and Ionic Liquid. Polymer-Plastics Technology and Engineering, 2014, 53, 423-428.	1.9	15
323	Preparation, Characterization and Solid-State Emission of Metal Complex-Cloisite Nanohybrids (MC-C,) Tj ETQq1	1 0.78431 1.3	4 ggBT /Ovei
324	The effect of carboxylated multi-walled carbon nanotubes on reinforcement efficiency of	0.7	8

The effect of carboxylated multi-walled carbon nanotubes on reinforcement efficiency of thiazole-bearing poly(amide-imide) composites. Designed Monomers and Polymers, 2014, 17, 275-285. 324

#	Article	IF	CITATIONS
325	Optical, mechanical, and thermal behavior of poly(vinyl alcohol) composite films embedded with biosafe and optically active poly(amide–imide)-ZnO quantum dot nanocomposite as a novel reinforcement. Colloid and Polymer Science, 2014, 292, 2857-2867.	1.0	22
326	CHIRAL POLY(AMIDE-THIOESTER-IMIDE)S HAVING THIADIAZOL GROUP: MICROWAVE-ASSISTED SYNTHESIS AND STUDY OF THERMO-OPTICAL BEHAVIOR. Chemical Engineering Communications, 2014, 201, 635-649.	1.5	2
327	Morphological and Thermal Properties of Poly(amide-imide)/ZnO Nanocomposites Derived from 4,4′-methylenebis(3-chloro-2,6-diethyl trimellitimidobenzene) and 3,5-diamino-N-(4-hydroxyphenyl)benzamide. Polymer-Plastics Technology and Engineering, 2014, 53, 1615-1624.	1.9	16
328	Semiaromatic nanostructured poly(amide-ester-imide)s containing biologically active L-amino acids and diol: construction, characterization, and morphology study. Designed Monomers and Polymers, 2014, 17, 194-200.	0.7	2
329	Improvement of the Interactions between Modified ZrO ₂ and Poly(amide-imide) Matrix by Using Unique Biosafe Diacid as a Monomer and Coupling Agent. Polymer-Plastics Technology and Engineering, 2014, 53, 1574-1582.	1.9	14
330	Molten salt-supported polycondensation of optically active diacid monomers with an aromatic thiazole-bearing diamine using microwave irradiation. Journal of Advanced Research, 2014, 5, 311-318.	4.4	13
331	Novel flame retardant zirconia-reinforced nanocomposites containing chlorinated poly(amide-imide): synthesis and morphology probe. Journal of Experimental Nanoscience, 2014, 9, 1035-1050.	1.3	18
332	Surface Functionalized TiO2 Nanoparticle Designed for the Preparation of Chiral Poly(amide-imide) Bionanocomposites Containing Phenylalanine Linkage. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2014, 44, 185-190.	0.6	3
333	Surface modification of nano-TiO2 with trimellitylimido-amino acid-based diacids for preventing aggregation of nanoparticles. Advanced Powder Technology, 2014, 25, 348-353.	2.0	61
334	Functionalized multi-wall carbon nanotube reinforced poly(ester-imide) bionanocomposites containing L-leucine amino acid units. Journal of Polymer Research, 2014, 21, 1.	1.2	10
335	Evaluations of thermal decomposition properties for optically active polymers based on support vector machine. Journal of Thermal Analysis and Calorimetry, 2014, 116, 989-1000.	2.0	12
336	A convenient strategy to functionalize carbon nanotubes with ascorbic acid and its effect on the physical and thermomechanical properties of poly(amide–imide) composites. Journal of Solid State Chemistry, 2014, 211, 136-145.	1.4	50
337	Covalently functionalized graphene sheets with biocompatible natural amino acids. Applied Surface Science, 2014, 307, 533-542.	3.1	161
338	Tailored functionalization of ZnO nanoparticle via reactive cyclodextrin and its bionanocomposite synthesis. Carbohydrate Polymers, 2014, 103, 32-37.	5.1	19
339	A high sensitive biosensor based on FePt/CNTs nanocomposite/N-(4-hydroxyphenyl)-3,5-dinitrobenzamide modified carbon paste electrode for simultaneous determination of glutathione and piroxicam. Biosensors and Bioelectronics, 2014, 60, 1-7.	5.3	283
340	Preparation and characterization of polyimide/titania nanohybrid films. Polymer Composites, 2014, 35, 1486-1493.	2.3	5
341	Preparation and characterization of heat-resistant polyimide/titanium dioxide nanocomposite films containing triptycene side units by sol–gel processes. High Performance Polymers, 2014, 26, 373-380.	0.8	12
342	Efficient functionalization of multiâ€walled carbon nanotubes with <i>p</i> â€aminophenol and their application in the fabrication of poly(amideâ€imide)â€matrix composites. Polymer International, 2014, 63, 1203-1211.	1.6	17

#	Article	IF	CITATIONS
343	A green route for the synthesis of novel optically active poly(amide–imide) nanocomposites containing <i>N</i> -trimellitylimido- <scp> </scp> -phenylalanine segments and modified alumina nanoparticles. High Performance Polymers, 2014, 26, 392-400.	0.8	20
344	Investigation on production and characterization of bionanocomposites based on surface functionalized multi-walled carbon nanotubes and optically active poly(ester-imide) having L-isoleucine units. Progress in Organic Coatings, 2014, 77, 1023-1029.	1.9	9
345	Ultrasound-assisted one-pot preparation of organo-modified nano-sized layered double hydroxide and its nanocomposites with polyvinylpyrrolidone. Journal of Polymer Research, 2014, 21, 1.	1.2	41
346	Efficient Preparation of New Nanostructured Poly(Amide-Imide)s Condensed From 3,5-Diamino- <i>N</i> -(Thiazole-2-yl)Benzamide and Various <i>N</i> -Trimellitylimido- <i>L</i> -Amino Acids. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2014, 44, 235-241.	0.6	3
347	Structure, morphology and electronic properties of <scp>l</scp> -phenylalanine edge-functionalized graphite platelets through Friedel–Crafts acylation reaction. RSC Advances, 2014, 4, 60052-60057.	1.7	11
348	Studies on Preparation and Microstructure Characterization of Novel Composites Based on Functionalized Multiwalled Carbon Nanotubes and Chiral Poly(ester-imide) Containing S-Valine Linkages. Polymer-Plastics Technology and Engineering, 2014, 53, 1583-1589.	1.9	4
349	Opportunities and Challenges in the Use of TiO ₂ Nanoparticles Modified with Citric Acid to Synthesize Advanced Nanocomposites Based on Poly(amide-imide) Containing <i>N,Nâ€2</i> -(Pyromellitoyl)-bis-L-leucine Segments. International Journal of Polymer Analysis and Characterization, 2014, 19, 750-764.	0.9	13
350	Modification of Mg/Al-layered double hydroxide with <scp>l</scp> -aspartic acid containing dicarboxylic acid and its application in the enhancement of the thermal stability of chiral poly(amide-imide). RSC Advances, 2014, 4, 42114-42121.	1.7	42
351	A straightforward preparation and characterization of novel poly(vinyl alcohol)/organoclay/silver tricomponent nanocomposite films. Progress in Organic Coatings, 2014, 77, 1629-1634.	1.9	17
352	Applications of ultrasound for modification of zinc oxide and fabrication of optically active poly(amide-imide)/zinc oxide bionanocomposites. Designed Monomers and Polymers, 2014, 17, 364-371.	0.7	23
353	Reinforcement of poly(amide–imide) containing N-trimellitylimido-L-phenylalanine by using nano α-Al2O3 surface-coupled with bromo-flame retardant under ultrasonic irradiation technique. Journal of Molecular Structure, 2014, 1075, 196-203.	1.8	9
354	Microwave-Assisted Construction of Nanostructured Poly(amide-imide)s Containing Environmentally Friendly Natural Amino Acids via Implementation of Molten Salt Ionic Liquid as an Activating Media. Polymer-Plastics Technology and Engineering, 2014, 53, 38-45.	1.9	8
355	Anionic clay intercalated by multi-walled carbon nanotubes as an efficient 3D nanofiller for the preparation of high-performance l-alanine amino acid containing poly(amide-imide) nanocomposites. Journal of Materials Science, 2014, 49, 7004-7013.	1.7	28
356	Hybrid S-valine functionalized multi-walled carbon nanotubes/poly(amid-imide) nanocomposites containing trimellitimidobenzene and 4-hydroxyphenyl benzamide moieties: preparation, processing, and thermal properties. Journal of Materials Science, 2014, 49, 7445-7453.	1.7	9
357	Chemical modification of MWCNTs with 5-aminoisophthalic acid and its effects on the thermal and morphological properties of chiral poly (ester-imide)/MWCNT nanocomposites having N-trimellitylimido-L-isoleucine moieties. Journal of Polymer Research, 2014, 21, 1.	1.2	13
358	Thermal and mechanical stabilities of composite films from thiadiazol bearing poly(amide-thioester-imide) and multiwall carbon nanotubes by solution compounding. Polymer Bulletin, 2014, 71, 207-225.	1.7	9
359	Synthesis and biodegradability assessment of poly(amide-imide)s containing N-trimellitylimido-l-amino acid and 5-(2-benzimidazole)-1,3-phenylenediamine. Polymer Bulletin, 2014, 71, 2159-2172.	1.7	6
360	Surface treatment of nano ZnO using 3,4,5,6-tetrabromo-N-(4-hydroxy-phenyl)-phthalamic acid as novel coupling agent for the preparation of poly(amide–imide)/ZnO nanocomposites. Colloid and Polymer Science, 2014, 292, 2275-2283.	1.0	26

#	Article	IF	CITATIONS
361	Effect of poly(amid–imide)/Al2O3 hybrid with various ratios on the physicochemical properties of poly(vinyl alcohol) nanocomposites films. Colloid and Polymer Science, 2014, 292, 2285-2294.	1.0	1
362	The effect of the coupling agents KH550 and KH570 on the nanostructure and interfacial interaction of zinc oxide/chiral poly(amide–imide) nanocomposites containing l-leucine amino acid moieties. Journal of Materials Science, 2014, 49, 5112-5118.	1.7	30
363	Rapid and green functionalization of multi-walled carbon nanotubes by glucose: structural investigation and the preparation of dopamine-based poly(amide-imide) composites. Polymer Bulletin, 2014, 71, 2523-2542.	1.7	12
364	Application of TiO ₂ Nanoparticles Modified With Bioactive Diacid in Manufacturing of Polymer Nanocomposites Containing 4,4 <i>′</i> -Sulfonyl Dianiline and <i>N,N′</i> -(pyromellitoyl)-bis- <i>L</i> -valine Diacid. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2014, 44, 1450-1456.	0.6	9
365	l-Phenylalanine amino acid functionalized multi walled carbon nanotube (MWCNT) as a reinforced filler for improving mechanical and morphological properties of poly(vinyl alcohol)/MWCNT composite. Progress in Organic Coatings, 2014, 77, 1966-1971.	1.9	52
366	Manufacture and Characterization of Biodegradable Nanocomposites Based on Nanoscale MgAl-Layered Double Hydroxide Modified withN,N′-(Pyromellitoyl)-bis-L-Isoleucine Diacid and Poly(vinyl) Tj E	ETQq Q.9 0r	gBT14Overloch
367	Novel bionanocomposites of poly(vinyl alcohol) and modified chiral layered double hydroxides: Synthesis, properties and a morphological study. Progress in Organic Coatings, 2014, 77, 583-589.	1.9	46
368	A facile, efficient, and rapid covalent functionalization of multi-walled carbon nanotubes with natural amino acids under microwave irradiation. Progress in Organic Coatings, 2014, 77, 679-684.	1.9	55
369	Novel chiral poly(amide-imide)/surface modified SiO2 nanocomposites based on N-trimellitylimido-l-methionine: Synthesis and a morphological study. Progress in Organic Coatings, 2014, 77, 1271-1276.	1.9	27
370	Preparation and characterization of thermal-responsive non-woven poly (propylene) materials grafted with N-isopropylacrylamide/ β-cyclodextrin. Journal of Industrial Textiles, 2013, 43, 116-131.	1.1	10
371	Novel Bioactive Chiral Poly(amide–imide)s Containing Different Amino Acids Linkages: Studies on Synthesis, Characterization and Biodegradability. Journal of Polymers and the Environment, 2013, 21, 568-574.	2.4	49
372	Synthesis and Characterization of Novel Heat Stable and Processable Optically Active Poly(Amide–Imide) Nanostructures Bearing Hydroxyl Pendant Group in an Ionic Green Medium. Journal of Polymers and the Environment, 2013, 21, 132-140.	2.4	16
373	Improving the direct methanol fuel cell performance withÂpoly(vinyl alcohol)/titanium dioxide nanocomposites as a novel electrolyte additive. International Journal of Hydrogen Energy, 2013, 38, 12418-12426.	3.8	26
374	Effect of amino acid-functionalization on the interfacial adhesion and behavior of multi-walled carbon nanotubes/poly(amide-imide) nanocomposites containing thiazole side unit. Journal of Polymer Research, 2013, 20, 1.	1.2	31
375	Green step-grow polymerization of biodegradable amino acid based diacids with 3,5-diamino-N-(thiazole-2-yl)benzamide: characterization and study on bioactivity. Journal of Polymer Research, 2013, 20, 1.	1.2	13
376	Morphological and thermal properties of nanocomposites contain poly(amide-imide) reinforced with bioactive N-trimellitylimido-L-valine modified TiO2 nanoparticles. Journal of Polymer Research, 2013, 20, 1.	1.2	15
377	The effects of reactive organoclay on the thermal, mechanical, and microstructural properties of polymer/layered silicate nanocomposites based on chiral poly(amide-imide)s. Journal of Thermal Analysis and Calorimetry, 2013, 114, 329-337.	2.0	9
378	Molten salt ionic liquid-assisted synthesis of nano-structured poly(amide imide)s based on 4,4′-methylenebis(3-chloro-2,6-diethyl trimellit imidobenzene) via microwave process as an environmentally friendly methodology. Polymer Science - Series B, 2013, 55, 271-279	0.3	4

#	Article	IF	CITATIONS
379	Reinforcement of poly(vinyl alcohol) with chiral poly(amide-imide)s nanoparticles containing S-valine under simple ultrasonic irradiation method. Colloid and Polymer Science, 2013, 291, 2487-2494.	1.0	19
380	Functionalization of multi-wall carbon nanotubes with amino acid and its influence on the properties of thiadiazol bearing poly(amide-thioester-imide) composites. Synthetic Metals, 2013, 169, 1-11.	2.1	66
381	Insertion of fluorophore dyes between Cloisite Na+ layered for preparation of novel organoclays. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2013, 77, 463-470.	0.9	12
382	Structural features of bionanocomposite derived from novel designed poly(ester-imide) based on natural amino acids with hydroxyl segments tailored for better dispersion of TiO 2 nanofiller. Bulletin of Materials Science, 2013, 36, 203-212.	0.8	2
383	Construction and characterization of poly(amide-ester-imide) nanocomposites containing N-trimellitylimido-l-leucine toughened with a combination of bioactive surface-grafted TiO2. Progress in Organic Coatings, 2013, 76, 1608-1615.	1.9	11
384	Effect of Surface Functionalized Nano-ZnO Structure on Morphology and Properties of Poly(amide-imide) Nanocomposites Containing <i>N</i> -trimellitylimido- <i>L</i> -leucine and 5-(2-benzimidazole)-1,3-phenylenediamine. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2013, 43, 1289-1295.	0.6	5
385	Preparation of new polymer nanocomposites based on chiral poly(amide-imide)/surface-modified ZnO nanoparticles containing 4,4′-methylene bis(3-chloro-2,6-diethylaniline) linkages via ultrasonication-assisted process. Polymer Bulletin, 2013, 70, 2137-2149.	1.7	9
386	Straightforward and green method for the synthesis of nanostructure poly(amide-imide)s-containing benzimidazole and amino acid moieties by microwave irradiation. Polymer Bulletin, 2013, 70, 1049-1064.	1.7	16
387	QSPR prediction of thermal decomposition property of non-vinyl polymers having α-amino acids moieties. Polymer Bulletin, 2013, 70, 715-732.	1.7	7
388	Synthesize procedures, mechanical and thermal properties of thiazole bearing poly(amid-imide) composite thin films containing multiwalled carbon nanotubes. Colloid and Polymer Science, 2013, 291, 1525-1534.	1.0	20
389	Facile synthesis of nanocomposite materials by intercalating an optically active poly(amide-imide) enclosing (I)-isoleucine moieties and azobenzene side groups into a chiral layered double hydroxide. Polymer, 2013, 54, 2907-2916.	1.8	49
390	Investigating the nanostructure and thermal properties of chiral poly(amide-imide)/Al2O3 compatibilized with 3-aminopropyltriethoxysilane. Materials Research Bulletin, 2013, 48, 3865-3872.	2.7	16
391	Microwaveâ€Assisted Synthesis and Morphological Characterization of Chiral Poly(amide–imide) Nanostructures in Molten Ionic Liquid Salt. Advances in Polymer Technology, 2013, 32, .	0.8	20
392	The synergetic effect of chiral organoclay and surface modified-Al2O3 nanoparticles on thermal and physical properties of poly(vinyl alcohol) based nanocomposite films. Progress in Organic Coatings, 2013, 76, 263-268.	1.9	32
393	One-pot synthesis of glucose functionalized multi-walled carbon nanotubes: Dispersion in hydroxylated poly(amide-imide) composites and their thermo-mechanical properties. Polymer, 2013, 54, 6329-6338.	1.8	57
394	Incorporation of a Novel Heat Stability Enhancing Fluorinated Diol into Nanostructure Poly(Ester-Imide)s via the Low Temperature Solution Polycondensation. Polymer-Plastics Technology and Engineering, 2013, 52, 1353-1361.	1.9	2
395	Functionalization of multiwalled carbon nanotubes with S-valine amino acid and its reinforcement on amino acid-containing poly(amide-imide) bionanocomposites. High Performance Polymers, 2013, 25, 966-979.	0.8	16
396	A simple and convenient method for the surface coating of TiO2 nanoparticles with bioactive chiral diacids containing different amino acids as the coupling agent. Progress in Organic Coatings, 2013, 76, 648-653.	1.9	37

#	Article	IF	CITATIONS
397	Optically active poly(amide-imide)/zinc oxide hybrid nanocomposites based on hydroxyphenyl benzamide segments: Compatibility by using 3-methacryloxypropyltrimethoxysilane coupling agent. Polymer Science - Series B, 2013, 55, 643-650.	0.3	3
398	Ultrasonic-assisted synthesis and characterization of layered double hydroxides intercalated with bioactive N,N′-(pyromellitoyl)-bis-l-α-amino acids. RSC Advances, 2013, 3, 23303.	1.7	51
399	Bio-Modification of Cloisite Na+ With Chiral L-Leucine and Preparation of New Poly(Vinyl) Tj ETQq1 1 0.784314 rg Organic, and Nano Metal Chemistry, 2013, 43, 966-971.	BT /Overlo 0.6	ock 10 Tf 5 13
400	Novel optically active poly(amide-thioester-imide)s containing l-α-amino acids and thiadiazol anticorrosion group. High Performance Polymers, 2013, 25, 377-386.	0.8	7
401	Microwave-Assisted Step-Growth Polymerizations (From Polycondensation to C–C Coupling). Advances in Polymer Science, 2013, , 45-86.	0.4	3
402	Novel chiral and organosoluble nanostructure poly(ester–imide)s containing N,N′-(3,3′,4,4′-benzophenonetetracarboxylic)-3,3′,4,4′-diimido-bis-(L-tyrosine methyl ester) as a nev acid based diol: production, morphology, and thermal properties. Designed Monomers and Polymers, 2013, 16, 488-497.	v amino 0.7	15
403	Thermoplastic Vinyl Polymers: From Macro to Nanostructure. Polymer-Plastics Technology and Engineering, 2013, 52, 1423-1466.	1.9	16
404	Production and characterization of nanocomposites based on poly(amide-imide) containing 4,4′-methylenebis(3-chloro-2,6-diethylaniline) using nano-TiO2 surface-coupled by 3-aminopropyltriethoxysilane. Progress in Organic Coatings, 2013, 76, 231-237.	1.9	29
405	Preparation, characterization, and thermal properties of organoclay hybrids based on trifunctional natural amino acids. Journal of Thermal Analysis and Calorimetry, 2013, 111, 611-618.	2.0	15
406	In vitro degradation assessment of optically active poly(urethane-imide)s based on α-amino acids. Polymer Bulletin, 2013, 70, 3425-3441.	1.7	4
407	Manufacture and microstructure characterization of optically active poly(esterimide)/TiO2 bionanocomposites derived from natural amino acid–based diacid. High Performance Polymers, 2013, 25, 769-777.	0.8	1
408	Amino acid-functionalized multi-walled carbon nanotubes for improving compatibility with chiral poly(amide-ester-imide) containing l-phenylalanine and l-tyrosine linkages. Applied Surface Science, 2013, 287, 117-123.	3.1	35
409	Poly(amide-imide)s obtained from 3,5-diamino- <i>N</i> -(thiazol-2-yl)-benzamide and dicarboxylic acids containing various amino acid units. High Performance Polymers, 2013, 25, 156-164.	0.8	16
410	Enhancement in thermal properties of poly(vinyl alcohol) nanocomposites reinforced with Al ₂ O ₃ nanoparticles. Journal of Reinforced Plastics and Composites, 2013, 32, 217-224.	1.6	76
411	<i>In vitro</i> studies on biodegradable chiral nanostructure poly(amide-imide)s containing different natural amino acids in green medium. Designed Monomers and Polymers, 2013, 16, 509-514.	0.7	23
412	Novel nanocomposites based on reactive organoclay of l-tyrosine and amine end-capped poly(amide–imide): Synthesis and characterization. Applied Clay Science, 2013, 75-76, 67-73.	2.6	20
413	Chiral bio-nanocomposites based on thermally stable poly(amide-imide) having phenylalanine linkages and reactive organoclay containing tyrosine amino acid. Amino Acids, 2013, 44, 1021-1029.	1.2	19
414	Nanostructured amino acid containing poly(amide-imide)s from different diisocyanates: synthesis and morphology properties in molten TBAB as a green media. Polymer Bulletin, 2013, 70, 2125-2135.	1.7	2

#	Article	IF	CITATIONS
415	Novel heat resistant nanostructure poly(amide–imide)s containing new TMA-based diacid via conventional polycondensation reaction in an ionic green medium: synthesis, morphology, and thermal properties. Designed Monomers and Polymers, 2013, 16, 313-322.	0.7	9
416	Synthesis of novel nanostructured chiral poly(amide-imide)s containing dopamine and natural amino acids. Journal of Chemical Sciences, 2013, 125, 203-211.	0.7	14
417	Nanocomposites of Poly(vinyl alcohol) Reinforced with Chemically Modified AL ₂ O ₃ : Synthesis and Characterization. Journal of Macromolecular Science - Physics, 2013, 52, 1651-1661.	0.4	31
418	Polymer Nanocomposites Containing 4,4′-Methylene bis(3-chloro-2,6-diethylaniline) andN,N′-(Pyromellitoyl)-bis-L-phenylalanine Diacid Reinforced with Modified ZnO and Organo-Montmorillonite. Polymer-Plastics Technology and Engineering, 2013, 52, 674-682.	1.9	11
419	The effect of carbon black nanoparticles on some properties of air plasma printed cotton/polyamide 6 fabrics. Fibers and Polymers, 2013, 14, 1620-1626.	1.1	7
420	Preparation and characterization of novel optically active nanostructured poly(amide–imide)s-containing (<scp>l</scp>)-α-amino acid moieties and azobenzene side groups. High Performance Polymers, 2013, 25, 918-928.	0.8	3
421	High-performance nanostructure chiral poly(amide–imide)s containing benzamide and amino acid linkages: Preparation, characterization and ultrasonic effect on the morphology. High Performance Polymers, 2013, 25, 551-558.	0.8	5
422	Design and Characterization of Chiral and Thermally Stable Nanostructure Poly(amide-imide)s Containing Different Trimellitylimido-Amino Acid-Based Diacids and 4,4′-Methylenebis(3-chloro-2,6-diethylaniline) Units. Polymer-Plastics Technology and Engineering, 2013, 52, 847-853.	1.9	13
423	Novel, thermally stable and chiral poly(amide-imide)s derived from a new diamine containing pyridine ring and various amino acid-based diacids. High Performance Polymers, 2013, 25, 245-253.	0.8	17
424	Microwave Irradiation for Accelerating Synthesis of New Chiral Nanostructured Poly(amide-imide)s Having a Thiazole Pendant Group. International Journal of Polymer Analysis and Characterization, 2013, 18, 469-477.	0.9	2
425	Novel chiral poly(amide-imide) nanocomposites reinforced with silicate layers and TiO ₂ nanoparticles based on <i>N</i> -trimellitylimido- <scp>l</scp> -isoleucine. Journal of Reinforced Plastics and Composites, 2013, 32, 574-582.	1.6	7
426	Optically Active Poly(amide-imide)/TiO ₂ Bionanocomposites Containing L-isoleucine Amino Acid Moieties: Synthesis, Nanostructure and Properties. Polymer-Plastics Technology and Engineering, 2013, 52, 997-1006.	1.9	15
427	Chiral Poly(Amide-Imide)/Carbon Nanotube Bionanocomposites Containing Hydroxyl Pendant Groups and L-Phenylalanine Amino Acid: Synthesis, Preparation of Thin Films, and Thermomechanical Behavior. Soft Materials, 2013, 11, 494-502.	0.8	14
428	Study on constructional design and structural analysis of poly(amide-imide)/ZnO nanocomposites containing pyromellitoyl-bis- <scp>l</scp> -isoleucine moieties. High Performance Polymers, 2013, 25, 436-444.	0.8	10
429	Investigating thermophysical properties of novel chiral nanostructured poly(amide-ester-imide)s containing different amino acids based on biological active N, N′-(pyromellitoyl)-bis-l-amino acids and diol. High Performance Polymers, 2013, 25, 723-732.	0.8	3
430	NANOPARTICLES DISPERSION IN PROCESSING NANOSTRUCTURE CHIRAL POLY(AMIDE-IMIDE)S BASED ON 7V-TRIMELLITYLIMIDO-Z,-LEUCINE/TiO2 NANOCOMPOSITES: ALLOCATION AND PROPERTIES. Journal of the Chilean Chemical Society, 2013, 58, 1603-1608.	0.5	10
431	Synthesis and characterization of novel silver/ <scp>L</scp> â€phenylalanineâ€based optically active polyacrylate nanocomposite. Journal of Applied Polymer Science, 2012, 124, 4491-4495.	1.3	1
432	The first report on the atom transfer radical polymerization of an optically active acidic monomer based on <scp>L</scp> â€phenylalanine. Journal of Applied Polymer Science, 2012, 124, 4512-4516.	1.3	1

#	Article	IF	CITATIONS
433	New Organosoluble, Thermally Stable, and Nanostructured Poly(Amide-Imide)s with Dopamine Pendant Groups: Microwave-Assisted Synthesis and Characterization. International Journal of Polymer Analysis and Characterization, 2012, 17, 408-416.	0.9	20
434	IN SITU FABRICATION OF HIGH PERFORMANCE POLYIMIDE/TYROSINE-MODIFIED LAYERED SILICATE NANOCOMPOSITES. Nano, 2012, 07, 1250021.	0.5	3
435	Synergic Effects of Molten Ionic Liquid and Microwave Irradiation in Preparation of Optically Active Nanostructured Poly(Amide-Imide)s Containing Amino Acid and Dopamine Moiety. Polymer-Plastics Technology and Engineering, 2012, 51, 1090-1096.	1.9	37
436	Ionic Liquids as Green Solvents: Progress and Prospects. , 2012, , 1-32.		53
437	Green Solvents Fundamental and Industrial Applications. , 2012, , 1-66.		12
438	The nanocomposites of zinc oxide/ <scp>L</scp> â€amino acidâ€based chiral poly(esterâ€imide) via an ultrasonic route: Synthesis, characterization, and thermal properties. Journal of Applied Polymer Science, 2012, 126, 1416-1424.	1.3	10
439	Surface Treated Montmorillonite: Structural and Thermal Properties of Chiral Poly(Amide-Imide)/Organoclay Bionanocomposites Containing Natural Amino Acids. Journal of Inorganic and Organometallic Polymers and Materials, 2012, 22, 929-937.	1.9	19
440	Synthesis and Properties of Biodegradable Poly(vinyl alcohol)/Organo-nanoclay Bionanocomposites. Journal of Polymers and the Environment, 2012, 20, 732-740.	2.4	29
441	Tailored Synthesis of Nanostructured Polymer Thin Films from Optically Active and Thermally Stable Poly(amide-co-imide)s Containing Hydroxyl Pendant Groups in a Green Ionic Solvent. Polymer-Plastics Technology and Engineering, 2012, 51, 1097-1105.	1.9	15
442	Investigation on synthesis and morphology characteristic of novel chiral poly(amide–imide)/TiO ₂ nanocomposites derived from L-isoleucine-based diacid and 4,4′-methylenebis(3-chloro-2,6-diethylaniline). Designed Monomers and Polymers, 2012, 15, 417-429.	0.7	6
443	Exploration on structural morphology and properties of novel poly(urethane-imide)/TiO2 bionanocomposites derived from L-tyrosine based diol. Designed Monomers and Polymers, 2012, 15, 533-545.	0.7	4
444	Polymer/organosilica nanocomposites based on polyimide with benzimidazole linkages and reactive organoclay containing isoleucine amino acid: Synthesis, characterization and morphology properties. Materials Research Bulletin, 2012, 47, 2336-2343.	2.7	17
445	Novel nanostructure amino acid-based poly(amide–imide)s enclosing benzimidazole pendant group in green medium: fabrication and characterization. Amino Acids, 2012, 43, 1605-1613.	1.2	23
446	Dispersion of Surface Modified Nanostructure Zinc Oxide in Optically Active Poly(Amide-Imide) Containing Pyromellitoyl-bis- <i>L</i> -isoleucine Segments: Nanocomposite Preparation and Morphological Investigation. Polymer-Plastics Technology and Engineering, 2012, 51, 1106-1112.	1.9	16
447	Electrochemical oxidation of 4-substituted urazoles in the presence of arylsulfinic acids: an efficient method for the synthesis of new sulfonamide derivatives. Green Chemistry, 2012, 14, 963.	4.6	49
448	Use of silane coupling agent for surface modification of zinc oxide as inorganic filler and preparation of poly(amide-imide)/zinc oxide nanocomposite containing phenylalanine moieties. Bulletin of Materials Science, 2012, 35, 333-339.	0.8	74
449	Fabrication of polyimide/titania nanocomposites containing benzimidazole side groups via sol–gel process. Progress in Organic Coatings, 2012, 75, 373-378.	1.9	38
450	Application of Modified Cloisite Na ⁺ with <scp>L</scp> -Phenylalanine for the Preparation of New Poly(vinyl alcohol)/Organoclay Bionanocomposite Films. Polymer-Plastics Technology and Engineering, 2012, 51, 321-327.	1.9	21

#	Article	IF	CITATIONS
451	Preparation and morphology distinguishing of novel ZnO ultrafine particle filled nanocomposites contain new poly(amide-imide) via ultrasonic process. Journal of Polymer Research, 2012, 19, 1.	1.2	18
452	N ₂ O ₄ Chemisorbed onto <i>n</i> â€Propylsilica Kryptofix 21 and Kriptofix 22 as Two New Functional Polymers for the Fast Oxidation of Urazoles and 1,4â€Dihydropyridines. Journal of Heterocyclic Chemistry, 2012, 49, 596-599.	1.4	7
453	The effect of nano―and microâ€TiO ₂ particles on reflective behavior of printed cotton/nylon fabrics in vis/NIR regions. Color Research and Application, 2012, 37, 199-205.	0.8	16
454	Preparation and characterization of optically active poly(amide-imide)/TiO2 bionanocomposites containing N-trimellitylimido-L-isoleucine linkages: using ionic liquid and ultrasonic irradiation. Journal of Polymer Research, 2012, 19, 1.	1.2	18
455	Effect of silane-modified ZnO on morphology and properties of bionanocomposites based on poly(ester-amide) containing tyrosine linkages. Polymer Bulletin, 2012, 69, 15-28.	1.7	53
456	Fabrication of biodegradable poly(ester-amide)s based on tyrosine natural amino acid. Amino Acids, 2012, 42, 1997-2007.	1.2	16
457	Synthesis and properties of optically active nanostructured polymers bearing amino acid moieties by direct polycondensation of 4,4′-thiobis(2-tert-butyl-5-methylphenol) with chiral diacids. Amino Acids, 2012, 42, 2187-2194.	1.2	5
458	The use of novel biodegradable, optically active and nanostructured poly(amide-ester-imide) as a polymer matrix for preparation of modified ZnO based bionanocomposites. Materials Research Bulletin, 2012, 47, 1123-1129.	2.7	17
459	Dispersion of chiral amino acid organomodified Cloisite Na+ in poly(vinyl alcohol) matrix for designing of novel bionanocomposite films. Progress in Organic Coatings, 2012, 74, 8-13.	1.9	13
460	Transparent and thermally stable improved poly (vinyl alcohol)/Cloisite Na+/ZnO hybrid nanocomposite films: Fabrication, morphology and surface properties. Progress in Organic Coatings, 2012, 74, 520-525.	1.9	24
461	Production and evaluation of the surface properties of chiral poly(amide-imide)/TiO2 nanocomposites containing L-phenylalanine units. Progress in Organic Coatings, 2012, 74, 564-571.	1.9	22
462	Simultaneous Determination of Ascorbic Acid, Acetaminophen, and Tryptophan by Square Wave Voltammetry Using <i>N</i> â€(3,4â€Dihydroxyphenethyl)â€3,5â€Dinitrobenzamideâ€Modified Carbon Nanotube Paste Electrode. Electroanalysis, 2012, 24, 666-675.	2 1. 5	87
463	Biomodification of cloisite Na ⁺ with <scp>L</scp> â€methionine amino acid and preparation of poly(vinyl alcohol)/organoclay nanocomposite films. Journal of Applied Polymer Science, 2012, 124, 4322-4330.	1.3	42
464	Synthesis and structural characterization of novel bionanocomposite poly(ester-imide)s containing TiO2 nanoparticles, S-valine, and l-tyrosine amino acids moieties. Polymer Bulletin, 2012, 68, 53-67.	1.7	8
465	A facile route for the preparation of novel optically active poly(amide–imide)/functionalized zinc oxide nanocomposites containing pyromellitoyl-bis-l-phenylalanine moieties. Polymer Bulletin, 2012, 68, 1201-1214.	1.7	18
466	Synthesis and properties of new highly soluble poly(amide-ester-imide)s containing poly(ethylene) Tj ETQq0 0 0 rg	gBT_/Overl	ock 10 Tf 50

467	Construction, Characterization and Biological Activity of Chiral and Thermally Stable Nanostructured Poly(Ester-Imide)s as Tyrosine-Containing Pseudo-Poly(Amino Acid)s. Journal of Polymers and the Environment, 2012, 20, 117-123.	2.4	9
468	Preparation and characterization of novel optically active poly(vinyl alcohol-co-vinyl ester) in nonaqueous medium using l-phenylalanine as a chiral material. Amino Acids, 2012, 42, 1287-1295.	1.2	4

#	Article	IF	CITATIONS
469	Chiral poly(amide-imide)/organoclay nanocomposites derived from pyromellitoyl-bis-l-isoleucine and benzimidazole containing diamine: synthesis, nanostructure, and properties. Colloid and Polymer Science, 2012, 290, 81-90.	1.0	21
470	Progress in Synthetic Polymers Based on Natural Amino Acids. Journal of Macromolecular Science - Pure and Applied Chemistry, 2011, 48, 644-679.	1.2	101
471	Preparation and characterization of new organoclays using natural amino acids and Cloisite Na+. Applied Clay Science, 2011, 51, 353-359.	2.6	104
472	Efficient preparation of hybrid nanocomposite coatings based on poly(vinyl alcohol) and silane coupling agent modified TiO2 nanoparticles. Progress in Organic Coatings, 2011, 71, 391-398.	1.9	196
473	New developments in polymer science and technology using combination of ionic liquids and microwave irradiation. Progress in Polymer Science, 2011, 36, 1754-1765.	11.8	131

Use of l-tyrosine amino acid as biomodifier of Cloisite Na+ for preparation of novel poly(vinyl) Tj ETQq0 0 0 rgBT /Oyerlock 10_{11} f 50 542

475	Ionic Liquids as Environmentally Friendly Solvents in Macromolecules Chemistry and Technology, Part I. Journal of Polymers and the Environment, 2011, 19, 447-484.	2.4	64
476	lonic Liquids as Environmentally Friendly Solvents in Macromolecules Chemistry and Technology, Part II. Journal of Polymers and the Environment, 2011, 19, 485-517.	2.4	22
477	Synthesis and structural characterization of novel biologically active and thermally stable poly(ester-imide)s containing different natural amino acids linkages. Journal of Polymer Research, 2011, 18, 373-384.	1.2	39
478	Fabrication and in vitro degradation study of novel optically active polymers derived from amino acid containing diacids and 4,4′-thiobis(2-tert-butyl-5-methylphenol). Journal of Polymer Research, 2011, 18, 1679-1686.	1.2	10
479	Studies on synthesis and in vitro biodegradability of novel optically active nanostructure poly(ester-imide)s containing l-phenylalanine and l-isoleucine linkages. Colloid and Polymer Science, 2011, 289, 93-100.	1.0	28
480	Pseudo-poly(amino acid)s: study on construction and characterization of novel chiral and thermally stable nanostructured poly(ester-imide)s containing different trimellitylimido-amino acid-based diacids and pyromellitoyl-tyrosine-based diol. Colloid and Polymer Science, 2011, 289, 1055-1064.	1.0	22
481	Improvement in hydrophobicity of polyester fabric finished with fluorochemicals via aminolysis and comparing with nano-silica particles. Colloid and Polymer Science, 2011, 289, 1035-1044.	1.0	20
482	Theoretical study on modeling and prediction of optical rotation for biodegradable polymers containing α-amino acids using QSAR approaches. Journal of Molecular Modeling, 2011, 17, 1743-1753.	0.8	5
483	An electrochemical investigation of novel optically active poly(amide-imide)s based on natural amino acids using multi-wall carbon nanotubes paste electrode. Journal of Solid State Electrochemistry, 2011, 15, 2053-2061.	1.2	20
484	Synthesis of soluble poly(amide-ether-imide-urea)s bearing amino acid moieties in the main chain under green media (ionic liquid). Amino Acids, 2011, 40, 487-492.	1.2	5
485	Synthesis, characterization and in vitro antimicrobial and biodegradability study of pseudo-poly(amino acid)s derived from N,Nâ€2-(pyromellitoyl)-bis-l-tyrosine dimethyl ester as a chiral bioactive diphenolic monomer. Amino Acids, 2011, 40, 611-621.	1.2	41
486	Synthesis of biodegradable chiral poly(ester-imide)s derived from valine-, leucine- and tyrosine-containing monomers. Amino Acids, 2011, 41, 1215-1222.	1.2	21

#	Article	IF	CITATIONS
487	New cohort of optically active nanostructure poly(amideimide)s: Production and properties. Chinese Journal of Polymer Science (English Edition), 2011, 29, 639-649.	2.0	7
488	An efficient microwave-assisted synthesis of optically active polyamides in the presence of ionic liquid and conventional solvent: a comparative study. Polymer Bulletin, 2011, 66, 1005-1014.	1.7	6
489	Synthesis, characterization, and properties of co-poly(ether–urethane–urea)s containing lariat cryptand 22: Li+ harvesting polymers. Polymer Bulletin, 2011, 67, 553-569.	1.7	2
490	Preparation and characterization of optically active polyamides based on 3-phenyl-2-(9,10-dihydro-9,10-ethanoanthracene-11,12-dicarboximido)propanoylamino in 1,3-dipropylimidazolium bromide. Macromolecular Research, 2011, 19, 332-337.	1.0	9
491	Tungstophosphoric Acid Supported on Highly Organosoluble Polyamide (PW12/PA): Highly Efficient Catalysts for the Synthesis of Novel 1,3,5-Triaryl-2-pyrazoline Derivatives. Chinese Journal of Catalysis, 2011, 32, 582-588.	6.9	18
492	<i>N</i> â€(3,4â€Dihydroxyphenethyl)â€3,5â€dinitrobenzamideâ€Modified Multiwall Carbon Nanotubes Paste Electrode as a Novel Sensor for Simultaneous Determination of Penicillamine, Uric acid, and Tryptophan. Electroanalysis, 2011, 23, 1478-1487.	1.5	78
493	Synthesis and characterization of novel dopamine-derivative: Application of modified multi-wall carbon nanotubes paste electrode for electrochemical investigation. Chinese Chemical Letters, 2011, 22, 185-188.	4.8	17
494	Preparation, characterization and surface morphology of novel optically active poly(ester-amide)/functionalized ZnO bionanocomposites via ultrasonication assisted process. Applied Surface Science, 2011, 257, 6725-6733.	3.1	85
495	Insertion of novel optically active poly(amide-imide) chains containing pyromellitoyl-bis-l-phenylalanine linkages into the nanolayered silicates modified with l-tyrosine through solution intercalation. Polymer, 2011, 52, 2514-2523.	1.8	66
496	Construction and Characterization of Bionanocomposites Based on Optically Active Poly(Ester-Imide) Containing L-Amino Acids Using Nano-ZnO Surface-Coupled by γ-Methacryloxypropyl-Trimethoxysilane. Designed Monomers and Polymers, 2011, 14, 487-498.	0.7	19
497	Bionanocomposites Preparation and Characterization: Dispersion of Surface-Modified ZnO Nanoparticles in Optically Active Poly(Amide-Imide) Derived from 3,5-Diamino-N-(4-Hydroxyphenyl)Benzamide and Amino Acid. Designed Monomers and Polymers, 2011, 14, 461-473.	0.7	23
498	Synthesis and Characterization of Poly(Amide-Imide)s Bearing a S-Valine Moiety in Molten Ionic Liquid. Designed Monomers and Polymers, 2011, 14, 221-232.	0.7	14
499	Synthesis and characterization of novel optically active and photoactive aromatic polyesters containing 1,8-naphthalimidyl pendant group by step-growth polymerization. Polymer Bulletin, 2010, 65, 551-563.	1.7	13
500	Design and synthesis of novel organosoluble chiral poly(amide-ether-imide-urea) containing l-leucine moieties in the main chain. Colloid and Polymer Science, 2010, 288, 703-710.	1.0	5
501	Novel chiral poly(ester-imide)s with different natural amino acids in the main chain as well as in the side chain: synthesis and characterization. Colloid and Polymer Science, 2010, 288, 1341-1349.	1.0	21
502	Eco-friendly fast synthesis and thermal degradation of optically active polyamides under microwave accelerating conditions. Chinese Journal of Polymer Science (English Edition), 2010, 28, 685-694.	2.0	15
503	Wholly aromatic chiral polyamides bearing pendant phthalimido and L-isoleucine moities. Chinese Journal of Polymer Science (English Edition), 2010, 28, 859-867.	2.0	5
504	Microwave irradiation as a versatile tool for increasing reaction rates and yields in synthesis of optically active polyamides containing flexible l-leucine amino acid. Amino Acids, 2010, 38, 1369-1376.	1.2	14

#	Article	IF	CITATIONS
505	Construction of chiral polyesters from polycondensation of multifunctional monomer containing both flexible amino acid and rigid pendant groups with aromatic diols. Amino Acids, 2010, 39, 841-848.	1.2	9
506	Synthesis and characterization of novel, optically active polyamides derived from S-valine natural amino acid and bulky anthracenic side chain. Amino Acids, 2010, 39, 1255-1263.	1.2	11
507	A study of the ionic liquid mediated microwave heating for the synthesis of new thermally stable and optically active aromatic polyamides under green procedure. Macromolecular Research, 2010, 18, 129-136.	1.0	22
508	Novel Biobased Polyurethanes Synthesized from Nontoxic Phenolic Diol Containing l-Tyrosine Moiety Under Green Media. Journal of Polymers and the Environment, 2010, 18, 685-695.	2.4	26
509	Environmentally Friendly Methodology for Preparation of Amino Acid Containing Polyamides. Journal of Polymers and the Environment, 2010, 18, 705-713.	2.4	15
510	Catalytic and Efficient Oxidation of Urazole Derivatives to Their Corresponding Triazolinediones Using Ammonium Nitrate and Metal Hydrogen Sulfate as Catalyst. Chinese Journal of Chemistry, 2010, 28, 1189-1192.	2.6	3
511	Stepâ€growth polymerization of 5â€{(9,10â€dihydroâ€9,10â€ethanoanthraceneâ€11,12â€dicarboximido)â€3â€methylbutanoylâ€amino]isophtha aromatic diols. Journal of Applied Polymer Science, 2010, 117, 3239-3246.	al ic acid w	ith
512	Prediction of inherent viscosity for polymers containing natural amino acids from the theoretical derived molecular descriptors. Polymer, 2010, 51, 3568-3574.	1.8	24
513	Studies on syntheses and morphology characteristic of chiral novel poly(ester-imide)/TiO2 bionanocomposites derived from I-phenylalanine based diacid. Polymer, 2010, 51, 5369-5376.	1.8	29
514	Green and rapid preparation of thermally stable and highly organosoluble polyamides containing <i>L</i> â€phenylalanineâ€9,10â€dihydroâ€9,10â€ethanoanthraceneâ€11,12â€dicarboximido moieties. Polymers Advanced Technologies, 2010, 21, 817-824.	5 fD6	16
515	Chiral bio-nanoclays: Synthesis and applications. , 2010, , .		0
516	Highly Selective Potentiometric Sensor for Determining Phenazopyridine Hydrochloride in Biological Fluids Using <i>N,N′</i> -(Pyromellitoyl)-bis-L-tyrosine Dimethyl Ester. Analytical Letters, 2010, 43, 2848-2858.	1.0	11
517	Ionic Liquid as a Green Media for Rapid Synthesis of Optically Active Organosoluble Polyamides. Designed Monomers and Polymers, 2010, 13, 377-386.	0.7	10
518	Synthesis of Optically Active and Thermally Stable Polyamides With Bulky Aromatic Side Chain in an Ionic Liquid (Tetrabutylammonium Bromide). High Performance Polymers, 2010, 22, 567-580.	0.8	23
519	A Green Route for Synthesis of Different Polyureas Based on Phenylurazole: Rapid Solid-state, Microwave-assisted Technique. High Performance Polymers, 2010, 22, 314-327.	0.8	8
520	Microstructure and properties of novel optically active poly(ester-imide)/TiO <inf>2</inf> bionanocomposites containing natural amino acids moieties. , 2010, , .		0
521	High-Speed Microwave-Promoted Direct Poly-amidation Reactions of Bulky Chiral Dicarboxylic Acide with Different Aromatic Diamines in Imidazolium Types Ionic Liquid as a Reaction Medium. Designed Monomers and Polymers, 2010, 13, 51-64.	0.7	14
522	Preparation and characterization of new thermally stable and optically active polyesters by direct polycondensation reaction promoted by Vilsmeier adduct. E-Polymers, 2009, 9, .	1.3	2

#	Article	IF	CITATIONS
523	Use of Ionic Green Solvent for the Synthesis of Optically Active Aromatic Polyamides Containing a L-Leucine Moiety under Microwave Irradiation. Designed Monomers and Polymers, 2009, 12, 589-604.	0.7	11
524	Preparation and characterization of thermostable chiral extended polyamides bearing <i>N</i> â€phthaloylâ€ <scp>L</scp> â€leucine pendent architectures in green media. Journal of Applied Polymer Science, 2009, 111, 1209-1215.	1.3	10
525	Soluble new optically active polyamides derived from 5â€(4â€methylâ€2â€phthalimidylpentanoylamino)isophthalic acid and different diisocyanates under microwave irradiation in molten ionic liquid. Journal of Applied Polymer Science, 2009, 112, 244-253.	1.3	28
526	Catalytic oxidation of urazoles and bis-urazoles to their corresponding triazolinediones using aluminium nitrate and a catalytic amount of silica sulfuric acid. Monatshefte Für Chemie, 2009, 140, 607-610.	0.9	32
527	Microwave-induced synthesis of new optically active and soluble polyamides containing pendent 4-(2-phthalimidiylpropanoylamino)benzoylamino-groups. Amino Acids, 2009, 37, 665-672.	1.2	19
528	Fast synthesis of optically active polyamides containing l-methionine linkages in ionic liquid via a microwave-assisted process. Colloid and Polymer Science, 2009, 287, 1111-1116.	1.0	15
529	Direct polyamidation in green media: Studies on thermal degradation of novel organosoluble and optically active flame retardant polyamides. Reactive and Functional Polymers, 2009, 69, 206-215.	2.0	32
530	Expeditious synthesis of novel aromatic polyamides from 5-[3-phenyl-2-(9,10-dihydro-9,10-ethanoanthracene-11,12-dicarboximido)propanoylamino]isophthalic acid and various diamines using microwave-assisted polycondensation. Reactive and Functional Polymers, 2009–69–252-258	2.0	30
531	1,3,5-Triazine-2,4,6-triyltrisulfamic acid (TTSA): A new organic solid acid for the nitrosation of secondary amines and oxidation of urazoles in the presence of NaNO2 under mild and heterogeneous conditions. Journal of Chemical Sciences, 2009, 121, 441-447.	0.7	21
532	Rapid formation of optically active and organosoluble polyamides containing L-alaninephthalimide side chain via microwave irradiation. Macromolecular Research, 2009, 17, 901-906.	1.0	7
533	Ionic liquid catalyzed synthesis of organosoluble wholly aromatic optically active polyamides. Polymer Bulletin, 2009, 62, 605-614.	1.7	20
534	Preparation of thermally stable and optically active organosoluble aromatic polyamides containing l-leucine amino acid under green conditions. Polymer Bulletin, 2009, 63, 623-635.	1.7	22
535	Kinetics and Thermal Degradation Study of Optically Active and Thermally Stable Aromatic Polyamides with Flame-Retardancy Properties. Polymer Journal, 2009, 41, 308-318.	1.3	15
536	Fast Synthesis, Using Microwave Induction Heating in Ionic Liquid and Characterization of Optically Active Aromatic Polyamides. Journal of Macromolecular Science - Pure and Applied Chemistry, 2009, 46, 783-789.	1.2	18
537	Supported Nitric Acid on Silica Gel and Polyvinyl Pyrrolidone (PVP) as an Efficient Oxidizing Agent for the Oxidation of Urazoles and Bis-urazoles. Synthetic Communications, 2009, 39, 4264-4270.	1.1	24
538	Use of ionic liquid and microwave irradiation as a convenient, rapid and eco-friendly method for synthesis of novel optically active and thermally stable aromatic polyamides containing N-phthaloyl-l-alanine pendent group. Polymer Degradation and Stability, 2008, 93, 753-759.	2.7	38
539	Direct Polyamidation in Molten Tetrabutylammonium bromide: Novel and Efficient Green Media. Polymer Bulletin, 2008, 60, 191-198.	1.7	17
540	Solid-State Polymerization of 4-(4-Dimethylaminophenyl)-urazole with Diisocyanates. Polymer Bulletin, 2008, 60, 507-514.	1.7	3

#	Article	IF	CITATIONS
541	N-Bromo Reagent Mediated Oxidation of Urazoles to Their Corresponding Triazolinediones under Mild and Heterogeneous Conditions. Monatshefte Für Chemie, 2008, 139, 261-265.	0.9	27
542	Synthesis and characterization of novel organosoluble and optically active aromatic polyesters containing l-methionine and phthalimide pendent groups. Amino Acids, 2008, 34, 531-538.	1.2	19
543	lonic liquids as novel and green media for clean synthesis of soluble aromaticâ€∎liphatic poly(amideâ€ester)s containing hydroxynaphthalene urazole moiety. Polymers for Advanced Technologies, 2008, 19, 1015-1023.	1.6	11
544	Microwave stepâ€growth polymerization of 5â€(4â€methylâ€2â€phthalimidylpentanoylamino)isophthalic acid with different diisocyanates. Polymers for Advanced Technologies, 2008, 19, 1334-1342.	1.6	29
545	Microwaveâ€enhanced rapid synthesis of organosoluble polyamides based on 5â€(3â€acetoxynaphthoylamino)â€isophthalic acid. Polymers for Advanced Technologies, 2008, 19, 1474-1478.	1.6	11
546	Chromophoric poly(ureaâ€urethane)s with pendent 3â€hydroxynaphthalene group: Synthesis and characterization. Journal of Applied Polymer Science, 2008, 108, 1323-1328.	1.3	1
547	A novel and green method for polycondensation reaction of 4â€substituted phenylurazoles with different diisocyanates under solventâ€free conditions. Journal of Applied Polymer Science, 2008, 108, 3462-3466.	1.3	2
548	Synthesis and characterization of new optically active segmented poly(amide imide urethane)s based on different diacids via an isocyanate route. Journal of Applied Polymer Science, 2008, 108, 2975-2982.	1.3	13
549	Efficient and rapid synthesis of optically active polyamides in the presence of tetrabutylammonium bromide as ionic liquids under microwave irradiation. Journal of Applied Polymer Science, 2008, 109, 3603-3612.	1.3	21
550	Synthesis and characterization of new optically active polyesters by step-growth polymerization of novel aromatic (2S)-4-[(4-methyl-2-phthalimidyl-pentanoylamino)benzoylamino]isophthalic acid with aromatic diols. Journal of Applied Polymer Science, 2008, 110, 2942-2949.	1.3	12
551	Safe and fast polyamidation of 5-[4-(2-phthalimidiylpropanoylamino)benzoylamino]isophthalic acid with aromatic diamines in ionic liquid under microwave irradiation. Polymer, 2008, 49, 3007-3013.	1.8	42
552	Microwave heating coupled with ionic liquids: Synthesis and properties of novel optically active polyamides, thermal degradation and electrochemical stability on multi-walled carbon nanotubes electrode. Polymer, 2008, 49, 3239-3249.	1.8	44
553	Synthesis and properties of novel soluble aromatic polyamides derived from 5-(2-phthalimidyl-3-methyl) Tj ETQq1 91-96.	1 0.78431 2.0	4 rgBT /Ove 40
554	Polycondensation of new optically active diacid with diisocyanates in the presence of tetrabutylammonium bromide as a green media under microwave heating. Reactive and Functional Polymers, 2008, 68, 1459-1466.	2.0	28
555	A facile, microwave-assisted synthesis of novel optically active polyamides derived from 5-(3-methyl-2-phthalimidylpentanoylamino)isophthalic acid and different diisocyanates. European Polymer Journal, 2008, 44, 87-97.	2.6	41
556	One-pot polyamidation reaction of optically active aromatic diacid containing methionine and phthalimide moieties with aromatic diamines under microwave irradiation and traditional heating. European Polymer Journal, 2008, 44, 3615-3619.	2.6	9
557	Room Temperature Ionic Liquids as Replacements for Organic Solvents: Direct Preparation of Wholly Aromatic Polyamides Containing Phthalimide and S-valine Moieties. Polymer Journal, 2008, 40, 513-519.	1.3	8
558	Molten Tetrabutylammonium Bromide as Eco-Friendly Media for the Synthesis of Optically Active and Thermal Stable Polyamides under Microwave Irradiation. Polymer Journal, 2008, 40, 1049-1059.	1.3	16

#	Article	IF	CITATIONS
559	Synthesis and Characterization of Novel Poly(sulfoxide-urethane)s from 2,2'-Sulfoxidebis(4-methyl) Tj ETQq1 1 0	.784314 r	gBŢ /Overloc
560	Preparation of New Optically Active Polyamides Containing a L-Phenylalanine, Phthalimide Side-Chain via the Diisocyanate Route by Microwave Energy: Comparison With Conventional Heating. Designed Monomers and Polymers, 2008, 11, 535-546.	0.7	12
561	Synthesis and Characterization of Poly(amide-ester)s Containing Naphthalene Pendent Groups and Urazole Rings. Designed Monomers and Polymers, 2008, 11, 283-296.	0.7	1
562	Synthesis, Characterization and Properties of a Series of Copoly(amide-imide-ether-urethane)s with a New Hard Segment Constituent: Study of the Effect of Hard Segment Content. High Performance Polymers, 2008, 20, 146-165.	0.8	14
563	Synthesis and Characterization of Organosoluble Optically Active Poly(ester-imide)s Derived from Trimellitic Anhydride, L-Methionine and Bisphenols. High Performance Polymers, 2008, 20, 3-18.	0.8	5
564	Synthesis and Characterization of New Poly(sulfoxide-ether-amide)s from 2,2'-Sulfoxide Bis(4-methyl) Tj ETQq0 0	0 rgBT /C)verlock 10 T
565	Green Methodology with Ionic Liquids as a Media for Efficient Synthesis of Polyamides Derived from 4-(4-Dimethylaminophenyl)-1,2,4-triazolidine-3,5-dione and Diacid Chlorides2. High Performance Polymers, 2007, 19, 427-438.	0.8	8
566	A comparative study of two different methods for direct polyamidation of N-trimellitylimido-L-methionine with various aromatic diamines. Designed Monomers and Polymers, 2007, 10, 439-448.	0.7	17
567	Novel and Efficient Synthesis of 4â€5ubstitutedâ€1,2,4â€triazolidineâ€3,5â€diones from Anilines. Synthetic Communications, 2007, 37, 1927-1934.	1.1	13
568	Molten Salt as a Green Reaction Medium: Synthesis of Polyureas Containing 4-phenylurazole Moiety in the Main Chain in the Presence of Tetrabutylammonium bromide as an Ionic Liquid. E-Polymers, 2007, 7, .	1.3	3
569	Preparation and characterization of new photoactive polyamides containing 4-(4-dimethylaminophenyl)urazole units. Journal of Applied Polymer Science, 2007, 103, 947-954.	1.3	13
570	Preparation of new poly(amide–imide)s with chiral architectures via direct polyamidation reaction. Journal of Applied Polymer Science, 2007, 104, 1248-1254.	1.3	66
571	Tetrabutylammonium bromide: An efficient, green and novel media for polycondensation of 4-(4-dimethylaminophenyl)-1,2,4-triazolidine-3,5-dione with diisocyanates. European Polymer Journal, 2007, 43, 1510-1515.	2.6	35
572	Synthesis and properties of thermally stable and optically active novel wholly aromatic polyesters containing a chiral pendent group. European Polymer Journal, 2007, 43, 3344-3354.	2.6	35
573	Microwave-assisted clean synthesis of aromatic photoactive polyamides derived from 5-(3-acetoxynaphthoylamino)-isophthalic acid and aromatic diamines in ionic liquid. European Polymer Journal, 2007, 43, 5017-5025.	2.6	23
574	Efficient combination of ionic liquids and microwave irradiation as a green protocol for polycondensation of 4-(3-hydroxynaphthalene)-1,2,4-triazolidine-3,5-dione with diisocyanates. Polymer, 2007, 48, 5530-5540.	1.8	55
575	Synthesis and Characterization of Novel Organosoluble, Thermal Stable and Optically Active Polyesters Derived from 5-(2-Phthalimidiylpropanoylamino)isophthalic Acid. Polymer Journal, 2007, 39, 1185-1192.	1.3	22
	Preparation and Properties of New Copoly(amide-imide-ether-urethane)s based on Ris(n-amido benzoic) Ti FTOo() () () roRT	Overlock 10

Preparation and Properties of New Copoly(amide-imide-ether-urethane)s based on Bis(p-amido benzoic) Tj ETQq0 0 0 rgBT /Overlock 10 1.7 11 339-350.

#	Article	IF	CITATIONS
577	Novel Optically Active Poly(amide-imide)s Derived from N-Trimellitylimido-L-Isoleucine and Different Diisocyanates. Polymer Bulletin, 2007, 59, 587-596.	1.7	17
578	Synthesis and characterization of new self-colored thermally stable poly(amide-ether-urethane)s based on an azo dye and different diisocyanates. Dyes and Pigments, 2007, 74, 713-722.	2.0	27
579	Study on synthesis and characterization of novel optically active poly(amide-imide)s based on bis(p-aminobezoic acid)-N-trimellitylimido-S-valine via direct polycondensation. E-Polymers, 2006, 6, .	1.3	0
580	Preparation and characterization of new thermally stable and optically active poly(ester-imide)s by direct polycondensation with thionyl chloride in pyridine. Polymers for Advanced Technologies, 2006, 17, 174-179.	1.6	18
581	Preparation and characterization of new optically active poly(amide-imide)s derived fromN,N-(4,4′-Oxydiphthaloyl)-bis-(s)-(+)-valine diacid chloride and aromatic diamines. Polymer Engineering and Science, 2006, 46, 558-565.	1.5	28
582	4-(p-Chloro)phenyl-1,2,4-triazole-3,5-dione as a novel and reusable reagent for the oxidation of 1,3,5-trisubstituted pyrazolines under mild conditions. Tetrahedron Letters, 2006, 47, 833-836.	0.7	38
583	The Performance of Phthalimide-N-oxyl Anion. Monatshefte Für Chemie, 2006, 137, 1591-1595.	0.9	21
584	Study of the Miscibility of Hard and Soft Segments of Optically Active Poly(amide-imide-ether-urethane) Copolymers based-L-Leucine with Different Soft Segments. Polymer Bulletin, 2006, 56, 9-18.	1.7	10
585	Synthesis of Photoactive Polyureas Derived from 4-(4-Dimethylaminophenyl)-1,2,4-triazolidine-3,5-dione and Diisocyanates. Polymer Bulletin, 2006, 56, 293-303.	1.7	16
586	Direct Polyamidation of N,N'-(4,4'-Hexafluoroisopropy-lidendiphthaloyl)-bis-L-isoleucine with Different Aromatic Diamines via Vilsmeier Adduct Derived from Tosyl Chloride and N,N-Dimethylformamide. Polymer Bulletin, 2006, 56, 339-347.	1.7	12
587	Thermally Stable and Optically Active Poly(amide-imide)s Derived from 4,4'–(Hexafluoroisopropylidene)-N,N'-bis-(phthaloyl-L-methionine) Diacid Chloride and Various Aromatic Diamines: Synthesis and Characterization. Polymer Bulletin, 2006, 57, 169-178.	1.7	21
588	Step-Growth Polymerization of 4-(1-Naphthyl)-1,2,4-triazolidine-3,5-dione with Diisocyanates. Polymer Bulletin, 2006, 57, 611-621.	1.7	5
589	Polycondensation reaction ofN,N′-(4,4′-oxydiphthaloyl)-bis-L-methionine diacid chloride with aromatic diamines: Synthesis and properties. Journal of Applied Polymer Science, 2006, 99, 1038-1044.	1.3	16
590	Synthesis of novel optically active poly(ester imide)s by direct polycondensation reaction promoted by tosyl chloride in pyridine in the presence ofN,N-dimethyformamide. Journal of Applied Polymer Science, 2006, 101, 455-460.	1.3	36
591	Soluble novel optically active poly(amide-imide)s derived fromN,N?-(4,4?-oxydiphthaloyl)-bis-L-leucine diacid chloride and various aromatic diamines: Synthesis and characterization. Journal of Applied Polymer Science, 2005, 96, 435-442.	1.3	26
592	New optically active poly(amide-imide-urethane) thermoplastic elastomers derived from poly(ethylene) Tj ETQq0 C method under microwave irradiation. Journal of Applied Polymer Science, 2005, 98, 1781-1792.) O rgBT /C 1.3)verlock 10 ⁻ 21
593	Preparation and Characterization of New Optically Active Poly(amide imide)s Derived from N,N?-(4,4?-Sulphonediphthaloyl)-bis-(s)-(+)-valine Diacid Chloride and Aromatic Diamines under Microwave Irradiation. Polymer Bulletin, 2005, 53, 169-180.	1.7	27
594	Synthesis and Properties of Novel Soluble and Thermally Stable Optically Active Poly(amide-imide)s from N,N'-(4,4'-Oxydiphthaloyl)-bis-L-phenylalanine Diacid Chloride and Aromatic Diamines. Polymer Bulletin, 2005, 54, 147-155.	1.7	10

#	Article	IF	CITATIONS
595	Synthesis of Organosoluble and Optically Active Poly(ester-imide)s by Direct Polycondensation with Tosyl Chloride in Pyridine and Dimethylformamide. Polymer Bulletin, 2005, 55, 51-59.	1.7	23
596	Preparation and characterization of optically active and organosoluble poly(amide-imide)s from polycondensation reaction ofN,Nâ€2-(4,4â€2-sulphonediphthaloyl)-bis-L-isoleucine diacid with aromatic diamines. Polymers for Advanced Technologies, 2005, 16, 466-472.	1.6	20
597	Synthesis and characterization of new optically active poly(amide-imide)s containing epiclon andL-methionine moieties in the main chain. Polymers for Advanced Technologies, 2005, 16, 732-737.	1.6	39
598	Direct polycondensations ofN,N′-(4,4′-oxydiphthaloyl)-bis-L-leucine diacid by use of tosyl chloride in the presence ofN,N-dimethylformamide. Polymers for Advanced Technologies, 2005, 16, 795-799.	1.6	19
599	Ionic liquids as novel solvents and catalysts for the direct polycondensation ofN,Nâ€2-(4,4â€2-oxydiphthaloyl)-bis-L-phenylalanine diacid with various aromatic diamines. Journal of Polymer Science Part A, 2005, 43, 6545-6553.	2.5	55
600	Combination of Sulfite Anion and Phase Transfer Catalysts for Green Cyclotrimerization of Aryl Isocyanates. Synthetic Communications, 2005, 35, 427-434.	1.1	10
601	Synthesis and characterization of novel optically active poly(amide–imide)s containingN,N′-(pyromellitoyl)-bis-L-valine diacid chloride and 5,5-disubstituted hydantoin derivatives under microwave irradiation. Polymer International, 2004, 53, 1226-1234.	1.6	23
602	Synthesis and characterization of novel optically active poly(imide–urethane)s derived fromN,N′-(pyromellitoyl)-bis-(L-leucine) diisocyanate and aromatic diols. Polymer International, 2004, 53, 184-190.	1.6	32
603	Facile synthesis of novel optically active poly(amide-imide)s containingN,N?-(pyromellitoyl)-bis-l-phenylalanine diacid chloride and 5,5-disubstituted hydantoin derivatives under microwave irradiation. Journal of Applied Polymer Science, 2004, 91, 516-524.	1.3	44
604	Microwave-assisted rapid polycondensation reaction of 4-(4?-acetamidophenyl)-1,2,4-triazolidine-3,5-dione with diisocyanates. Journal of Applied Polymer Science, 2004, 91, 2103-2113.	1.3	19
605	Synthesis and characterization of new optically active poly(amide-imide-urethane) thermoplastic elastomers, derived from 4,4?-(hexafluoroisopropylidene)-N,N?-bis(phthaloyl-L-leucine-p-aminobenzoic) Tj ETQq1	1 0.3 8431	l4 rg BT /Ove
606	Microwave-assisted and conventional polycondensation reaction of optically activeN,N?-(4,4?-sulphonediphthaloyl)-bis-L-leucine diacid chloride with aromatic diamines. Journal of Applied Polymer Science, 2004, 91, 2992-3000.	1.3	17
607	Synthesis of new optically active poly(amide-imide)s containing EPICLON andL-phenylalanine in the main chain by microwave irradiation and classical heating. Journal of Applied Polymer Science, 2004, 91, 3281-3291.	1.3	41
608	Microwave-promoted rapid synthesis of new optically active poly(amide imide)s derived fromN,N?-(pyromellitoyl)-bis-L-isoleucine diacid chloride and aromatic diamines. Journal of Applied Polymer Science, 2004, 92, 951-959.	1.3	38
609	Synthesis and characterization of new polyamides derived from 4-(4?-aminophenyl)urazole and aliphatic diacid chlorides. Journal of Applied Polymer Science, 2004, 92, 3173-3185.	1.3	3
610	Microwave-assisted and classical heating polycondensation reaction of bis(p-amido benzoic) Tj ETQq0 0 0 rgBT / active poly(amide imide)s. Journal of Applied Polymer Science, 2004, 93, 1647-1659.	Overlock 1 1.3	0 Tf 50 147 26
611	Direct polycondensation ofN-trimellitylimido-L-isoleucine with aromatic diamines. Journal of Applied Polymer Science, 2003, 89, 116-122.	1.3	40
612	Synthesis of novel polyimides containing side-chain azo-2-naphthol moieties. Journal of Applied Polymer Science, 2003, 89, 1942-1951.	1.3	4

#	Article	IF	CITATIONS
613	Synthesis and characterization of new polyureas based on 4-(4?-aminophenyl)urazole and various diisocyanates. Journal of Applied Polymer Science, 2003, 89, 2692-2700.	1.3	19
614	Polymerization of 4-(4?-N-1,8-naphthalimidophenyl)-1,2,4-triazolidine-3,5-dione with diisocyanates. Journal of Applied Polymer Science, 2003, 90, 2861-2869.	1.3	13
615	Microwave-assisted synthesis of optically active poly(amide imide)s derived from diacid chloride containing epiclon andL-leucine with aromatic diamines. Journal of Polymer Science Part A, 2003, 41, 1077-1090.	2.5	31
616	Synthesis and characterization of novel, optically active poly(amide-imide)s fromN,N?-(4,4?-sulfonediphthaloyl)-bis-L-phenylalanine diacid chloride and aromatic diamines under microwave irradiation. Journal of Polymer Science Part A, 2003, 41, 3974-3988.	2.5	30
617	Microwave-promoted synthesis of new optically active poly(ester-imide)s derived from N,N′-(pyromellitoyl)-bis-l-leucine diacid chloride and aromatic diols. European Polymer Journal, 2003, 39, 1823-1829.	2.6	37
618	Solid-state Synthesis of 1-Ethoxycarbonyl-4-substituted-semicarbazides. Molecules, 2003, 8, 359-362.	1.7	4
619	Microwave Assisted Synthesis of 4-Substituted 1-Ethoxycarbonyl Semicarbazides from Ethyl Carbazate and Isocyanates. Monatshefte Für Chemie, 2003, 134, 1015-1017.	0.9	4
620	Alumina-supported potassium permanganate: A mild, inexpensive and efficient reagent for solvent-free deprotection of thioacetals. Sulfur Letters, 2003, 26, 77-81.	0.3	4
621	A facile and selective method for oxidation of sulfides and thiols to their corresponding sulfoxides and disulfides with alumina-supported potassium permanganate under solvent-free conditions. Sulfur Letters, 2002, 25, 155-160.	0.3	21