
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7325908/publications.pdf Version: 2024-02-01

ADDIAN C NEWTON

#	Article	IF	CITATIONS
1	Climate change, plant diseases and food security: an overview. Plant Pathology, 2011, 60, 2-14.	1.2	710
2	Integrating pests and pathogens into the climate change/food security debate. Journal of Experimental Botany, 2009, 60, 2827-2838.	2.4	433
3	Induced Resistance for Plant Disease Control: Maximizing the Efficacy of Resistance Elicitors. Phytopathology, 2005, 95, 1368-1373.	1.1	393
4	Liming impacts on soils, crops and biodiversity in the UK: A review. Science of the Total Environment, 2018, 610-611, 316-332.	3.9	285
5	Pathogenesis, parasitism and mutualism in the trophic space of microbe–plant interactions. Trends in Microbiology, 2010, 18, 365-373.	3.5	278
6	Cereal variety and species mixtures in practice, with emphasis on disease resistance. Agronomy for Sustainable Development, 2000, 20, 813-837.	0.8	276
7	Genome-wide association mapping to candidate polymorphism resolution in the unsequenced barley genome. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 21611-21616.	3.3	259
8	Crops that feed the world 4. Barley: a resilient crop? Strengths and weaknesses in the context of food security, 2011, 3, 141-178.	2.4	216
9	Cereal landraces for sustainable agriculture. A review. Agronomy for Sustainable Development, 2010, 30, 237-269.	2.2	197
10	Implications of climate change for diseases, crop yields and food security. Euphytica, 2011, 179, 3-18.	0.6	197
11	Novel disease control compounds: the potential to 'immunize' plants against infection. Plant Pathology, 1995, 44, 407-427.	1.2	143
12	Molecular effects of resistance elicitors from biological origin and their potential for crop protection. Frontiers in Plant Science, 2014, 5, 655.	1.7	138
13	Taxonomic homogenization of woodland plant communities over 70 years. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 3539-3544.	1.2	132
14	Deployment of diversity for enhanced crop function. Annals of Applied Biology, 2009, 154, 309-322.	1.3	130
15	The development and application of molecular markers for abiotic stress tolerance in barley. Journal of Experimental Botany, 2000, 51, 19-27.	2.4	117
16	The Barley mlo-gene: an important powdery mildew resistance source. Agronomy for Sustainable Development, 2000, 20, 745-756.	0.8	114
17	Understanding the genetic control and physiological traits associated with rhizosheath production by barley (<i><scp>H</scp>ordeum vulgare</i>). New Phytologist, 2014, 203, 195-205.	3.5	105
18	Facilitation and sustainable agriculture: a mechanistic approach to reconciling crop production and conservation. Functional Ecology, 2016, 30, 98-107.	1.7	97

#	Article	IF	CITATIONS
19	Managing the ecology of foliar pathogens: ecological tolerance in crops. Annals of Applied Biology, 2010, 157, 343-359.	1.3	94
20	Variation for isozymes and double-stranded RNA among isolates of Puccinia striiformis and two other cereal rusts. Plant Pathology, 1985, 34, 235-247.	1.2	81
21	Title is missing!. Biodiversity and Conservation, 1999, 8, 869-889.	1.2	73
22	Control of foliar diseases in barley: towards an integrated approach. European Journal of Plant Pathology, 2012, 133, 33-73.	0.8	73
23	Intraspecific genetic diversity and composition modify speciesâ€ l evel diversity–productivity relationships. New Phytologist, 2015, 205, 720-730.	3.5	71
24	Adapting crops and cropping systems to future climates to ensure food security: The role of crop modelling. Global Food Security, 2013, 2, 24-28.	4.0	70
25	Individualistic species limitations of climateâ€induced range expansions generated by mesoâ€scale dispersal barriers. Diversity and Distributions, 2011, 17, 275-286.	1.9	66
26	The effect of component number on Rhynchosporium secalis infection and yield in mixtures of winter barley cultivars. Plant Pathology, 1997, 46, 930-938.	1.2	64
27	Restoration of forest resilience: An achievable goal?. New Forests, 2015, 46, 645-668.	0.7	59
28	A metaâ€analysis of functional group responses to forest recovery outside of the tropics. Conservation Biology, 2015, 29, 1695-1703.	2.4	59
29	Facilitation and biodiversity–ecosystem function relationships in crop production systems and their role in sustainable farming. Journal of Ecology, 2021, 109, 2054-2067.	1.9	58
30	Mahogany Conservation: Status and Policy Initiatives. Environmental Conservation, 1992, 19, 331-338.	0.7	55
31	Subjective components of mildew assessment on spring barley. European Journal of Plant Pathology, 1994, 100, 395-412.	0.8	55
32	Plant metacommunity structure remains unchanged during biodiversity loss in English woodlands. Oikos, 2011, 120, 302-310.	1.2	55
33	Do resistance elicitors offer new opportunities in integrated disease control strategies?. Plant Pathology, 1997, 46, 636-641.	1.2	53
34	Successional changes in soil, litter and macroinvertebrate parameters following selective logging in a Mexican Cloud Forest. Applied Soil Ecology, 2007, 35, 340-355.	2.1	51
35	Structure, composition and dynamics of a calcareous grassland metacommunity over a 70â€year interval. Journal of Ecology, 2012, 100, 196-209.	1.9	49
36	Can landscapeâ€scale approaches to conservation management resolve biodiversity–ecosystem service tradeâ€offs?. Journal of Applied Ecology, 2016, 53, 96-105.	1.9	48

#	Article	IF	CITATIONS
37	Resistance, epidemiology and sustainable management of <i>Rhynchosporium secalis</i> populations on barley. Plant Pathology, 2008, 57, 1-14.	1.2	44
38	Impact of soil tillage on the robustness of the genetic component of variation in phosphorus (P) use efficiency in barley (Hordeum vulgare L.). Plant and Soil, 2011, 339, 113-123.	1.8	42
39	Biodiversity Risks of Adopting Resilience as a Policy Goal. Conservation Letters, 2016, 9, 369-376.	2.8	42
40	Induction of resistance mechanisms in barley by yeast-derived elicitors. Annals of Applied Biology, 1994, 124, 509-517.	1.3	41
41	Effects of Climate Change on the Potential Species Richness of Mesoamerican Forests. Biotropica, 2012, 44, 284-293.	0.8	40
42	Does landscape-scale conservation management enhance the provision of ecosystem services?. International Journal of Biodiversity Science, Ecosystem Services & Management, 2014, 10, 71-83.	2.9	39
43	Quantitative evolution of aggressiveness of powdery mildew under twoâ€cultivar barley mixtures. Plant Pathology, 2009, 58, 378-388.	1.2	38
44	Diversity of methodologies to experiment Integrated Pest Management in arable cropping systems: Analysis and reflections based on a European network. European Journal of Agronomy, 2017, 83, 86-99.	1.9	36
45	Modelling the spread of fungal diseases using a nearest neighbour approach: effect of geometrical arrangement. Plant Pathology, 1994, 43, 631-643.	1.2	35
46	Non-Timber Forest Products in the Community of El Terrero, Sierra de Manantlán Biosphere Reserve, Mexico: Is Their Use Sustainable?. Economic Botany, 2003, 57, 262-278.	0.8	35
47	Drivers of the composition and diversity of carabid functional traits in UK coniferous plantations. Forest Ecology and Management, 2016, 359, 300-308.	1.4	35
48	Soil tillage effects on the efficacy of cultivars and their mixtures in winter barley. Field Crops Research, 2012, 128, 91-100.	2.3	34
49	Similar biodiversity of ectomycorrhizal fungi in set-aside plantations and ancient old-growth broadleaved forests. Biological Conservation, 2016, 194, 71-79.	1.9	34
50	The effects of uneven, patchy cultivar mixtures on disease control and yield in winter barley. Field Crops Research, 2009, 110, 225-228.	2.3	33
51	Scale and spatial structure effects on the outcome of barley cultivar mixture trials for disease control. Field Crops Research, 2011, 123, 74-79.	2.3	33
52	Determining the spirit yield of wheat varieties and variety mixtures. Journal of Cereal Science, 2005, 42, 127-134.	1.8	32
53	Grain Yield Stability of Cereal-Legume Intercrops Is Greater Than Sole Crops in More Productive Conditions. Agriculture (Switzerland), 2021, 11, 255.	1.4	31
54	Establishment of <i>Clethra occidentalis</i> on stems of the tree-fern <i>Cyathea pubescens</i> in a Jamaican montane rain forest. Journal of Tropical Ecology, 1989, 5, 441-445.	0.5	30

#	Article	IF	CITATIONS
55	The interaction of fertiliser treatment with tolerance to powdery mildew in spring barley. Field Crops Research, 1998, 55, 45-56.	2.3	29
56	Ongoing, but slowing, habitat loss in a rural landscape over 85Âyears. Landscape Ecology, 2020, 35, 257-273.	1.9	29
57	Measuring the sterol content of barley leaves infected with powdery mildew as a means of assessing partial resistance to Erysiphe graminis f.sp. hordei. Plant Pathology, 1989, 38, 534-540.	1.2	28
58	Genetic variation in mahoganies: its importance, capture and utilization. Biodiversity and Conservation, 1993, 2, 114-126.	1.2	28
59	Implications of Goodhart's Law for monitoring global biodiversity loss. Conservation Letters, 2011, 4, 264-268.	2.8	28
60	A transcriptional reference map of defence hormone responses in potato. Scientific Reports, 2015, 5, 15229.	1.6	28
61	Habitat Fragmentation Intensifies Trade-Offs between Biodiversity and Ecosystem Services in a Heathland Ecosystem in Southern England. PLoS ONE, 2015, 10, e0130004.	1.1	28
62	The rise, fall and resurrection of chemicalâ€induced resistance agents. Pest Management Science, 2021, 77, 3900-3909.	1.7	28
63	Variation in cultural characteristics, pathogenicity, vegetative compatibility and electrophoretic karyotype within field populations of Stagonospora nodorum. Plant Pathology, 2000, 49, 219-226.	1.2	27
64	Title is missing!. Euphytica, 2002, 125, 325-335.	0.6	26
65	Characterisation of early transcriptional changes involving multiple signalling pathways in the Mla13 barley interaction with powdery mildew (Blumeria graminis f. sp. hordei). Planta, 2004, 218, 803-813.	1.6	26
66	Recurrent Selection for Adaptation of Erysiphe graminis f. sp. hordei to Partial Resistance and the Effect of Environment on Expression of Partial Resistance of Barley. Journal of Phytopathology, 1991, 132, 328-338.	0.5	25
67	Conservation implications of long-term changes detected in a lowland heath plant metacommunity. Biological Conservation, 2013, 167, 325-333.	1.9	25
68	Infection strategy of <i>Ramularia collo ygni</i> and development of ramularia leaf spot on barley and alternative graminaceous hosts. Plant Pathology, 2017, 66, 45-55.	1.2	25
69	Impacts of invasive plants on carbon pools depend on both species' traits and local climate. Ecology, 2017, 98, 1026-1035.	1.5	25
70	Sustainability of European winter wheat- and maize-based cropping systems: Economic, environmental and social ex-post assessment of conventional and IPM-based systems. Crop Protection, 2017, 97, 60-69.	1.0	25
71	Contrasting nutrient–disease relationships: Potassium gradients in barley leaves have opposite effects on two fungal pathogens with different sensitivities to jasmonic acid. Plant, Cell and Environment, 2018, 41, 2357-2372.	2.8	25
72	Transformation of the plant pathogenic fungus,Rhynchosporium secalis. Current Genetics, 1996, 29, 587-590.	0.8	24

#	Article	IF	CITATIONS
73	Temporary partial breakdown of Mlo-resistance in spring barley by the sudden relief of soil water stress. Plant Pathology, 1996, 45, 973-977.	1.2	24
74	THE EFFECT OF CULTIVAR MIXTURES ON MALTING QUALITY IN WINTER BARLEY. Journal of the Institute of Brewing, 1998, 104, 41-45.	0.8	24
75	Infection of <i>Rrs1</i> barley by an incompatible race of the fungus <i>Rhynchosporium secalis</i> expressing the green fluorescent protein. Plant Pathology, 2011, 60, 513-521.	1.2	24
76	Genetic Adaptation of Erysiphc graminis f. sp. Hordei to Barley with Partial Resistance. Journal of Phytopathology, 1989, 126, 133-148.	0.5	23
77	Genetic basis of control of Rhynchosporium secalis infection and symptom expression in barley. Euphytica, 2012, 184, 47-56.	0.6	23
78	Pathogen Populations Evolve to Greater Race Complexity in Agricultural Systems – Evidence from Analysis of Rhynchosporium secalis Virulence Data. PLoS ONE, 2012, 7, e38611.	1.1	23
79	Exploitation of Diversity within Crops—the Key to Disease Tolerance?. Frontiers in Plant Science, 2016, 7, 665.	1.7	22
80	Mixtures of UK Wheat as an Efficient and Environmentally Friendly Source for Bioethanol. Journal of Industrial Ecology, 2005, 9, 109-126.	2.8	21
81	Effects of drought stress and its sudden relief on free radical processes in barley. Journal of the Science of Food and Agriculture, 2005, 85, 47-53.	1.7	21
82	Evaluation of Bayesian networks for modelling habitat suitability and management of a protected area. Journal for Nature Conservation, 2014, 22, 235-246.	0.8	21
83	Future environmental and geographic risks of Fusarium head blight of wheat in Scotland. European Journal of Plant Pathology, 2015, 142, 133-147.	0.8	21
84	The Gaharu Trade in Indonesia: Is It Sustainable?1. Economic Botany, 2002, 56, 271-284.	0.8	20
85	Ecological restoration of agricultural land can improve its contribution to economic development. PLoS ONE, 2021, 16, e0247850.	1.1	20
86	Cereal Landraces for Sustainable Agriculture. , 2011, , 147-186.		19
87	Temporary partial breakdown ofmloâ€resistance in spring barley by sudden relief of soil waterâ€stress under field conditions: the effects of genetic background andmloallele. Plant Pathology, 1998, 47, 401-410.	1.2	18
88	A trait-based approach to crop–weed interactions. European Journal of Agronomy, 2015, 70, 22-32.	1.9	18
89	A CONSIDERATION OF THE GENETIC CONTROL OF SPECIES SPECIFICITY IN FUNGAL PLANT PATHOGENS AND ITS RELEVANCE TO A COMPREHENSION OF THE UNDERLYING MECHANISMS. Biological Reviews, 1989, 64, 35-50.	4.7	17
90	Variation across environments in patterns of water uptake and endosperm modification in barley varieties and variety mixtures. Journal of the Science of Food and Agriculture, 2006, 86, 826-833.	1.7	17

#	Article	IF	CITATIONS
91	Analysing the contribution of component cultivars and cultivar combinations to malting quality, yield and disease in complex mixtures. Journal of the Science of Food and Agriculture, 2008, 88, 2142-2152.	1.7	17
92	Climate Change and Defense against Pathogens in Plants. Advances in Applied Microbiology, 2012, 81, 89-132.	1.3	17
93	Somatic recombination in Rhynchosporium secalis. Plant Pathology, 1989, 38, 71-74.	1.2	16
94	Detection of components of partial resistance to mildew (Erysiphe graminis f.sp. hordei) incorporated into advanced breeding lines of barley using measurement of fungal cell wall sterol. Plant Pathology, 1990, 39, 598-602.	1.2	16
95	Helper bacteria and pathogenicity assessments. New Phytologist, 1999, 144, 385-386.	3.5	16
96	Field Phenotyping and Long-Term Platforms to Characterise How Crop Genotypes Interact with Soil Processes and the Environment. Agronomy, 2014, 4, 242-278.	1.3	16
97	Cellular characteristics of temporary partial breakdown of mlo- resistance in barley to powdery mildew. Physiological and Molecular Plant Pathology, 2000, 56, 1-11.	1.3	15
98	Does agricultural intensification cause tipping points in ecosystem services?. Landscape Ecology, 2021, 36, 3473-3491.	1.9	15
99	Detection of tolerance of barley cultivars to infection by powdery mildew (Erysiphe graminis f.sp.) Tj ETQq1 1 ().784314 rg 0.6	;BT /Qverlock
100	Title is missing!. European Journal of Plant Pathology, 1998, 104, 925-931.	0.8	14
101	Bacterial inoculum from a previous crop affects fungal disease development on subsequent nonhost		
	crops. New Phytologist, 2004, 163, 133-138.	3.5	14
102		3.5 1.2	14
102 103	crops. New Phytologist, 2004, 163, 133-138. Survival, distribution and genetic variability of inoculum of the strawberry red core pathogen,		
	crops. New Phytologist, 2004, 163, 133-138. Survival, distribution and genetic variability of inoculum of the strawberry red core pathogen, <i>Phytophthora fragariae</i> var. <i>fragariae</i> , in soil. Plant Pathology, 2010, 59, 472-479. Yield response to fungicide of spring barley genotypes differing in disease susceptibility and canopy	1.2	14
103	crops. New Phytologist, 2004, 163, 133-138. Survival, distribution and genetic variability of inoculum of the strawberry red core pathogen, <i>Phytophthora fragariae</i> var. <i>fragariae</i> , in soil. Plant Pathology, 2010, 59, 472-479. Yield response to fungicide of spring barley genotypes differing in disease susceptibility and canopy structure. Field Crops Research, 2012, 139, 9-19.	1.2 2.3	14 14
103 104	 crops. New Phytologist, 2004, 163, 133-138. Survival, distribution and genetic variability of inoculum of the strawberry red core pathogen, <i>Phytophthora fragariae </i> var. <i>fragariae </i>, in soil. Plant Pathology, 2010, 59, 472-479. Yield response to fungicide of spring barley genotypes differing in disease susceptibility and canopy structure. Field Crops Research, 2012, 139, 9-19. Modelling historical landscape changes. Landscape Ecology, 2020, 35, 2695-2712. 	1.2 2.3	14 14 14
103 104 105	crops. New Phytologist, 2004, 163, 133-138. Survival, distribution and genetic variability of inoculum of the strawberry red core pathogen, <i>Phytophthora fragariae </i> var. <i>fragariae </i> , in soil. Plant Pathology, 2010, 59, 472-479. Yield response to fungicide of spring barley genotypes differing in disease susceptibility and canopy structure. Field Crops Research, 2012, 139, 9-19. Modelling historical landscape changes. Landscape Ecology, 2020, 35, 2695-2712. Title is missing!., 1998, 104, 829-833. <i>Agrobacterium </i> à€mediated transformation of the barley pathogen <i>Ramularia colloâ€cygni</i> with fluorescent marker tags and live tissue imaging of infection development. Plant Pathology, 2011,	1.2 2.3 1.9	14 14 14 13

#	Article	IF	CITATIONS
109	Assumptions and implications of current gene-for-gene hypotheses. Plant Pathology, 1995, 44, 607-618.	1.2	12
110	Detection of Polymorphism in Puccinia hordei using RFLP and RAPD Markers, Differential Cultivars, and Analysis of the Intergenic Spacer Region of rDNA. Journal of Phytopathology, 1997, 145, 511-519.	0.5	12
111	The practical use of semiparametric models in field trials. Journal of Agricultural, Biological, and Environmental Statistics, 2003, 8, 48-66.	0.7	12
112	Assessing the variation in manganese use efficiency traits in Scottish barley landrace Bere (Hordeum) Tj ETQq0 (0 0 _{[g} BT /C	Overlock 10 Tf 12
113	Attempted somatic hybridization of Puccinia striiformis f. sp. tritici and P. striiformis f. sp. hordei. Plant Pathology, 1986, 35, 108-113.	1.2	11
114	Genetic Diversity and Structure in <i>Austrocedrus chilensis</i> Populations: Implications for Dryland Forest Restoration. Restoration Ecology, 2012, 20, 568-575.	1.4	11
115	Genetic mapping of resistance to Rhynchosporium commune and characterisation of early infection in a winter barley mapping population. Euphytica, 2015, 203, 337-347.	0.6	11
116	Wheat cultivar yield response to some organic and conventional farming conditions and the yield potential of mixtures. Journal of Agricultural Science, 2017, 155, 1045-1060.	0.6	11
117	Relationship between canopy reflectance and yield loss due to disease in barley. Annals of Applied Biology, 2004, 145, 95-106.	1.3	10
118	Inconsistent detection of extinction debts using different methods. Ecography, 2021, 44, 33-43.	2.1	10
119	Identifying potential novel resistance to the foliar disease â€~Scald' (Rhynchosporium commune) in a population of Scottish Bere barley landrace (Hordeum vulgare L.). Journal of Plant Diseases and Protection, 2021, 128, 999-1012.	1.6	10
120	Dependency of Businesses on Flows of Ecosystem Services: A Case Study from the County of Dorset, UK. Sustainability, 2018, 10, 1368.	1.6	8
121	Isozyme Variability in Isolates of Some Facultative Phytopathogenic Fungi. Journal of Phytopathology, 1991, 131, 199-204.	0.5	7
122	The effect of humidity on the expression of partial resistance to powdery mildew in barley. Plant Pathology, 1993, 42, 364-367.	1.2	7
123	Current approaches to native woodland restoration in Scotland. Botanical Journal of Scotland, 2001, 53, 169-195.	0.3	7
124	The Interaction of Humidity and Resistance Elicitors on Expression of Polygenic Resistance of Barley to Mildew. Journal of Phytopathology, 1998, 146, 123-130.	0.5	6
125	Using seed respiration as a tool for calculating optimal soaking times for â€~on-farm' seed priming of barley (<i>Hordeum vulgare</i>). Seed Science Research, 2021, 31, 116-124.	0.8	6
126	Barleys Grown as Cultivar Mixtures Compared with Blends Made Before and After Malting, for Effects on Malting Performance. Journal of the Institute of Brewing, 2005, 111, 144-152.	0.8	5

#	Article	IF	CITATIONS
127	Dynamics and Conservation Management of a Wooded Landscape under High Herbivore Pressure. International Journal of Biodiversity, 2013, 2013, 1-15.	0.7	5
128	Assessing the Consequences of Microbial Infection in Field Trials: Seen, Unseen, Beneficial, Parasitic and Pathogenic. Agronomy, 2014, 4, 302-321.	1.3	5
129	Species but not genotype diversity strongly impacts the establishment of rare colonisers. Functional Ecology, 2017, 31, 1462-1470.	1.7	5
130	Does crop genetic diversity support positive biodiversity effects under experimental drought?. Basic and Applied Ecology, 2021, 56, 431-445.	1.2	5
131	Use of additive models to represent trends in a barley field trial. Annals of Applied Biology, 1995, 127, 391-403.	1.3	4
132	Scale-Dependent Assessment of Relative Disease Resistance to Plant Pathogens. Agronomy, 2014, 4, 178-190.	1.3	4
133	Soil carbon and nitrogen and barley yield responses to repeated additions of compost and slurry. Journal of Agricultural Science, 2017, 155, 141-155.	0.6	4
134	Identifying Spring Barley Cultivars with Differential Response to Tillage. Agronomy, 2020, 10, 686.	1.3	4
135	Evaluation of sources of partial resistance to mildew in barley using enzyme-linked immunosorbent assay and other assessment methods. Euphytica, 1993, 66, 27-34.	0.6	3
136	Heterokaryosis and Vegetative Incompatibility in Stagonospora nodorum. Mycologia, 1998, 90, 215.	0.8	3
137	Susceptibility of oat cultivars to groat discoloration: causes and remedies. Plant Breeding, 2003, 122, 125-130.	1.0	3
138	Resistance to the Shoot Borer in Mahoganies. , 2003, , 395-404.		3
139	Crop presence, but not genetic diversity, impacts on the rare arable plant <i>Valerianella rimosa</i> . Plant Ecology and Diversity, 2017, 10, 495-507.	1.0	3
140	Induced Resistance in Crop Protection: The Future, Drivers and Barriers. , 0, , 243-249.		3
141	Induced Resistance in Natural Ecosystems and Pathogen Population Biology: Exploiting Interactions. , 0, , 133-142.		3
142	Selection for Aggressiveness in Erysiphe graminis f. sp. Hordei Towards Partial Resistance in Barley. Journal of Phytopathology, 1992, 136, 165-169.	0.5	2
143	The Potential for Community-Based Forest Management in Chiapas, Mexico. Journal of Sustainable Forestry, 1999, 9, 169-191.	0.6	2
144	Assessing Effects of Crop History and Soil Amendments on Yields of Subsequent Crops. Agricultural Sciences, 2020, 11, 514-527.	0.2	2

#	Article	IF	CITATIONS
145	The need for a standard nomenclature for gene classification (a Nucleotide Function Code) and an automated data-based tool to assist in understanding the molecular associations in cell signalling in plant-pathogen interactions. Molecular Plant Pathology, 2002, 3, 103-109.	2.0	1
146	Changes in vegetation structure and composition of a lowland mire over a sixtyâ€fiveâ€year interval. Ecology and Evolution, 2020, 10, 13913-13925.	0.8	1
147	Can â€~On-Farm' Seed Priming and Chitosan Seed Treatments Induce Host Defences in Winter Barley (Hordeum vulgare L.) under Field Conditions?. Crops, 2021, 1, 68-87.	0.6	0
148	Adaptation of Winter Barley Cultivars to Inversion and Non-Inversion Tillage for Yield and Rhynchosporium Symptoms. Agronomy, 2021, 11, 30.	1.3	0
149	Strengthening the Scientific Basis of Ecosystem Collapse Risk Assessments. Land, 2021, 10, 1252.	1.2	0