
Heike Krebber

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/732499/publications.pdf Version: 2024-02-01

HEIKE KDERRED

#	Article	IF	CITATIONS
1	Nuclear SR-protein mediated mRNA quality control is continued in cytoplasmic nonsense-mediated decay. RNA Biology, 2021, 18, 1390-1407.	3.1	10
2	Nuclear mRNA Quality Control and Cytoplasmic NMD Are Linked by the Guard Proteins Gbp2 and Hrb1. International Journal of Molecular Sciences, 2021, 22, 11275.	4.1	2
3	Unraveling the stepwise maturation of the yeast telomerase including a Cse1 and Mtr10 mediated quality control checkpoint. Scientific Reports, 2021, 11, 22174.	3.3	2
4	Dbp5/DDX19 between Translational Readthrough and Nonsense Mediated Decay. International Journal of Molecular Sciences, 2020, 21, 1085.	4.1	10
5	Evolution of intron splicing towards optimized gene expression is based on various Cis- and Trans-molecular mechanisms. PLoS Biology, 2019, 17, e3000423.	5.6	14
6	Nuclear Pre-snRNA Export Is an Essential Quality Assurance Mechanism for Functional Spliceosomes. Cell Reports, 2019, 27, 3199-3214.e3.	6.4	41
7	Translation termination depends on the sequential ribosomal entry of eRF1 and eRF3. Nucleic Acids Research, 2019, 47, 4798-4813.	14.5	28
8	Postâ€ŧranslational modification directs nuclear and hyphal tip localization of <scp><i>C</i></scp> <i>andida albicans</i> m <scp>RNA</scp> â€binding protein <scp>S</scp> lr1. Molecular Microbiology, 2017, 104, 499-519.	2.5	8
9	Capturing the Asc1p/Receptor for Activated C Kinase 1 (RACK1) Microenvironment at the Head Region of the 40S Ribosome with Quantitative BioID in Yeast. Molecular and Cellular Proteomics, 2017, 16, 2199-2218.	3.8	63
10	Quick or quality? How mRNA escapes nuclear quality control during stress. RNA Biology, 2017, 14, 1642-1648.	3.1	22
11	<scp><i>Saccharomyces cerevisiae</i></scp> Cle2/Rae1 is involved in septin organization, essential for cell cycle progression. Yeast, 2017, 34, 459-470.	1.7	4
12	mRNA quality control is bypassed for immediate export of stress-responsive transcripts. Nature, 2016, 540, 593-596.	27.8	79
13	Nuclear Export of Pre-Ribosomal Subunits Requires Dbp5, but Not as an RNA-Helicase as for mRNA Export. PLoS ONE, 2016, 11, e0149571.	2.5	23
14	Telomerase RNA TLC1 Shuttling to the Cytoplasm Requires mRNA Export Factors and Is Important for Telomere Maintenance. Cell Reports, 2014, 8, 1630-1638.	6.4	30
15	Quality control of spliced mRNAs requires the shuttling SR proteins Gbp2 and Hrb1. Nature Communications, 2014, 5, 3123.	12.8	80
16	mRNA Export. , 2014, , 89-112.		0
17	DEAD-Box RNA Helicases in Bacillus subtilis Have Multiple Functions and Act Independently from Each Other. Journal of Bacteriology, 2013, 195, 534-544.	2.2	69
18	Dbp5 — From nuclear export to translation. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2013, 1829, 791-798.	1.9	45

Heike Krebber

#	Article	IF	CITATIONS
19	Monosome Formation during Translation Initiation Requires the Serine/Arginine-Rich Protein Npl3. Molecular and Cellular Biology, 2013, 33, 4811-4823.	2.3	26
20	A Subset of Histone H2B Genes Produces Polyadenylated mRNAs under a Variety of Cellular Conditions. PLoS ONE, 2013, 8, e63745.	2.5	40
21	The mRNA export factor Npl3 mediates the nuclear export of large ribosomal subunits. EMBO Reports, 2011, 12, 1024-1031.	4.5	31
22	The iron–sulphur protein RNase L inhibitor functions in translation termination. EMBO Reports, 2010, 11, 214-219.	4.5	117
23	Translation termination: New factors and insights. RNA Biology, 2010, 7, 548-550.	3.1	11
24	The DEAD-Box RNA Helicase Dbp5 Functions in Translation Termination. Science, 2007, 315, 646-649.	12.6	118
25	Differential Export Requirements for Shuttling Serine/Arginine-type mRNA-binding Proteins. Journal of Biological Chemistry, 2004, 279, 5049-5052.	3.4	44
26	Yeast Shuttling SR Proteins Npl3p, Gbp2p, and Hrb1p Are Part of the Translating mRNPs, and Npl3p Can Function as a Translational Repressor. Molecular and Cellular Biology, 2004, 24, 10479-10491.	2.3	89
27	Hot trends erupting in the nuclear transport field. EMBO Reports, 2004, 5, 453-458.	4.5	2
28	Identification of Gbp2 as a novel poly(A) + RNAâ€binding protein involved in the cytoplasmic delivery of messenger RNAs in yeast. EMBO Reports, 2003, 4, 278-283.	4.5	52
29	Sac3 Is an mRNA Export Factor That Localizes to Cytoplasmic Fibrils of Nuclear Pore Complex. Molecular Biology of the Cell, 2003, 14, 836-847.	2.1	65
30	Messenger RNAs are recruited for nuclear export during transcription. Genes and Development, 2001, 15, 1771-1782.	5.9	193
31	The Conserved Npl4 Protein Complex Mediates Proteasome-dependent Membrane-bound Transcription Factor Activation. Molecular Biology of the Cell, 2001, 12, 3226-3241.	2.1	147
32	Directing proteins to nucleus by fusion to nuclear localization signal tags. Methods in Enzymology, 2000, 327, 283-296.	1.0	5
33	Uncoupling of the hnRNP Npl3p from mRNAs during the stress-induced block in mRNA export. Genes and Development, 1999, 13, 1994-2004.	5.9	71
34	A member of the Ran-binding protein family, Yrb2p, is involved in nuclear protein export. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 7427-7432.	7.1	97
35	Localization of the Novel Serine/Threonine Protein Phosphatase 6 Gene (PPP6C) to Human Chromosome Xq22.3. Genomics, 1997, 41, 296-297.	2.9	16
36	Assignment of the Human Serine/Threonine Protein Phosphatase 4 Gene (PPP4C) to Chromosome 16p11–p12 by Fluorescencein SituHybridization. Genomics, 1997, 42, 181-182.	2.9	2

Heike Krebber

#	Article	IF	CITATIONS
37	Localization of the Gene Encoding the Ran-Binding Protein RanBP2 to Human Chromosome 2q11–q13 by Fluorescencein SituHybridization. Genomics, 1997, 43, 247-248.	2.9	6
38	Ubiquitous expression and testis-specific alternative polyadenylation of mRNA for the human Ran GTPase activator RanGAP1. Gene, 1996, 180, 7-11.	2.2	8
39	Human RanGTPase-activating protein RanGAP1 is a homologue of yeast Rna1p involved in mRNA processing and transport Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 1749-1753.	7.1	253
40	Evidence for the existence of a single ubiquitin gene inGiardia lamblia. FEBS Letters, 1994, 343, 234-236.	2.8	31