John Kiwi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7325519/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Self-cleaning of wool-polyamide and polyester textiles by TiO2-rutile modification under daylight irradiation at ambient temperature. Journal of Photochemistry and Photobiology A: Chemistry, 2005, 172, 27-34.	3.9	321
2	Self-cleaning of modified cotton textiles by TiO2 at low temperatures under daylight irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 2005, 174, 156-164.	3.9	264
3	Self-cleaning cotton textiles surfaces modified by photoactive SiO2/TiO2 coating. Journal of Molecular Catalysis A, 2006, 244, 160-167.	4.8	262
4	Antibacterial textiles prepared by RF-plasma and vacuum-UV mediated deposition of silver. Journal of Photochemistry and Photobiology A: Chemistry, 2003, 161, 27-34.	3.9	253
5	Photocatalytic self-cleaning of modified cotton textiles by TiO2 clusters attached by chemical spacers. Journal of Molecular Catalysis A, 2005, 237, 101-108.	4.8	239
6	Dynamics of E. coli membrane cell peroxidation during TiO2 photocatalysis studied by ATR-FTIR spectroscopy and AFM microscopy. Journal of Photochemistry and Photobiology A: Chemistry, 2005, 169, 131-137.	3.9	204
7	Degradation of 2,4-dichlorophenol by immobilized iron catalysts. Water Research, 2001, 35, 1994-2002.	11.3	182
8	Synthesis, activity and characterization of textiles showing self-cleaning activity under daylight irradiation. Catalysis Today, 2007, 122, 109-117.	4.4	167
9	2. Sensitized degradation of chlorophenols on iron oxides induced by visible light. Applied Catalysis B: Environmental, 2001, 34, 321-333.	20.2	149
10	Photodynamics and Surface Characterization of TiO2and Fe2O3Photocatalysts Immobilized on Modified Polyethylene Films. Journal of Physical Chemistry B, 2001, 105, 12046-12055.	2.6	131
11	Bleaching and photobleaching of Orange II within seconds by the oxone/Co2+ reagent in Fenton-like processes. Applied Catalysis B: Environmental, 2004, 49, 207-215.	20.2	121
12	Advances in catalytic/photocatalytic bacterial inactivation by nano Ag and Cu coated surfaces and medical devices. Applied Catalysis B: Environmental, 2019, 240, 291-318.	20.2	112
13	New Evidence for TiO2 Photocatalysis during Bilayer Lipid Peroxidation. Journal of Physical Chemistry B, 2004, 108, 17675-17684.	2.6	111
14	Evidence for superoxide-radical anion, singlet oxygen and OH-radical intervention during the degradation of the lignin model compound (3-methoxy-4-hydroxyphenylmethylcarbinol). Journal of Photochemistry and Photobiology A: Chemistry, 2005, 169, 271-278.	3.9	97
15	Self-cleaning modified TiO2–cotton pretreated by UVC-light (185nm) and RF-plasma in vacuum and also under atmospheric pressure. Applied Catalysis B: Environmental, 2009, 91, 481-488.	20.2	96
16	Accelerated methylene blue (MB) degradation by Fenton reagent exposed to UV or VUV/UV light in an innovative micro photo-reactor. Applied Catalysis B: Environmental, 2016, 187, 83-89.	20.2	89
17	Fenton immobilized photo-assisted catalysis through a Fe/C structured fabric. Applied Catalysis B: Environmental, 2004, 49, 39-50.	20.2	88
18	Bacterial disinfection by the photo-Fenton process: Extracellular oxidation or intracellular photo-catalysis?. Applied Catalysis B: Environmental, 2018, 227, 285-295.	20.2	75

ЈОНΝ ΚΙWI

#	Article	IF	CITATIONS
19	Photobleaching and mineralization of Orange II by oxone and metal-ions involving Fenton-like chemistry under visible light. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 161, 185-192.	3.9	73
20	Kinetics and mechanism for transparent polyethylene-TiO 2 films mediated self-cleaning leading to MB dye discoloration under sunlight irradiation. Applied Catalysis B: Environmental, 2015, 162, 236-244.	20.2	73
21	Quantification of the local magnetized nanotube domains accelerating the photocatalytic removal of the emerging pollutant tetracycline. Applied Catalysis B: Environmental, 2019, 248, 450-458.	20.2	68
22	TiON and TiON-Ag sputtered surfaces leading to bacterial inactivation under indoor actinic light. Journal of Photochemistry and Photobiology A: Chemistry, 2013, 256, 52-63.	3.9	62
23	Microstructure of Cu–Ag Uniform Nanoparticulate Films on Polyurethane 3D Catheters: Surface Properties. ACS Applied Materials & Interfaces, 2016, 8, 56-63.	8.0	56
24	Preparation, testing and performance of a TiO2/polyester photocatalyst for the degradation of gaseous methanol. Applied Catalysis B: Environmental, 2010, 94, 166-172.	20.2	55
25	Photocatalytic performance of TiO2 and Fe2O3 immobilized on derivatized polymer films for mineralisation of pollutants. Chemical Communications, 2000, , 1443-1444.	4.1	52
26	Accelerated removal of cyanides from industrial effluents by supported TiO2 photo-catalysts. Applied Catalysis B: Environmental, 2004, 51, 203-211.	20.2	52
27	Innovative TiO ₂ /Cu Nanosurfaces Inactivating Bacteria in the Minute Range under Low-Intensity Actinic Light. ACS Applied Materials & Interfaces, 2012, 4, 5234-5240.	8.0	51
28	Quasi-Instantaneous Bacterial Inactivation on Cu–Ag Nanoparticulate 3D Catheters in the Dark and Under Light: Mechanism and Dynamics. ACS Applied Materials & Interfaces, 2016, 8, 47-55.	8.0	51
29	Photocatalytic Performance of CuxO/TiO2 Deposited by HiPIMS on Polyester under Visible Light LEDs: Oxidants, Ions Effect, and Reactive Oxygen Species Investigation. Materials, 2019, 12, 412.	2.9	49
30	Correlations for photocatalytic activity and spectral features of the absorption band edge of TiO2 modified by thiourea. Applied Catalysis B: Environmental, 2009, 91, 460-469.	20.2	48
31	Effect of the spectral properties of TiO2, Cu, TiO2/Cu sputtered films on the bacterial inactivation under low intensity actinic light. Journal of Photochemistry and Photobiology A: Chemistry, 2013, 251, 50-56.	3.9	48
32	Evidence for the degradation of an emerging pollutant by a mechanism involving iso-energetic charge transfer under visible light. Applied Catalysis B: Environmental, 2018, 233, 175-183.	20.2	47
33	Comparison of Methods for Evaluation of the Bactericidal Activity of Copper-Sputtered Surfaces against Methicillin-Resistant Staphylococcus aureus. Applied and Environmental Microbiology, 2012, 78, 8176-8182.	3.1	45
34	Reactive species monitoring and their contribution for removal of textile effluent with photocatalysis under UV and visible lights: Dynamics and mechanism. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 365, 94-102.	3.9	45
35	Primary Photochemical Reactions in the Photo-Fenton System with Ferric Chloride. 1. A Case Study of Xylidine Oxidation as a Model Compound. Environmental Science & Technology, 1998, 32, 3273-3281.	10.0	44
36	Photocatalytic discoloration of Methyl Orange on innovative parylene–TiO2 flexible thin films under simulated sunlight. Applied Catalysis B: Environmental, 2008, 79, 63-71.	20.2	43

ЈΟΗΝ ΚΙWI

#	Article	IF	CITATIONS
37	Flexible polymer TiO2 modified film photocatalysts active in the photodegradation of azo-dyes in solution. Inorganica Chimica Acta, 2008, 361, 589-594.	2.4	43
38	Innovative semi-transparent nanocomposite films presenting photo-switchable behavior and leading to a reduction of the risk of infection under sunlight. RSC Advances, 2013, 3, 16345.	3.6	43
39	Photocatalytic discoloration of organic compounds on outdoor building cement panels modified by photoactive coatings. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 188, 334-341.	3.9	42
40	Structure–reactivity relations for DC-magnetron sputtered Cu-layers during E. coli inactivation in the dark and under light. Journal of Photochemistry and Photobiology A: Chemistry, 2010, 216, 295-302.	3.9	42
41	TiO2 nanoparticles suppress Escherichia coli cell division in the absence of UV irradiation in acidic conditions. Colloids and Surfaces B: Biointerfaces, 2012, 97, 240-247.	5.0	42
42	Indoor Light Enhanced Photocatalytic Ultra-Thin Films on Flexible Non-Heat Resistant Substrates Reducing Bacterial Infection Risks. Catalysts, 2017, 7, 57.	3.5	39
43	Detoxification of diluted azo-dyes at biocompatible pH with the oxone/Co2+ reagent in dark and light processes. Journal of Molecular Catalysis A, 2006, 252, 113-119.	4.8	38
44	Effect of surface pretreatment of TiO ₂ films on interfacial processes leading to bacterial inactivation in the dark and under light irradiation. Interface Focus, 2015, 5, 20140046.	3.0	36
45	Ag-surfaces sputtered by DC and pulsed DC-magnetron sputtering effective in bacterial inactivation: Testing and characterization. Surface and Coatings Technology, 2012, 206, 2410-2416.	4.8	33
46	Reductive/oxidative treatment with superior performance relative to oxidative treatment during the degradation of 4-chlorophenol. Applied Catalysis B: Environmental, 2005, 59, 249-257.	20.2	32
47	Innovative UVC Light (185 nm) and Radio-Frequency-Plasma Pretreatment of Nylon Surfaces at Atmospheric Pressure and Their Implications in Photocatalytic Processes. ACS Applied Materials & Interfaces, 2009, 1, 2190-2198.	8.0	31
48	ZnSO4–TiO2 doped catalyst with higher activity in photocatalytic processes. Applied Catalysis B: Environmental, 2007, 76, 185-195.	20.2	29
49	Comparison of HIPIMS sputtered Ag- and Cu-surfaces leading to accelerated bacterial inactivation in the dark. Surface and Coatings Technology, 2014, 250, 14-20.	4.8	28
50	High power impulse magnetron sputtering (HIPIMS) and traditional pulsed sputtering (DCMSP) Ag-surfaces leading to E. coli inactivation. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 227, 11-17.	3.9	27
51	Antibacterial Ag–ZrN surfaces promoted by subnanometric ZrN-clusters deposited by reactive pulsed magnetron sputtering. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 229, 39-45.	3.9	27
52	Advantages of highly ionized pulse plasma magnetron sputtering (HIPIMS) of silver for improved E. coli inactivation. Thin Solid Films, 2012, 520, 3567-3573.	1.8	27
53	Accelerated bacterial reduction on Ag–TaN compared with Ag–ZrN and Ag–TiN surfaces. Applied Catalysis B: Environmental, 2015, 174-175, 376-382.	20.2	26
54	Femtosecond Spectroscopy of Au Hot-Electron Injection into TiO2: Evidence for Au/TiO2 Plasmon Photocatalysis by Bactericidal Au Ions and Related Phenomena. Nanomaterials, 2019, 9, 217.	4.1	25

ЈΟΗΝ ΚΙWI

#	Article	IF	CITATIONS
55	Triplet-excited dye molecules (eosine and methylene blue) quenching by H2O2 in aqueous solutions. Journal of Photochemistry and Photobiology A: Chemistry, 1998, 116, 57-62.	3.9	24
56	Fungicidal activity of copper-sputtered flexible surfaces under dark and actinic light against azole-resistant Candida albicans and Candida glabrata. Journal of Photochemistry and Photobiology B: Biology, 2017, 174, 229-234.	3.8	22
57	Duality in the Escherichia coli and methicillin resistant Staphylococcus aureus reduction mechanism under actinic light on innovative co-sputtered surfaces. Applied Catalysis A: General, 2015, 498, 185-191.	4.3	21
58	Recent advances on sputtered films with Cu in ppm concentrations leading to an acceleration of the bacterial inactivation. Catalysis Today, 2020, 340, 347-362.	4.4	20
59	Self-Sterilizing Sputtered Films for Applications in Hospital Facilities. Molecules, 2017, 22, 1074.	3.8	19
60	Innovative photo-Fenton catalysis by PE-FeOx films leading to methylene blue (MB) degradation: Kinetics, surface properties and mechanism. Applied Catalysis A: General, 2016, 519, 68-77.	4.3	18
61	New evidence for Cu-decorated binary-oxides mediating bacterial inactivation/mineralization in aerobic media. Colloids and Surfaces B: Biointerfaces, 2016, 144, 222-228.	5.0	18
62	Accelerated self-cleaning by Cu promoted semiconductor binary-oxides under low intensity sunlight irradiation. Applied Catalysis B: Environmental, 2016, 180, 648-655.	20.2	18
63	Degradation of industrial waste waters on Fe/C-fabrics. Optimization of the solution parameters during reactor operation. Water Research, 2005, 39, 1441-1450.	11.3	14
64	Inactivation of bacteria under visible light and in the dark by Cu films. Advantages of Cu-HIPIMS-sputtered films. Environmental Science and Pollution Research, 2012, 19, 3791-3797.	5.3	14
65	VUV/UV light inducing accelerated phenol degradation with a low electric input. RSC Advances, 2017, 7, 7640-7647.	3.6	14
66	Update on Interfacial Charge Transfer (IFTC) Processes on Films Inactivating Viruses/Bacteria under Visible Light: Mechanistic Considerations and Critical Issues. Catalysts, 2021, 11, 201.	3.5	13
67	Structure and performance of a novel TiO2-phosphonate composite photocatalyst. Applied Catalysis B: Environmental, 2008, 81, 258-266.	20.2	12
68	Evidence for differentiated ionic and surface contact effects driving bacterial inactivation by way of genetically modified bacteria. Chemical Communications, 2017, 53, 9093-9096.	4.1	12
69	Dynamics and characterization of an innovative Raschig rings–TiO2 composite photocatalyst. Journal of Molecular Catalysis A, 2005, 237, 215-223.	4.8	9
70	Preparation, kinetics, mechanism and properties of semi-transparent photocatalytic stable films active in dye degradation. Applied Catalysis A: General, 2016, 516, 70-80.	4.3	9
71	New evidence for disinfection, self-cleaning and pollutant degradation mediated by GF-TiO 2 -Cu mats under solar/visible light in mild oxidative conditions. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 346, 351-363.	3.9	7
72	Biological responses at the interface of Ti-doped diamond-like carbon surfaces for indoor environment application. Environmental Science and Pollution Research, 2020, 27, 31120-31129.	5.3	6

ЈΟΗΝ ΚΙWI

#	Article	IF	CITATIONS
73	Sputtered Cu-polyethylene films inducing bacteria inactivation in the dark and under low intensity sunlight. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 330, 163-168.	3.9	3
74	Environmentally mild self-cleaning processes on textile surfaces under daylight irradiation. , 2016, , 35-54.		2
75	Monitoring the energy of the metal ion-content plasma-assisted deposition and its implication for bacterial inactivation. Applied Surface Science, 2019, 467-468, 749-752.	6.1	2
76	TiO2/spacer succinate films grafted onto nylon as a new approach to develop self-cleaning textile fibers that remove stains: a promising way to reduce reliance on cleaning water. International Journal of Environmental Science and Technology, 0, , 1.	3.5	1
77	INNOVATIVE IMMOBILIZED FENTON SYSTEMS USEFUL IN THE ABATEMENT OF INDUSTRIAL POLLUTANTS. , 2000, , .		0