Ben A Woodcock

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7324612/publications.pdf

Version: 2024-02-01

99 papers 7,553 citations

41 h-index

70961

82 g-index

102 all docs $\begin{array}{c} 102 \\ \\ \text{docs citations} \end{array}$

102 times ranked

9889 citing authors

#	Article	IF	CITATIONS
1	LOTVS: A global collection of permanent vegetation plots. Journal of Vegetation Science, 2022, 33, .	1.1	4
2	<scp>CropPol</scp> : A dynamic, open and global database on crop pollination. Ecology, 2022, 103, e3614.	1.5	19
3	Future restoration should enhance ecological complexity and emergent properties at multiple scales. Ecography, 2022, 2022, .	2.1	30
4	Neonicotinoid use on cereals and sugar beet is linked to continued low exposure risk in honeybees. Agriculture, Ecosystems and Environment, 2021, 308, 107205.	2.5	11
5	Historical, local and landscape factors determine the success of grassland restoration for arthropods. Agriculture, Ecosystems and Environment, 2021, 308, 107271.	2.5	8
6	Flowering fields, organic farming and edge habitats promote diversity of plants and arthropods on arable land. Journal of Applied Ecology, 2021, 58, 1155-1166.	1.9	13
7	Management to Support Multiple Ecosystem Services from Productive Grasslands. Sustainability, 2021, 13, 6263.	1.6	13
8	Patterns of invertebrate functional diversity highlight the vulnerability of ecosystem services over a 45-year period. Current Biology, 2021, 31, 4627-4634.e3.	1.8	18
9	Using ecological and field survey data to establish a national list of the wild bee pollinators of crops. Agriculture, Ecosystems and Environment, 2021, 315, 107447.	2.5	24
10	Does agri-environmental management enhance biodiversity and multiple ecosystem services?: A farm-scale experiment. Agriculture, Ecosystems and Environment, 2021, 320, 107582.	2.5	17
11	Integration of DNA extraction, metabarcoding and an informatics pipeline to underpin a national citizen science honey monitoring scheme. MethodsX, 2021, 8, 101303.	0.7	4
12	The influence of landscape composition and configuration on crop yield resilience. Journal of Applied Ecology, 2020, 57, 2180-2190.	1.9	30
13	Invertebrate community structure predicts natural pest control resilience to insecticide exposure. Journal of Applied Ecology, 2020, 57, 2441-2453.	1.9	5
14	Synchrony matters more than species richness in plant community stability at a global scale. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24345-24351.	3.3	113
15	Detecting landscape scale consequences of insecticide use on invertebrate communities. Advances in Ecological Research, 2020, 63, 93-126.	1.4	4
16	Equivocal Evidence for Colony Level Stress Effects on Bumble Bee Pollination Services. Insects, 2020, 11, 191.	1.0	14
17	Directional trends in species composition over time can lead to a widespread overemphasis of yearâ€toâ€year asynchrony. Journal of Vegetation Science, 2020, 31, 792-802.	1.1	15
18	Mass-flowering crops have a greater impact than semi-natural habitat on crop pollinators and pollen deposition. Landscape Ecology, 2020, 35, 513-527.	1.9	29

#	Article	IF	Citations
19	Effects of future agricultural change scenarios on beneficial insects. Journal of Environmental Management, 2020, 265, 110550.	3.8	27
20	Agrochemicals in the wild: Identifying links between pesticide use and declines of nontarget organisms. Current Opinion in Environmental Science and Health, 2019, 11, 53-58.	2.1	36
21	Widespread losses of pollinating insects in Britain. Nature Communications, 2019, 10, 1018.	5.8	415
22	Meta-analysis reveals that pollinator functional diversity and abundance enhance crop pollination and yield. Nature Communications, 2019, 10, 1481.	5.8	150
23	Two common invertebrate predators show varying predation responses to different types of sentinel prey. Journal of Applied Entomology, 2019, 143, 380-386.	0.8	9
24	The effect of tillage management and its interaction with site conditions and plant functional traits on plant species establishment during meadow restoration. Ecological Engineering, 2018, 117, 28-37.	1.6	7
25	Plant traits explain the success of vacuum harvesting as a method of seed collection for the restoration of species-rich grasslands. Landscape and Ecological Engineering, 2018, 14, 147-155.	0.7	1
26	Research trends in ecosystem services provided by insects. Basic and Applied Ecology, 2018, 26, 8-23.	1.2	216
27	Potential landscapeâ€scale pollinator networks across Great Britain: structure, stability and influence of agricultural land cover. Ecology Letters, 2018, 21, 1821-1832.	3.0	48
28	Crop pests and predators exhibit inconsistent responses to surrounding landscape composition. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E7863-E7870.	3.3	401
29	Functional diversity positively affects prey suppression by invertebrate predators: a metaâ€analysis. Ecology, 2018, 99, 1771-1782.	1.5	81
30	Call to restrict neonicotinoids. Science, 2018, 360, 973-973.	6.0	77
31	Neonicotinoid residues in UK honey despite European Union moratorium. PLoS ONE, 2018, 13, e0189681.	1.1	31
32	Buffer strip management to deliver plant and invertebrate resources for farmland birds in agricultural landscapes. Agriculture, Ecosystems and Environment, 2017, 240, 215-223.	2.5	9
33	Dispersal capacity shapes responses of river island invertebrate assemblages to vegetation structure, island area, and flooding. Insect Conservation and Diversity, 2017, 10, 341-353.	1.4	14
34	Network size, structure and mutualism dependence affect the propensity for plant–pollinator extinction cascades. Functional Ecology, 2017, 31, 1285-1293.	1.7	45
35	The database of the <scp>PREDICTS</scp> (Projecting Responses of Ecological Diversity In Changing) Tj ETQq1	1 0.78431 0.8	4 rgBT /Over
36	Country-specific effects of neonicotinoid pesticides on honey bees and wild bees. Science, 2017, 356, 1393-1395.	6.0	510

#	Article	IF	CITATIONS
37	Spill-over of pest control and pollination services into arable crops. Agriculture, Ecosystems and Environment, 2016, 231, 15-23.	2.5	86
38	Replication, effect sizes and identifying the biological impacts of pesticides on bees under field conditions. Journal of Applied Ecology, 2016, 53, 1358-1362.	1.9	31
39	Impacts of neonicotinoid use on long-term population changes in wild bees in England. Nature Communications, 2016, 7, 12459.	5.8	367
40	A Synthesis is Emerging between Biodiversity–Ecosystem Function and Ecological Resilience Research: Reply to Mori. Trends in Ecology and Evolution, 2016, 31, 89-92.	4.2	14
41	Wildlife-friendly farming increases crop yield: evidence for ecological intensification. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20151740.	1.2	233
42	Declining resilience of ecosystem functions under biodiversity loss. Nature Communications, 2015, 6, 10122.	5.8	246
43	Local and landscape effects on bee functional guilds in pigeon pea crops in Kenya. Journal of Insect Conservation, 2015, 19, 647-658.	0.8	14
44	Size matters: Body size determines functional responses of ground beetle interactions. Basic and Applied Ecology, 2015, 16, 621-628.	1.2	18
45	Biodiversity and Resilience of Ecosystem Functions. Trends in Ecology and Evolution, 2015, 30, 673-684.	4.2	916
46	Social and ecological drivers of success in agriâ€environment schemes: the roles of farmers and environmental context. Journal of Applied Ecology, 2015, 52, 696-705.	1.9	72
47	National patterns of functional diversity and redundancy in predatory ground beetles and bees associated with key <scp>UK</scp> arable crops. Journal of Applied Ecology, 2014, 51, 142-151.	1.9	66
48	The <scp>PREDICTS</scp> database: a global database of how local terrestrial biodiversity responds to human impacts. Ecology and Evolution, 2014, 4, 4701-4735.	0.8	178
49	Grazing alters insect visitation networks and plant mating systems. Functional Ecology, 2014, 28, 178-189.	1.7	63
50	Enhancing floral resources for pollinators in productive agricultural grasslands. Biological Conservation, 2014, 171, 44-51.	1.9	70
51	Crop flower visitation by honeybees, bumblebees and solitary bees: Behavioural differences and diversity responses to landscape. Agriculture, Ecosystems and Environment, 2013, 171, 1-8.	2.5	123
52	Enhancing beetle and spider communities in agricultural grasslands: The roles of seed addition and habitat management. Agriculture, Ecosystems and Environment, 2013, 167, 79-85.	2.5	14
53	Novel management to enhance spider biodiversity in existing grass buffer strips. Agricultural and Forest Entomology, 2013, 15, 77-85.	0.7	13
54	Enhancement of Buffer Strips Can Improve Provision of Multiple Ecosystem Services. Outlooks on Pest Management, 2012, 23, 258-262.	0.1	4

#	Article	IF	CITATIONS
55	Investigating the phytotoxicity of the graminicide fluazifopâ€Pâ€butyl against native UK wildflower species. Pest Management Science, 2012, 68, 412-421.	1.7	9
56	Limiting factors in the restoration of UK grassland beetle assemblages. Biological Conservation, 2012, 146, 136-143.	1.9	39
57	Identifying time lags in the restoration of grassland butterfly communities: A multi-site assessment. Biological Conservation, 2012, 155, 50-58.	1.9	46
58	Enhancing floral diversity to increase the robustness of grassland beetle assemblages to environmental change. Conservation Letters, 2012, 5, 459-469.	2.8	8
59	Effects of seed addition on beetle assemblages during the reâ€creation of speciesâ€rich lowland hay meadows. Insect Conservation and Diversity, 2012, 5, 19-26.	1.4	6
60	Science into practice – how can fundamental science contribute to better management of grasslands for invertebrates?. Insect Conservation and Diversity, 2012, 5, 1-8.	1.4	51
61	Species Richness-Environment Relationships of European Arthropods at Two Spatial Grains: Habitats and Countries. PLoS ONE, 2012, 7, e45875.	1.1	13
62	Local management and landscape drivers of pollination and biological control services in a Kenyan agro-ecosystem. Biological Conservation, 2011, 144, 2424-2431.	1.9	49
63	Disentangling the effects of predator hunting mode and habitat domain on the top-down control of insect herbivores. Journal of Animal Ecology, 2011, 80, 495-503.	1.3	37
64	Can longâ€term floodplain meadow recreation replicate species composition and functional characteristics of target grasslands?. Journal of Applied Ecology, 2011, 48, 1070-1078.	1.9	29
65	Ecological restoration on farmland can drive beneficial functional responses in plant and invertebrate communities. Agriculture, Ecosystems and Environment, 2011, 140, 62-67.	2.5	56
66	Novel margin management to enhance Auchenorrhyncha biodiversity in intensive grasslands. Agriculture, Ecosystems and Environment, 2011, 140, 506-513.	2.5	10
67	New tools to boost butterfly habitat quality in existing grass buffer strips. Journal of Insect Conservation, 2011, 15, 221-232.	0.8	30
68	Enhancing habitat to help the plight of the bumblebee. Pest Management Science, 2011, 67, 377-379.	1.7	10
69	Impact of habitat type and landscape structure on biomass, species richness and functional diversity of ground beetles. Agriculture, Ecosystems and Environment, 2010, 139, 181-186.	2.5	109
70	Effects of vegetation structure and floristic diversity on detritivore, herbivore and predatory invertebrates within calcareous grasslands. Biodiversity and Conservation, 2010, 19, 81-95.	1.2	54
71	Functional traits as indicators of biodiversity response to land use changes across ecosystems and organisms. Biodiversity and Conservation, 2010, 19, 2921-2947.	1.2	385
72	The Restoration of Phytophagous Beetles in Speciesâ€Rich Chalk Grasslands. Restoration Ecology, 2010, 18, 638-644.	1.4	7

#	Article	IF	CITATIONS
73	The role of management and landscape context in the restoration of grassland phytophagous beetles. Journal of Applied Ecology, 2010, 47, 366-376.	1.9	44
74	Trophic level modulates carabid beetle responses to habitat and landscape structure: a panâ€European study. Ecological Entomology, 2010, 35, 226-235.	1.1	47
75	New tools to boost butterfly habitat quality in existing grass buffer strips. , 2010, , 225-236.		0
76	Enhancing pollinator biodiversity in intensive grasslands. Journal of Applied Ecology, 2009, 46, 369-379.	1.9	161
77	Responses of invertebrate trophic level, feeding guild and body size to the management of improved grassland field margins. Journal of Applied Ecology, 2009, 46, 920-929.	1.9	84
78	The impact of two arable field margin management schemes on litter decomposition. Applied Soil Ecology, 2009, 41, 90-97.	2.1	11
79	Can arable field margins be managed to enhance their biodiversity, conservation and functional value for soil macrofauna?. Journal of Applied Ecology, 2008, 45, 269-278.	1.9	101
80	Contrasting success in the restoration of plant and phytophagous beetle assemblages of species-rich mesotrophic grasslands. Oecologia, 2008, 154, 773-783.	0.9	33
81	Effects of seed mixture and management on beetle assemblages of arable field margins. Agriculture, Ecosystems and Environment, 2008, 125, 246-254.	2.5	33
82	Parasitism of the beech leafâ€miner weevil in a woodland: patch size, edge effects and parasitoid species identity. Insect Conservation and Diversity, 2008, 1, 180-188.	1.4	15
83	Experimental verification of suction sampler capture efficiency in grasslands of differing vegetation height and structure. Journal of Applied Ecology, 2008, 45, 1357-1363.	1.9	97
84	The effects of seed mix and management on the abundance of desirable and pernicious unsown species in arable buffer strip communities. Weed Research, 2008, 48, 113-123.	0.8	20
85	Hay strewing, brush harvesting of seed and soil disturbance as tools for the enhancement of botanical diversity in grasslands. Biological Conservation, 2007, 134, 372-382.	1.9	104
86	The importance of sward architectural complexity in structuring predatory and phytophagous invertebrate assemblages. Ecological Entomology, 2007, 32, 302-311.	1.1	78
87	Are polyphagous geometrid moths with flightless females adapted to budburst phenology of local host species?. Oikos, 2006, 112, 83-90.	1.2	22
88	COMMENTARY ON KLEIJN ET AL. 2006. Ecology Letters, 2006, 9, 254-256.	3.0	13
89	The potential of grass field margin management for enhancing beetle diversity in intensive livestock farms. Journal of Applied Ecology, 2006, 44, 60-69.	1.9	70
90	Effects of grazing management on beetle and plant assemblages during the re-creation of a flood-plain meadow. Agriculture, Ecosystems and Environment, 2006, 116, 225-234.	2.5	21

#	Article	lF	CITATIONS
91	Seeds of change: The value of using Rhinanthus minor in grassland restoration. Journal of Vegetation Science, 2006, 17, 435.	1.1	11
92	Establishing field margins to promote beetle conservation in arable farms. Agriculture, Ecosystems and Environment, 2005, 107, 255-266.	2.5	75
93	Effect of land-use heterogeneity on carabid communities at the landscape scale. Ecography, 2005, 28, 3-16.	2.1	112
94	Re-creation of a lowland flood-plain meadow: management implications for invertebrate communities. Journal of Insect Conservation, 2005, 9, 207-218.	0.8	4
95	The manipulation of vegetation field and field margin vegetation structure in intensively managed UK cattle grazed pasture systems: Implications for invertebrate biodiversity. Proceedings of the British Society of Animal Science, 2005, 2005, 231-231.	0.0	1
96	Grazing management of calcareous grasslands and its implications for the conservation of beetle communities. Biological Conservation, 2005, 125, 193-202.	1.9	80
97	Influence of management type on Diptera communities of coniferous plantations and deciduous woodlands. Agriculture, Ecosystems and Environment, 2003, 95, 443-452.	2.5	13
98	Changing management in Scottish birch woodlands: a potential threat to local invertebrate biodiversity. Bulletin of Entomological Research, 2003, 93, 159-167.	0.5	12
99	Aggregation, habitat quality and coexistence: a case study on carrion fly communities in slug cadavers. Journal of Animal Ecology, 2002, 71, 131-140.	1.3	58