Kari Mäntyjärvi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7325505/publications.pdf

Version: 2024-02-01

1307594 1125743 56 285 13 7 citations g-index h-index papers 56 56 56 203 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Exploitation of forming of the 3D printed materials. AIP Conference Proceedings, 2019, , .	0.4	5
2	Forming and formability of 3D printed thermoplastics. , 2019, , .		3
3	Comparison of the formability of austenitic reversion-treated and temper-rolled 17Cr-7Ni steels. AIP Conference Proceedings, 2019, , .	0.4	2
4	The geometrical fine adjustment of circular honeycomb structure using laser welding. AIP Conference Proceedings, 2019, , .	0.4	0
5	Formability of selective laser melted AlSi10Mg. AIP Conference Proceedings, 2019, , .	0.4	1
6	Mechanical testing of friction drilled and form tapped bolt joints for abrasion resistant steel applications. AIP Conference Proceedings, 2019, , .	0.4	0
7	The effect of processing parameters on formability of 3D printed AISI 316L. AIP Conference Proceedings, 2019, , .	0.4	2
8	The normal and shear strength properties of laser lap weld. Procedia Manufacturing, 2019, 36, 224-231.	1.9	2
9	Effect of High Porosity on Bending Fatigue Properties of 3D Printed AISI 316L Steel. Procedia Manufacturing, 2019, 36, 33-41.	1.9	16
10	Laser welding of AlSi10Mg aluminium-based alloy produced by Selective Laser Melting (SLM). Procedia Manufacturing, 2019, 36, 88-94.	1.9	25
11	Disk Laser Assisted Surface Heat Treatments Of AlSi10Mg Parts Produced By Selective Laser Melting (SLM). Procedia Manufacturing, 2019, 36, 95-100.	1.9	5
12	Microstructure and mechanical properties of laser-welded high-strength AISI 301LN steel in reversion-treated and temper-rolled conditions. Procedia Manufacturing, 2019, 36, 216-223.	1.9	7
13	Tensile and fatigue properties of laser-welded ultra-high-strength stainless spring steel lap joints. Procedia Manufacturing, 2019, 36, 131-137.	1.9	11
14	The Influence of Shielding Gas on Strength of the Laser Welded Thin Sheet Lap Welds. Key Engineering Materials, 2018, 786, 98-103.	0.4	1
15	Buckling Tests for Laser-Welded Single Corrugated Core. Key Engineering Materials, 2018, 786, 269-275.	0.4	O
16	Iterative Weight Reduction Process. Journal of Ship Production and Design, 2018, 34, 329-334.	0.4	1
17	The Influence of Shielding Gas Configurations on Formability of the Ferritic Stainless Steel Laser Weld. Physics Procedia, 2017, 89, 80-88.	1.2	1
18	Identifying residual stresses in laser welds by fatigue crack growth acceleration measurement. Journal of Laser Applications, 2015, 27, .	1.7	9

#	Article	IF	CITATIONS
19	Laser welding of duplex stainless steel with nitrogen as shielding gas. Journal of Materials Processing Technology, 2015, 216, 381-384.	6.3	61
20	A Novel Heat Treatment Line for Processing of Tailored Small Batch Steels. Key Engineering Materials, 2014, 611-612, 804-810.	0.4	3
21	Designing and Manufacturing of a Flexible Longitudinally Laminated Sandwich Panel Forming Tool. Key Engineering Materials, 2014, 611-612, 786-793.	0.4	4
22	Quality Assurance of Laser Welded Axisymmetric Sandwich Structure. Key Engineering Materials, 2013, 549, 529-534.	0.4	2
23	FEM - Modeling of Bendability of Ultra-High Strength Steel. Key Engineering Materials, 2013, 549, 333-339.	0.4	4
24	Measuring the influence of laser welding on fatigue crack propagation in high strength steel., 2013,,.		0
25	Laser Assisted Cutting of Abrasion Resistant Steel. Key Engineering Materials, 2012, 504-506, 1371-1376.	0.4	1
26	The Low-Cycle Fatigue Strength of Laser-Welded Ultra-High-Strength Steel. Key Engineering Materials, 2011, 473, 281-289.	0.4	2
27	Methods for Determination of Residual Stress of a Formed Plate Using Laser Ablation, Wire EDM and Milling. Key Engineering Materials, 2011, 473, 368-375.	0.4	0
28	The Effects of Notch Manufacturing Method and Tolerance on Impact Test Results of UHS Steels. Key Engineering Materials, 2011, 473, 412-419.	0.4	0
29	Incremental Bending of Ultra-High-Strength Steels. Key Engineering Materials, 2011, 473, 53-60.	0.4	2
30	Small Batch Laser Welding Using Light Fasteners and Laser Tack Welding. Key Engineering Materials, 2011, 473, 267-272.	0.4	0
31	Mechanical Properties of Laser Heat Treated 6 mm Thick UHSS-Steel. , 2011, , .		5
32	Bendability of Ultra-High-Strength Steel. Key Engineering Materials, 2009, 410-411, 611-620.	0.4	11
33	UHS Steel Formability in Flexible Roll Forming. Key Engineering Materials, 2009, 410-411, 661-668.	0.4	9
34	Cutting method influence on the fatigue resistance of ultra-high-strength steel. International Journal of Material Forming, 2009, 2, 547-550.	2.0	9
35	Grid patterns by laser for forming strain analysis. International Journal of Material Forming, 2008, 1, 249-252.	2.0	8
36	Punching Force Reduction with Wave-Formed Tools. Key Engineering Materials, 2007, 344, 209-216.	0.4	7

#	Article	IF	CITATIONS
37	Laser-Assisted Bending. Key Engineering Materials, 2007, 344, 235-241.	0.4	12
38	Yb:YAG Disc Laser Welding of Austenitic Stainless Steel Without Filler Material. Key Engineering Materials, 0, 410-411, 87-96.	0.4	2
39	Passive Laser Assisted Bending of Ultra-High Strength Steels. Advanced Materials Research, 0, 418-420, 1542-1547.	0.3	5
40	Influence of Predetermined Surface Defect to the Bendability of Ultra-High-Strength Steel. Key Engineering Materials, 0, 504-506, 901-906.	0.4	2
41	Effect of Convex Sheared Punch Geometry on Cutting Force of Ultra-High-Strength Steel. Key Engineering Materials, 0, 504-506, 1359-1364.	0.4	10
42	Optimization of Local Laser Heat Treatment Process Using a Simple FE-Model. Materials Science Forum, 0, 762, 360-367.	0.3	0
43	The Influence of the Shielding Gas to the Static and Dynamic Strength Properties of Laser Welded Workhardened Nitrogen Alloyed Austenitic Stainless Steel. Key Engineering Materials, 0, 549, 471-476.	0.4	2
44	State of the Art: Prototyping of the Roll Bending Machine. Key Engineering Materials, 0, 549, 76-83.	0.4	0
45	Cutting Edge and its Influence on the Fatigue Life of High Strength CrMn-Austenitic Stainless Steel. Key Engineering Materials, 0, 554-557, 1967-1975.	0.4	5
46	Rapid Manufacturing of Shaped Die and Draw Punch Tools for Presses. Key Engineering Materials, 0, 554-557, 1814-1818.	0.4	2
47	Mechanical Properties of a Metal Sandwich Panel Manufactured Using Longitudinally Laminated Forming Tools. Key Engineering Materials, 0, 611-612, 781-785.	0.4	7
48	Mechanical Properties of a "Simple Panel Structure―Manufactured of an Ultra High Strength Stainless Steel. Key Engineering Materials, 0, 786, 319-324.	0.4	2
49	Design for Additive Manufacturing in Extended DFMA Process. Key Engineering Materials, 0, 786, 342-347.	0.4	9
50	A Short Glance on Metal 3D AM. Key Engineering Materials, 0, 786, 348-355.	0.4	0
51	Design Process of Durable and Lightweight Rally Car Frame from Ultra-High Strength Stainless Steel. Key Engineering Materials, 0, 786, 325-332.	0.4	2
52	In Implementing a Metal 3D AM Machine. Key Engineering Materials, 0, 786, 356-363.	0.4	0
53	Bending Strength of Laser-Welded Sandwich Steel Panels of Ultra-High Strength Steel. Key Engineering Materials, 0, 786, 286-292.	0.4	1
54	Punching Force Reduction with Wave-Formed Tools. Key Engineering Materials, 0, , 209-216.	0.4	1

Kari Mã¤tyjã¤vi

#	Article	IF	CITATIONS
55	Laser-Assisted Bending. Key Engineering Materials, 0, , 235-241.	0.4	2
56	DFAM Based Multi-Material 3D Printing Using Conductive and Flexible Filaments. Key Engineering Materials, 0, 786, 364-370.	0.4	2