
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7325427/publications.pdf Version: 2024-02-01

IÃORC RADNIK

#	Article	IF	CITATIONS
1	Nanoscale Fe ₂ O ₃ -Based Catalysts for Selective Hydrogenation of Nitroarenes to Anilines. Science, 2013, 342, 1073-1076.	6.0	868
2	Heterogenized cobalt oxide catalysts for nitroarene reduction by pyrolysis of molecularly defined complexes. Nature Chemistry, 2013, 5, 537-543.	6.6	633
3	MOF-derived cobalt nanoparticles catalyze a general synthesis of amines. Science, 2017, 358, 326-332.	6.0	604
4	On the origin of binding energy shifts of core levels of supported gold nanoparticles and dependence of pretreatment and material synthesis. Physical Chemistry Chemical Physics, 2003, 5, 172-177.	1.3	391
5	Selective Oxidation of Alcohols to Esters Using Heterogeneous Co ₃ O ₄ –N@C Catalysts under Mild Conditions. Journal of the American Chemical Society, 2013, 135, 10776-10782.	6.6	334
6	Catalysts for the Oxygen Reduction from Heat-Treated Iron(III) Tetramethoxyphenylporphyrin Chloride:Â Structure and Stability of Active Sites. Journal of Physical Chemistry B, 2003, 107, 9034-9041.	1.2	327
7	Identification of Active Sites in Gold-Catalyzed Hydrogenation of Acrolein. Journal of the American Chemical Society, 2003, 125, 1905-1911.	6.6	319
8	Supported gold nanoparticles: in-depth catalyst characterization and application in hydrogenation and application in hydrogenation and oxidation reactions. Catalysis Today, 2002, 72, 63-78.	2.2	309
9	Green and Efficient Synthesis of Sulfonamides Catalyzed by Nano-Ru/Fe ₃ O ₄ . Journal of the American Chemical Society, 2009, 131, 1775-1779.	6.6	232
10	Selective Catalytic Hydrogenation of Heteroarenes with <i>N</i> -Graphene-Modified Cobalt Nanoparticles (Co ₃ O ₄ –Co/NGr@î±-Al ₂ O ₃). Journal of the American Chemical Society, 2015, 137, 11718-11724.	6.6	223
11	Solar Hydrogen Production by Plasmonic Au–TiO ₂ Catalysts: Impact of Synthesis Protocol and TiO ₂ Phase on Charge Transfer Efficiency and H ₂ Evolution Rates. ACS Catalysis, 2015, 5, 2137-2148.	5.5	201
12	EXAFS, XPS and electrochemical studies on oxygen reduction catalysts obtained by heat treatment of iron phenanthroline complexes supported on high surface area carbon black. Journal of Electroanalytical Chemistry, 2002, 535, 113-119.	1.9	191
13	Influence of the Electron-Density of FeN[sub 4]-Centers Towards the Catalytic Activity of Pyrolyzed FeTMPPCI-Based ORR-Electrocatalysts. Journal of the Electrochemical Society, 2011, 158, B69.	1.3	179
14	Highly selective hydrogenation of arenes using nanostructured ruthenium catalysts modified with a carbon–nitrogen matrix. Nature Communications, 2016, 7, 11326.	5.8	179
15	Efficient VO _{<i>x</i>} /Ce _{1–<i>x</i>} Ti _{<i>x</i>} O ₂ Catalysts for Low-Temperature NH ₃ -SCR: Reaction Mechanism and Active Sites Assessed by in Situ/Operando Spectroscopy. ACS Catalysis, 2017, 7, 1693-1705.	5.5	167
16	Development of Ni-Pd bimetallic catalysts for the utilization of carbon dioxide and methane by dry reforming. Applied Catalysis A: General, 2009, 366, 333-341.	2.2	152
17	Gas-phase carbonylation of methanol to dimethyl carbonate on chloride-free Cu-precipitated zeolite Y at normal pressure. Journal of Catalysis, 2007, 245, 11-24.	3.1	151
18	Convenient and Mild Epoxidation of Alkenes Using Heterogeneous Cobalt Oxide Catalysts. Angewandte Chemie - International Edition, 2014, 53, 4359-4363.	7.2	143

#	Article	IF	CITATIONS
19	Influence of Sulfur on the Pyrolysis of CoTMPP as Electrocatalyst for the Oxygen Reduction Reaction. Journal of the Electrochemical Society, 2009, 156, B1283.	1.3	136
20	Highly selective transfer hydrogenation of functionalised nitroarenes using cobalt-based nanocatalysts. Green Chemistry, 2015, 17, 898-902.	4.6	127
21	Stable and Inert Cobalt Catalysts for Highly Selective and Practical Hydrogenation of C≡N and Câ•O Bonds. Journal of the American Chemical Society, 2016, 138, 8781-8788.	6.6	118
22	Influence of support on the aerobic oxidation of HMF into FDCA over preformed Pd nanoparticle based materials. Applied Catalysis A: General, 2014, 478, 107-116.	2.2	115
23	Cobalt-based nanocatalysts for green oxidation and hydrogenation processes. Nature Protocols, 2015, 10, 916-926.	5.5	115
24	Pd/MgO: Catalyst Characterization and Phenol Hydrogenation Activity. Journal of Catalysis, 2000, 192, 88-97.	3.1	113
25	Selective Semihydrogenation of Alkynes with N-Graphitic-Modified Cobalt Nanoparticles Supported on Silica. ACS Catalysis, 2017, 7, 1526-1532.	5.5	110
26	Nano-iron oxide-catalyzed selective oxidations of alcohols and olefins with hydrogen peroxide. Journal of Molecular Catalysis A, 2008, 292, 28-35.	4.8	108
27	Structure–Activity Relationships in Bulk Polymeric and Sol–Gel-Derived Carbon Nitrides during Photocatalytic Hydrogen Production. Chemistry of Materials, 2014, 26, 1727-1733.	3.2	108
28	Beyond Shape Engineering of TiO ₂ Nanoparticles: Post-Synthesis Treatment Dependence of Surface Hydration, Hydroxylation, Lewis Acidity and Photocatalytic Activity of TiO ₂ Anatase Nanoparticles with Dominant {001} or {101} Facets. ACS Applied Nano Materials, 2018, 1, 5355-5365.	2.4	102
29	Hydrodeoxygenation of Phenol as a Model Compound for Bioâ€oil on Nonâ€noble Bimetallic Nickelâ€based Catalysts. ChemCatChem, 2014, 6, 1940-1951.	1.8	95
30	A Biomassâ€Derived Nonâ€Noble Cobalt Catalyst for Selective Hydrodehalogenation of Alkyl and (Hetero)Aryl Halides. Angewandte Chemie - International Edition, 2017, 56, 11242-11247.	7.2	83
31	How a Supported Metal Is Influenced by an Ionic Liquid: In-Depth Characterization of SCILL-Type Palladium Catalysts and Their Hydrogen Adsorption. Journal of Physical Chemistry C, 2010, 114, 10520-10526.	1.5	79
32	Carbon supported catalysts for oxygen reduction in acidic media prepared by thermolysis of Ru3(CO)12. Journal of Electroanalytical Chemistry, 2001, 517, 85-94.	1.9	77
33	Ru-catalyzed oxidation of primary alcohols. Journal of Molecular Catalysis A, 2006, 246, 85-99.	4.8	73
34	Oxygen adsorption on Au/Al2O3 catalysts and relation to the catalytic oxidation of ethylene glycol to glycolic acid. Applied Catalysis A: General, 2003, 244, 169-179.	2.2	72
35	The Structure of Active Sites in Me–V–O Catalysts (Me = Mg, Zn, Pb) and Its Influence on the Catalytic Performance in the Oxidative Dehydrogenation (ODH) of Propane. Journal of Catalysis, 2001, 202, 45-58.	3.1	70
36	Synthesis of Nickel Nanoparticles with Nâ€Đoped Graphene Shells for Catalytic Reduction Reactions. ChemCatChem, 2016, 8, 129-134.	1.8	66

#	Article	IF	CITATIONS
37	Co-based heterogeneous catalysts from well-defined α-diimine complexes: Discussing the role of nitrogen. Journal of Catalysis, 2017, 351, 79-89.	3.1	65
38	Oxygen reduction at carbon supported ruthenium–selenium catalysts: Selenium as promoter and stabilizer of catalytic activity. Journal of Power Sources, 2006, 155, 47-51.	4.0	57
39	Marked influence of support on the catalytic performance of PdSb acetoxylation catalysts: Effects of Pd particle size, valence states, and acidity characteristicsã~†. Journal of Catalysis, 2007, 246, 399-412.	3.1	54
40	TPR investigations on the reducibility of Cu supported on Al2O3, zeolite Y and SAPO-5. Journal of Solid State Chemistry, 2011, 184, 1915-1923.	1.4	53
41	Bulk binary ZrO ₂ -based oxides as highly active alternative-type catalysts for non-oxidative isobutane dehydrogenation. Chemical Communications, 2016, 52, 8164-8167.	2.2	51
42	Influence of reaction conditions on catalyst composition and selective/non-selective reaction pathways of the ODP reaction over V2O3, VO2 and V2O5 with O2 and N2O. Applied Catalysis A: General, 2007, 319, 98-110.	2.2	50
43	Adsorption and Reduction of Arsenate during the Fe ²⁺ -Induced Transformation of Ferrihydrite. ACS Earth and Space Chemistry, 2019, 3, 884-894.	1.2	50
44	Structure-reactivity relationships in VOx/CexZr1â^'xO2 catalysts used for low-temperature NH3-SCR of NO. Applied Catalysis B: Environmental, 2016, 197, 159-167.	10.8	49
45	Surface Modified Ruthenium Nanoparticles:  Structural Investigation and Surface Analysis of a Novel Catalyst for Oxygen Reduction. Journal of Physical Chemistry C, 2007, 111, 477-487.	1.5	47
46	Influence of Lanthana on the Nature of Surface Chromium Species in La2O3-Modified CrOx/ZrO2 Catalysts. Journal of Catalysis, 2000, 191, 456-466.	3.1	46
47	Selective hydroformylation of olefins over the rhodium supported large porous metal–organic framework MIL-101. Applied Catalysis A: General, 2013, 468, 410-417.	2.2	46
48	Oxidative Dehydrogenation of Ethane to Ethylene over V ₂ O ₅ /Al ₂ O ₃ Catalysts: Effect of Source of Alumina on the Catalytic Performance. Industrial & Engineering Chemistry Research, 2014, 53, 18711-18721.	1.8	46
49	A comparative study of zirconia and alumina supported Pt and Pt–Sn catalysts used for dehydrocyclization of n-octane. Applied Catalysis A: General, 2007, 333, 67-77.	2.2	45
50	Development of Active and Stable Low Nickel Content Catalysts for Dry Reforming of Methane. Catalysts, 2017, 7, 157.	1.6	43
51	Deactivation of Pd Acetoxylation Catalysts: Direct Observations by XPS Investigations. Angewandte Chemie - International Edition, 2005, 44, 6771-6774.	7.2	42
52	Hydroformylation of olefins over rhodium supported metal-organic framework catalysts of different structure. Microporous and Mesoporous Materials, 2013, 177, 135-142.	2.2	42
53	Graphene Sheets with Defined Dual Functionalities for the Strong SARSâ€CoVâ€2 Interactions. Small, 2021, 17, e2007091.	5.2	42
54	Mechanistic origins of the promoting effect of tiny amounts of Rh on the performance of NiOx/Al2O3 in partial oxidation of methane. Journal of Catalysis, 2011, 280, 116-124.	3.1	40

#	Article	IF	CITATIONS
55	Spin density distribution after electron transfer from triethylamine to an [Ir(ppy)2(bpy)]+ photosensitizer during photocatalytic water reduction. Physical Chemistry Chemical Physics, 2014, 16, 4789.	1.3	40
56	On the Influence of Sulphur on the Pyrolysis Process of FeTMPP-Cl-based Electro-Catalysts with Respect to Oxygen Reduction Reaction (ORR) in Acidic Media. ECS Transactions, 2009, 25, 659-670.	0.3	38
57	Bimetallic PdAu–KOac/SiO2 catalysts for vinyl acetate monomer (VAM) synthesis: Insights into deactivation under industrial conditions. Journal of Catalysis, 2009, 262, 314-323.	3.1	37
58	Tracing Active Sites in Supported Ni Catalysts during Butene Oligomerization by <i>Operando</i> Spectroscopy under Pressure. ACS Catalysis, 2016, 6, 8224-8228.	5.5	37
59	Title is missing!. Catalysis Letters, 1999, 60, 183-189.	1.4	36
60	Carbonâ€Carbon Double Bond <i>versus</i> Carbonyl Group Hydrogenation: Controlling the Intramolecular Selectivity with Polyanilineâ€Supported Platinum Catalysts. Advanced Synthesis and Catalysis, 2008, 350, 1337-1348.	2.1	35
61	Linking Simultaneous In Situ WAXS/SAXS/Raman with Raman/ATR/UV–vis Spectroscopy: Comprehensive Insight into the Synthesis of Molybdate Catalyst Precursors. Topics in Catalysis, 2009, 52, 1350-1359.	1.3	35
62	Oxidative dehydrogenation of ethane to ethylene over Ni–Nb–M–O catalysts: Effect of promoter metal and CO2-admixture on the performance. Catalysis Today, 2016, 264, 144-151.	2.2	34
63	Surface aspects of sol–gel derived hematite films for the photoelectrochemical oxidation of water. Physical Chemistry Chemical Physics, 2013, 15, 1389-1398.	1.3	33
64	Photoemission from Quantum-Well States in Ultrathin Xe crystals. Physical Review Letters, 1995, 74, 2595-2598.	2.9	31
65	Synthesis and comparative study of the photocatalytic performance of hierarchically porous polymeric carbon nitrides. Microporous and Mesoporous Materials, 2015, 211, 182-191.	2.2	30
66	How the rock-inhabiting fungus K. petricola A95 enhances olivine dissolution through attachment. Geochimica Et Cosmochimica Acta, 2020, 282, 76-97.	1.6	28
67	High-frequency phonon modes on stepped and kinked Cu surfaces: Experiments and theory. Physical Review B, 2000, 61, 5714-5718.	1.1	27
68	Influence of the Precipitation Agent in the Depositionâ^'Precipitation on the Formation and Properties of Au Nanoparticles Supported on Al2O3. Journal of Physical Chemistry B, 2006, 110, 23688-23693.	1.2	27
69	H ₂ Generation with (Mixed) Plasmonic Cu/Auâ€īO ₂ Photocatalysts: Structure–Reactivity Relationships Assessed by in situ Spectroscopy. ChemCatChem, 2017, 9, 1025-1031.	1.8	27
70	Assessing the protective effects of different surface coatings on NaYF4:Yb3+, Er3+ upconverting nanoparticles in buffer and DMEM. Scientific Reports, 2020, 10, 19318.	1.6	27
71	Influence of steel composition and pre-treatment conditions on morphology and microstructure of TiO2 mesoporous layers produced by dip coating on steel substrates. Thin Solid Films, 2009, 518, 27-35.	0.8	26
72	Low-temperature CO2 reforming of methane over Ni supported on ZnAl mixed metal oxides. International Journal of Hydrogen Energy, 2017, 42, 9831-9839.	3.8	26

#	Article	IF	CITATIONS
73	Transition metal oxide/carbon composite catalysts for n-alkane aromatization: structure and catalytic properties. Applied Catalysis A: General, 2001, 208, 381-392.	2.2	25
74	Adsorbate-induced structure transitions at the reconstructed Pt(100) surface. Surface Science, 1993, 287-288, 330-335.	0.8	24
75	From molecule to material: Mg2Sn as hydrogenation catalyst. Catalysis Communications, 2006, 7, 618-622.	1.6	24
76	Selective polymerization of propylene oxide by a tin phosphate coordination polymer. Journal of Polymer Science Part A, 2007, 45, 3032-3041.	2.5	24
77	A Biomassâ€Derived Nonâ€Noble Cobalt Catalyst for Selective Hydrodehalogenation of Alkyl and (Hetero)Aryl Halides. Angewandte Chemie, 2017, 129, 11394-11399.	1.6	24
78	The comparison of the corrosion behavior of the CrCoNi medium entropy alloy and CrMnFeCoNi high entropy alloy. Applied Surface Science, 2022, 601, 154171.	3.1	24
79	Catalytic and Mechanistic Investigation of Polyaniline Supported PtO ₂ Nanoparticles: A Combined <i>in situ</i> /operando EPR, DRIFTS, and EXAFS Study. Journal of Physical Chemistry C, 2008, 112, 19555-19559.	1.5	23
80	Tuning the surface composition of novel metal vanadates and its effect on the catalytic performance. Chemical Communications, 2011, 47, 8394.	2.2	22
81	Structural transformation of an alumina-supported MnO2–CuO oxidation catalyst by hydrothermal impact of sub- and supercritical water. Journal of Materials Chemistry, 2002, 12, 639-645.	6.7	21
82	Determining the Thickness and Completeness of the Shell of Polymer Core–Shell Nanoparticles by X-ray Photoelectron Spectroscopy, Secondary Ion Mass Spectrometry, and Transmission Scanning Electron Microscopy. Journal of Physical Chemistry C, 2019, 123, 29765-29775.	1.5	21
83	Versailles Project on Advanced Materials and Standards interlaboratory study on intensity calibration for x-ray photoelectron spectroscopy instruments using low-density polyethylene. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, 063208.	0.9	21
84	Copper-based water reduction catalysts for efficient light-driven hydrogen generation. Journal of Molecular Catalysis A, 2014, 395, 449-456.	4.8	20
85	Highly efficient Pd?Sb?TiO catalysts for the vapour phase acetoxylation of toluene to benzyl acetate. Journal of Catalysis, 2005, 230, 420-435.	3.1	19
86	Distinct activity and time-on-stream behavior of pure Pt and Rh metals and Pt–Rh alloys in the high-temperature NO decomposition. Applied Catalysis A: General, 2006, 298, 73-79.	2.2	19
87	Levitated Droplets as Model System for Spray Drying of Complex Oxides: A Simultaneous in Situ X-ray Diffraction/Raman Study. Chemistry of Materials, 2011, 23, 5425-5431.	3.2	19
88	Oxidative dehydrogenation of ethane to ethylene over V2O5/Nb2O5 catalysts. Catalysis Communications, 2013, 30, 45-50.	1.6	19
89	Interaction of CO with heteroepitaxial fcc- and bcc-Fe films on Cu(100). Surface Science, 1996, 352-354, 268-273.	0.8	18
90	Redox behaviour of La-Cr compounds formed in CrOx/La2O3 mixed oxides and CrOx/La2O3/ZrO2 catalysts. Applied Catalysis A: General, 2003, 239, 95-110.	2.2	18

#	Article	IF	CITATIONS
91	Sol–gel synthesis of metal fluoride supported Pd catalysts for Suzuki coupling. Journal of Materials Chemistry, 2008, 18, 1632.	6.7	18
92	Key properties promoting high activity and stability of supported PdSb/TiO2 catalysts in the acetoxylation of toluene to benzyl acetate. Applied Catalysis A: General, 2011, 398, 104-112.	2.2	18
93	Influence of V-sources on the catalytic performance of VMCM-41 in the selective oxidation of methane to formaldehyde. Catalysis Communications, 2018, 103, 56-59.	1.6	18
94	Effect of support synthesis methods on structure and performance of VOx/CeO2 catalysts in low-temperature NH3-SCR of NO. Catalysis Communications, 2016, 84, 171-174.	1.6	17
95	Assessing Optical and Electrical Properties of Highly Active IrO <i>_x</i> Catalysts for the Electrochemical Oxygen Evolution Reaction via Spectroscopic Ellipsometry. ACS Catalysis, 2020, 10, 14210-14223.	5.5	17
96	Wrapping and Blocking of Influenza A Viruses by Sialylated 2D Nanoplatforms. Advanced Materials Interfaces, 2021, 8, 2100285.	1.9	17
97	Adsorption geometries of CO on Cu (211). Journal of Chemical Physics, 1999, 110, 10522-10525.	1.2	16
98	New Insight into the Nature of Catalytic Activity of Pyrolysed Iron Porphyrin Based Electro-Catalysts for the Oxygen Reduction Reaction (ORR) in Acidic Media. ECS Transactions, 2009, 25, 93-104.	0.3	16
99	Effect of Sb loading on Pd nanoparticles and its influence on the catalytic performance of Sb–Pd/TiO2 solids for acetoxylation of toluene. Journal of Catalysis, 2006, 243, 25-35.	3.1	15
100	Tailoring the synthesis of supported Pd catalysts towards desired structure and size of metal particles. Physical Chemistry Chemical Physics, 2010, 12, 4833.	1.3	15
101	Catalytic role and location of Cs promoter in Cs–Au/TiO2 catalysts for propanol synthesis from CO2, C2H4 and H2. Applied Catalysis B: Environmental, 2015, 176-177, 570-577.	10.8	15
102	Probing the Structural Changes and Redox Behavior of Mixed Molybdate Catalysts under Ammoxidation Conditions: An Operando Raman Spectroscopy Study. ChemCatChem, 2016, 8, 976-983.	1.8	15
103	Structural Changes of Highly Active Pd/MeOx (Me = Fe, Co, Ni) during Catalytic Methane Combustion. Catalysts, 2018, 8, 42.	1.6	15
104	Combining HR-TEM and XPS to elucidate the core–shell structure of ultrabright CdSe/CdS semiconductor quantum dots. Scientific Reports, 2020, 10, 20712.	1.6	15
105	Unraveling the Dynamics of Nanoscopically Confined PVME in Thin Films of a Miscible PVME/PS Blend. ACS Applied Materials & Interfaces, 2017, 9, 37289-37299.	4.0	15
106	Reaction of nitrogen with fcc- and bcc-iron films on copper(100). Surface Science, 1998, 402-404, 236-240.	0.8	14
107	Impact of Coâ€Components on the State of Pd and the Performance of Supported Pd/TiO ₂ Catalysts in the Gasâ€Phase Acetoxylation of Toluene. ChemCatChem, 2011, 3, 1893-1901.	1.8	14
108	Cold gas spraying – A promising technique for photoelectrodes. Catalysis Today, 2016, 260, 140-147.	2.2	14

#	Article	IF	CITATIONS
109	Impact of phosphorus and nitrogen on structure and catalytic performance of VZrPON oxynitrides in the ammoxidation of 3-picoline. Journal of Catalysis, 2011, 277, 196-207.	3.1	13
110	Rutile – A superior support for highly selective and stable Pd-based catalysts in the gas-phase acetoxylation of toluene. Journal of Catalysis, 2013, 297, 256-263.	3.1	13
111	In situ monitoring of the influence of water on DNA radiation damage by near-ambient pressure X-ray photoelectron spectroscopy. Communications Chemistry, 2021, 4, .	2.0	13
112	Thin film and surface alloy formation with Cu deposits on Pt(100)hex. Surface Science, 1996, 357-358, 943-948.	0.8	12
113	Synergistic effect in the oxidation of benzyl alcohol using citrate-stabilized gold bimetallic nanoparticles supported on alumina. Journal of Nanoparticle Research, 2016, 18, 1.	0.8	12
114	First Knowledge on the Formation of Novel Coreâ^'Shell Structures in PdCu Catalysts and Their Influence on the Prevention of Catalyst Deactivation. Journal of Physical Chemistry C, 2007, 111, 10166-10169.	1.5	11
115	Vanadiumâ€Containing Oxynitrides: Effective Catalysts for the Ammoxidation of 3â€Picoline. ChemCatChem, 2009, 1, 485-491.	1.8	11
116	Deactivation and regeneration studies of a PdSb/TiO2 catalyst used in the gas-phase acetoxylation of toluene. Journal of Catalysis, 2011, 282, 103-111.	3.1	11
117	Application of near-ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) in an in-situ analysis of the stability of the surface-supported metal-organic framework HKUST-1 in water, methanol and pyridine atmospheres. Journal of Electron Spectroscopy and Related Phenomena, 2021, 247, 147042.	0.8	11
118	Surface Modification by Metal Deposition. Physica Status Solidi (B): Basic Research, 1995, 192, 441-463.	0.7	10
119	Ammonia removal from effluent streams of wet oxidation under high pressure. Topics in Catalysis, 2005, 33, 155-169.	1.3	10
120	Oxidation of alcohols using RuMnCe catalysts. Applied Catalysis A: General, 2009, 366, 212-219.	2.2	10
121	Ternary VZrAlON Oxynitrides - Efficient Catalysts for the Ammoxidation of 3-Picoline. ACS Catalysis, 2014, 4, 2687-2695.	5.5	10
122	Iron and Manganese Containing Multiâ€Walled Carbon Nanotubes as Electrocatalysts for the Oxygen Evolution Reaction ―Unravelling Influences on Activity and Stability. ChemCatChem, 2020, 12, 5378-5384.	1.8	10
123	Role of Water in Phase Transformations and Crystallization of Ferrihydrite and Hematite. ACS Applied Materials & Interfaces, 2020, 12, 38714-38722.	4.0	10
124	Tuning the Electronic and Spin Complexity in Organic–Inorganic Molecular Hybrid Compounds. Chemistry - A European Journal, 2012, 18, 6433-6436.	1.7	9
125	Grapheneâ€Assisted Synthesis of 2D Polyglycerols as Innovative Platforms for Multivalent Virus Interactions. Advanced Functional Materials, 2021, 31, 2009003.	7.8	9
126	Palladium-catalysed vapour phase aerobic acetoxylation of toluene to benzyl acetate. Catalysis Today, 2009, 141, 317-324.	2.2	8

#	Article	IF	CITATIONS
127	Influence of Sb on the Structure and Performance of Pd-Based Catalysts: An X-ray Spectroscopic Study. Journal of Physical Chemistry C, 2017, 121, 3854-3861.	1.5	8
128	Particle size-controlled synthesis of high-performance MnCo-based materials for alkaline OER at fluctuating potentials. Catalysis Science and Technology, 2021, 11, 7278-7286.	2.1	8
129	Flying droplets as model system for spray drying—An in situ synchrotron X-ray scattering study on complex oxides catalyst precursors. Catalysis Today, 2010, 155, 326-330.	2.2	7
130	New Insights into the Nature of Coâ€components and Their Impact on Pd Structure: Xâ€ray Absorption Studies on Toluene Acetoxylation Catalysts. Chemistry - A European Journal, 2015, 21, 15280-15289.	1.7	7
131	Reliable Surface Analysis Data of Nanomaterials in Support of Risk Assessment Based on Minimum Information Requirements. Nanomaterials, 2021, 11, 639.	1.9	7
132	Preparation of Nanoparticles for ToF-SIMS and XPS Analysis. Journal of Visualized Experiments, 2020, , .	0.2	7
133	The Impact of Reaction Pressure on the Catalytic Performance of the PdSb/TiO ₂ Catalyst in the Acetoxylation of Toluene into Benzyl Acetate. ChemCatChem, 2013, 5, 185-191.	1.8	6
134	Control of Bridging Ligands in [(V2O3)2(RXO3)4âŠ,F]â^' Cage Complexes: A Unique Way To Tune Their Chemical Properties. Organometallics, 2014, 33, 4905-4910.	1.1	6
135	Impact of the outermost layer of various solid metal vanadate catalysts on ammoxidation of 2-methyl pyrazine to 2-cyanopyrazine. Catalysis Communications, 2015, 71, 97-101.	1.6	6
136	Mussel-inspired multifunctional coating for bacterial infection prevention and osteogenic induction. Journal of Materials Science and Technology, 2021, 68, 160-171.	5.6	6
137	Preconditioning of AISI 304 stainless steel surfaces in the presence of flavins—Part I: Effect on surface chemistry and corrosion behavior. Materials and Corrosion - Werkstoffe Und Korrosion, 2021, 72, 974-982.	0.8	6
138	Chemical inâ€depth analysis of (Ca/Sr)F ₂ core–shell like nanoparticles by Xâ€ray photoelectron spectroscopy with tunable excitation energy. Surface and Interface Analysis, 2021, 53, 494-508.	0.8	6
139	From Nanoparticle Heteroclusters to Filament Networks by Self-Assembly at the Water–Oil Interface of Reverse Microemulsions. Langmuir, 2021, 37, 8876-8885.	1.6	6
140	Improved Platinum Electrocatalyst for the Oxygen Reduction Reaction Using Nitrogen-Modified Carbon Support. ECS Transactions, 2011, 41, 1161-1171.	0.3	5
141	Surface tungsten reduction during thermal decomposition of ammonium paratungstate tetrahydrate in oxidising atmosphere: A paradox?. Thermochimica Acta, 2016, 633, 77-81.	1.2	5
142	Surface galvanic formation of Co-OH on Birnessite and its catalytic activity for the oxygen evolution reaction. Journal of Catalysis, 2021, 396, 304-314.	3.1	5
143	Ionic liquid [PMIM]+[NTf2]â^ (Solarpur®) characterized by XPS. Surface Science Spectra, 2022, 29, 014001.	0.3	5
144	Dye activation of heterogeneous Copper(II)-Species for visible light driven hydrogen generation. International Journal of Hydrogen Energy, 2019, 44, 28409-28420.	3.8	4

#	Article	IF	CITATIONS
145	Sizeâ€īunable Ni–Cu Core–Shell Nanoparticles—Structure, Composition, and Catalytic Activity for the Reverse Water–Gas Shift Reaction. Advanced Engineering Materials, 2022, 24, .	1.6	4
146	The influence of chemical transport via vapour phase on the properties of chloride and caesium-doped V–Fe mixed oxide catalysts in the oxidation of butadiene to furan. Applied Catalysis A: General, 2005, 285, 139-150.	2.2	3
147	Plasma chemical preparation and characterization of perovskite-type mixed oxides. Progress in Solid State Chemistry, 2007, 35, 249-255.	3.9	3
148	Optimization of Reaction Conditions and Regeneration Procedure of the PdSb/TiO2 Catalyst for Acetoxylation of Toluene. Topics in Catalysis, 2011, 54, 1197-1205.	1.3	3
149	Strong metal–support interaction as activity requirement of palladium-supported tin oxide sol–gel catalyst for water denitration. International Journal of Environmental Science and Technology, 2012, 9, 235-246.	1.8	3
150	Surfaceâ€Initiated Grafting of Dendritic Polyglycerol from Musselâ€Inspired Adhesionâ€Layers for the Creation of Cellâ€Repelling Coatings. Advanced Materials Interfaces, 2020, 7, 2000931.	1.9	3
151	Composition, thickness, and homogeneity of the coating of core–shell nanoparticles—possibilities, limits, and challenges of X-ray photoelectron spectroscopy. Analytical and Bioanalytical Chemistry, 2022, , 1.	1.9	3
152	Analytical approach for characterization of morphology and chemistry of a CH ₃ NH ₃ PbI ₃ /TiO ₂ solar cell layered system. Surface and Interface Analysis, 2018, 50, 1234-1238.	0.8	2
153	Identifying the location of Cu ions in nanostructured SAPO-5 molecular sieves and its impact on the redox properties. RSC Advances, 2019, 9, 6429-6437.	1.7	2
154	Benchmarking the ACEnano Toolbox for Characterisation of Nanoparticle Size and Concentration by Interlaboratory Comparisons. Molecules, 2021, 26, 5315.	1.7	2
155	Energy dependent XPS measurements on thin films of a poly(vinyl methyl ether)/polystyrene blend concentration profile on a nanometer resolution to understand the behavior of nanofilms. Soft Matter, 2021, 17, 6985-6994.	1.2	2
156	Nanoanalytical Identification of Siderite Dissolution-Coupled Pb Removal Mechanisms from Oxic and Anoxic Aqueous Solutions. ACS Earth and Space Chemistry, 2020, 4, 1966-1977.	1.2	2
157	1-Propyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl)imide (Solarpur®) analyzed by hard x-ray photoelectron spectroscopy. Surface Science Spectra, 2021, 28, 024006.	0.3	2
158	Electronic properties of epitaxial Cu films on Pt(100). Journal of Electron Spectroscopy and Related Phenomena, 1998, 93, 215-219.	0.8	1
159	Impact of partial oxidation in dense CO2 on the solid-state properties of (VO)2P2O7 catalyst. Journal of Materials Chemistry, 2003, 13, 125-129.	6.7	1
160	104 The interaction of nitrogen oxides with supported manganese oxide catalysts: New mechanistic insights by spectroscopic in-situ studies. Studies in Surface Science and Catalysis, 2003, 145, 463-464.	1.5	1
161	Study on the Synthesis and Characterization of Nano Silver Loaded ZSM-5 Zeolite for Bacterial Elimination. Journal of Nanoscience and Nanotechnology, 2015, 15, 7275-7279.	0.9	1
162	Complementary Methodical Approach for the Analysis of a Perovskite Solar Cell Layered System. Microscopy and Microanalysis, 2017, 23, 1978-1979.	0.2	1

#	Article	IF	CITATIONS
163	Passivity of alloy 31 in greenâ€death solution. Materials and Corrosion - Werkstoffe Und Korrosion, 2018, 69, 1218-1226.	0.8	1
164	Spectroscopy in Catalysis. Catalysts, 2020, 10, 408.	1.6	1
165	<i>In Situ</i> Non-Vibrational Characterization Techniques to Analyse Oxidation Catalysts and Mechanisms. , 2014, , 496-548.		0
166	Nature of surface carbon species and pathways of their formation in the heterogeneously catalysed acetoxylation of toluene. Catalysis Science and Technology, 2016, 6, 6011-6021.	2.1	0
167	Synthesis and Performance of Nano Silver Coated ZSM-5/SBA-15. Journal of Nanoscience and Nanotechnology, 2017, 17, 1813-1819.	0.9	0
168	A new test specimen for the determination of the field of view of smallâ€area Xâ€ray photoelectron spectrometers. Surface and Interface Analysis, 2020, 52, 890-894.	0.8	0
169	Enrichment of aluminium in the nearâ€surface region of natural quartzite rock after aluminium exposure. Surface and Interface Analysis, 2021, 53, 385-391.	0.8	0
170	Palladium in Heterogeneous Oxidation Catalysis. Advances in Chemical and Materials Engineering Book Series, 2016, , 53-81.	0.2	0
171	Automation and Standardization—A Coupled Approach towards Reproducible Sample Preparation Protocols for Nanomaterial Analysis. Molecules, 2022, 27, 985.	1.7	0
172	Testing and validating the improved estimation of the spectrometerâ€transmission function with UNIFIT 2022. Surface and Interface Analysis, 0, , .	0.8	0