Byunghong Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7325955/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cs ₂ SnI ₆ -Encapsulated Multidye-Sensitized All-Solid-State Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 21424-21434.	4.0	35
2	Surface Stateâ€Mediated Charge Transfer of Cs ₂ SnI ₆ and Its Application in Dye‣ensitized Solar Cells. Advanced Energy Materials, 2019, 9, 1803243.	10.2	37
3	Metal-free branched alkyl tetrathienoacene (TTAR)-based sensitizers for high-performance dye-sensitized solar cells. Journal of Materials Chemistry A, 2017, 5, 12310-12321.	5.2	55
4	Solution processing of air-stable molecular semiconducting iodosalts, Cs ₂ SnI _{6â^'x} Br _x , for potential solar cell applications. Sustainable Energy and Fuels, 2017, 1, 710-724.	2.5	174
5	Metal-Free Tetrathienoacene Sensitizers for High-Performance Dye-Sensitized Solar Cells. Journal of the American Chemical Society, 2015, 137, 4414-4423.	6.6	243
6	Air-Stable Molecular Semiconducting Iodosalts for Solar Cell Applications: Cs ₂ SnI ₆ as a Hole Conductor. Journal of the American Chemical Society, 2014, 136, 15379-15385.	6.6	560
7	Three Dimensional Indium–Tin-Oxide Nanorod Array for Charge Collection in Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2014, 6, 17713-17722.	4.0	16
8	Efficiency Enhancement in Dye-Sensitized Solar Cells by Three-Dimensional Photonic Crystals. Applied Physics Express, 2012, 5, 122301.	1.1	7
9	An all carbon counter electrode for dye sensitized solar cells. Energy and Environmental Science, 2012, 5, 6941.	15.6	124
10	All-solid-state dye-sensitized solar cells with high efficiency. Nature, 2012, 485, 486-489.	13.7	1,608
11	Optimizing the Performance of a Plastic Dye-Sensitized Solar Cell. Journal of Physical Chemistry C, 2011, 115, 9787-9796.	1.5	37
12	Materials, Interfaces, and Photon Confinement in Dye-Sensitized Solar Cells. Journal of Physical Chemistry B, 2010, 114, 14582-14591.	1.2	76
13	A New Generation of Energy Harvesting Devices. , 0, , .		1