
Wei-Bo Hu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7324654/publications.pdf Version: 2024-02-01

WELBO HU

#	Article	IF	CITATIONS
1	<i>ortho</i> -Functionalization of Pillar[5]arene: An Approach to Mono- <i>ortho</i> -Alkyl/Aryl-Substituted A1/A2-Dihydroxypillar[5]arene. Organic Letters, 2022, 24, 1822-1826.	4.6	10
2	<i>></i> -Tetrazine-Bridged Photochromic Aromatic Framework Material. ACS Omega, 2022, 7, 11276-11284.	3.5	2
3	Thiazolo[5,4â€ <i>d</i>]thiazoleâ€Based Donor–Acceptor Covalent Organic Framework for Sunlightâ€Driven Hydrogen Evolution. Angewandte Chemie - International Edition, 2021, 60, 1869-1874.	13.8	186
4	Thiazolo[5,4â€ <i>d</i>]thiazoleâ€Based Donor–Acceptor Covalent Organic Framework for Sunlightâ€Driven Hydrogen Evolution. Angewandte Chemie, 2021, 133, 1897-1902.	2.0	27
5	Application of Electronâ€Rich Covalent Organic Frameworks COFâ€JLU25 for Photocatalytic Aerobic Oxidative Hydroxylation of Arylboronic Acids to Phenols. European Journal of Organic Chemistry, 2021, 2021, 3986-3991.	2.4	10
6	Highly Branched Pillar[5]arene-Derived Porous Aromatic Frameworks (PAFs) for Removal of Organic Pollutants from Water. ACS Applied Materials & Interfaces, 2021, 13, 16507-16515.	8.0	27
7	Pillar[5]arene-Derived <i>endo</i> -Functionalized Molecular Tube for Mimicking Protein–Ligand Interactions. Journal of Organic Chemistry, 2021, 86, 6467-6477.	3.2	7
8	Highly dispersive trace silver decorated Cu/Cu2O composites boosting electrochemical CO2 reduction to ethanol. Journal of CO2 Utilization, 2021, 52, 101698.	6.8	15
9	Switching the Oxygen Reduction Reaction Pathway via Tailoring the Electronic Structure of FeN ₄ /C Catalysts. ACS Catalysis, 2021, 11, 13020-13027.	11.2	17
10	Titelbild: Thiazolo[5,4â€ <i>d</i>]thiazoleâ€Based Donor–Acceptor Covalent Organic Framework for Sunlightâ€Driven Hydrogen Evolution (Angew. Chem. 4/2021). Angewandte Chemie, 2021, 133, 1685-1685.	2.0	0
11	Electrochemical Reduction of CO ₂ to HCOOH over Copper Catalysts. ACS Applied Materials & Interfaces, 2021, 13, 57462-57469.	8.0	12
12	A facile method for the synthesis of free-standing pillar[5]arene-based two-dimensional covalent organic monolayers in solution. Supramolecular Chemistry, 2020, 32, 126-132.	1.2	1
13	A Triazineâ€Based Analogue of Graphyne: Scalable Synthesis and Applications in Photocatalytic Dye Degradation and Bacterial Inactivation. Chemistry - A European Journal, 2020, 26, 2269-2275.	3.3	16
14	A Pillar[5]arene Conjugated Polymer for Removal of Low-Molecular-Weight Organic Acids, Amines, and Alcohols from Water. ACS Applied Polymer Materials, 2020, 2, 5566-5573.	4.4	18
15	Design of Thiazolo[5,4- <i>d</i>]thiazole-Bridged Ionic Covalent Organic Polymer for Highly Selective Oxygen Reduction to H ₂ O ₂ . Chemistry of Materials, 2020, 32, 8553-8560.	6.7	23
16	Covalent Triazine Framework Confined Copper Catalysts for Selective Electrochemical CO ₂ Reduction: Operando Diagnosis of Active Sites. ACS Catalysis, 2020, 10, 4534-4542.	11.2	112
17	Pillar[5]arene based conjugated macrocycle polymers with unique photocatalytic selectivity. Chinese Chemical Letters, 2020, 31, 3225-3229.	9.0	26
18	A Diaminopillar[5]areneâ€Based Macrobicyclic Molecule: Synthesis, Characterization and A Lock–Key Story. Chemistry - A European Journal, 2019, 25, 2189-2194.	3.3	8

Wei-Bo Hu

#	Article	IF	CITATIONS
19	Covalent Triazine-Based Polymers with Controllable Band Alignment Matched with BiVO ₄ To Boost Photogeneration of Holes for Water Splitting. Chemistry of Materials, 2019, 31, 8062-8068.	6.7	33
20	Polyvinyl alcohol-modified gold nanoparticles with record-high activity for electrochemical reduction of CO2 to CO. Journal of CO2 Utilization, 2019, 34, 108-114.	6.8	46
21	Direct synthesis of covalent triazine-based frameworks (CTFs) through aromatic nucleophilic substitution reactions. RSC Advances, 2019, 9, 18008-18012.	3.6	21
22	BiVO4 nanocrystals with controllable oxygen vacancies induced by Zn-doping coupled with graphene quantum dots for enhanced photoelectrochemical water splitting. Chemical Engineering Journal, 2019, 372, 399-407.	12.7	102
23	Unidirectional complexation of pillar[4]arene[1]benzoquinoneoxime with alkyl alcohols. Organic and Biomolecular Chemistry, 2019, 17, 4975-4978.	2.8	7
24	Systematic rim cyano-functionalization of pillar[5]arene and corresponding host–guest property varieties. Organic and Biomolecular Chemistry, 2019, 17, 4600-4604.	2.8	8
25	Engineering a pillar[5]arene-based supramolecular organic framework by a co-crystallization method. Dalton Transactions, 2018, 47, 5144-5148.	3.3	17
26	Guest-regulated chirality switching of planar chiral <i>pseudo</i> [1]catenanes. Organic and Biomolecular Chemistry, 2018, 16, 2028-2032.	2.8	27
27	Pillar[5]arene-Py-Cu Gel, the First Pillar[5]arene-Based Metallo(organo)gel, and Adsorption of Sudan III by Its Gel-Precipitate. European Journal of Inorganic Chemistry, 2017, 2017, 3551-3554.	2.0	15
28	A1/A2-Diamino-Substituted Pillar[5]arene-Based Acid–Base-Responsive Host–Guest System. Journal of Organic Chemistry, 2016, 81, 3877-3881.	3.2	45
29	Multicavity macrocyclic hosts. Chemical Communications, 2016, 52, 12130-12142.	4.1	45
30	Negative Cooperativity in the Binding of Imidazolium and Viologen Ions to a Pillar[5]arene-Crown Ether Fused Host. Organic Letters, 2015, 17, 2940-2943.	4.6	33
31	Synthesis of Pillar[<i>n</i>]arene[5â^ <i>n</i>]quinines <i>via</i> Partial Oxidation of Pillar[5]arene. Chinese Journal of Chemistry, 2015, 33, 379-383.	4.9	29
32	Selectivity and Cooperativity in the Binding of Multiple Guests to a Pillar[5]arene–Crown Ether Fused Tricyclic Host. Journal of Organic Chemistry, 2015, 80, 7994-8000.	3.2	21
33	A [2]rota[2]catenane, constructed from a pillar[5]arene-crown ether fused double-cavity macrocycle: synthesis and structural characterization. Chemical Communications, 2015, 51, 13882-13885.	4.1	40
34	A pillar[5]arene and crown ether fused bicyclic host: synthesis, guest discrimination and simultaneous binding of two guests with different shapes, sizes and electronic constitutions. Chemical Communications, 2014, 50, 10460-10463.	4.1	70